Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering
|
|
|
- Lizbeth McCarthy
- 9 years ago
- Views:
Transcription
1 F. G. Tseng Lec6, Fall/2001, p1 Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering Vacuum evaporation 1. Fundamental of Evaporation: The material to be evaporated is heated in an evacuated chamber so that it attains a gaseous state. Vapor of this material traverse the space from the source to the substrate. Typical deposition rates in industry is around 0.5 µm/min (~8 nm/s, for Al), however, in our lab we get around 0.3 ~1 nm/s for better quality. To approach this rate (0.5 µm/min), the vapor pressure in 10 mtorr range is desired.
2 F. G. Tseng Lec6, Fall/2001, p2
3 F. G. Tseng Lec6, Fall/2001, p3 Al and Au is quite usable in thermal evaporation system with heated crucible, for they can be melt in crucible and generate enough quantity of vapors. However, W and Ti are not suitable for their low vapor pressure. Electron-beam evaporation, using an intense beam of energy is applied locally to a target, can be used to develop a sufficiently large flux of evaporate from refractory materials.
4 F. G. Tseng Lec6, Fall/2001, p4 In E-beam, Source is held in a water cooled hearth, and evaporation occurs at a highly localized point on this source, while its bulk remains solid. No contamination from the crucible if the beam strikes only on the target.
5 F. G. Tseng Lec6, Fall/2001, p5 Evaporate from a point source, causing non-uniformity on substrate. Ways to reduce the problem: a. rotating the slices during evaporation, b. Planetary motion system, c. moving the position of point source to simulate a large surface source. Evaporation Rate: m G = πρr 2 cosφ cosθ cm/sec
6 F. G. Tseng Lec6, Fall/2001, p6 for planetary holder, G is independent of substrate position: G = m 2 4 r 0 πρ for cosθ=cosφ=r/2r 0 Materials: refractory or non-refractory materials. Compounds or alloys can not get right combination if evaporated from only single source. Multiple hearths evaporated at the same time or using reactive evaporation methods are desired to get right combination. The materials now available in our lab are Al, Au, Ti, Cr, Cu, Ni, Pt, and Ag. Multiple hearths are incorporated into these systems to permit the deposition of multiplayer films in a sequential manner without breaking vacuum and contamination. Path should be collision free to prevent agglomeration ( 結
7 F. G. Tseng Lec6, Fall/2001, p7 塊 ) of material in gas phase, thus the length should be less than mean free path. To have mean free path about cm, the pressure should be less than 10. The typical vacuum evaporator should by pumped to 10-7 torr(most of the depositions used in the lab is in the range of torr). Kinetic gas theory Idea gas law: PV = N av kt P: pressure, V: Volume, T: temperature, N av : Avogadro s number ( molecules/mole). The mean free path, λ, of a gas molecule is the average distance the molecule travels before it collides with another molecule, and a parameter determined by temperature and pressure. λ is given by: λ = kt / 2πPd 2 d: is the diameter of gas molecule, in the range of 2-5 A. For a 4 A molecule at 10-4 Pa (~10-6 torr), the mean free path is around 60 m. Molecules travel in a straight line in a vacuum system. Cadmium and Zinc has high vapor pressure and seems easily to contaminate the entire system during high vacuum process.
8 F. G. Tseng Lec6, Fall/2001, p8 During vacuum evaporation, substrates are essentially unheated, except for radiation from the evaporant source (usually give substrate C depending on temp). To improve the adhesion for the evaporant to substrate, elevate temp is sometime used by infrared heaters. However, care need to be taken if the substrate has PR for lift off process, and temperature need to be less than the hard bake temp. Thermal evaporation provides energy in the ev range, thus does not damage substrate surface, especially good for gate oxide. However, e-beam evaporation uses high voltage (>10 kv), may produces x-ray, which increase fixed oxide charge and density of interface traps. In-situ cleaning is not practical in evaporation system thus sometime pose adhesion problem. Aluminum film has fine adhesion on oxide substrate, but most of the metals (especially noble metal) have poor adhesion on silicon or silicon oxide surface, as a result, Chromium (Cr) and Titanium (Ti) are often used for this purpose.
9 F. G. Tseng Lec6, Fall/2001, p9 Step coverage
10 F. G. Tseng Lec6, Fall/2001, p10 Sputtering and sputtering etching More versatile than vacuum evaporation: (a) ability to deposit a wide variety of metal s and insulators, as well as their mixtures, (b) the replication of target composition in the deposited film, and (c) the capability for in-situ cleaning of the substrate prior to film deposition. Self-sustained glow discharge which is created by the breakdown of a heavy inert gas such as argon. A d.c. electric field impressed across two water-cooled electrodes which are located in this gas. Current (electrons) flow between electrodes in sufficient electrical field. Electrons collide with argon to produce Ar +, and Ar + collide with other argon molecules and cause avalanche multiplication effect and produce large number of Ar + and electrons. This effect ~E/λ, and also effected by electrode distance. Here λ~1/p, and E: electrical field density, λ: mean free path, P: pressure. Ar + ions bombard the cathode, resulting in sputtering of its surface material by momentum transfer. Secondary electrons emitted at the cathode participate in sustaining the discharge by ionizing collisions with argon molecules.
11 F. G. Tseng Lec6, Fall/2001, p11 Electrically conductive materials such as Al, W, and Ti can use a dc power source, in which the target acts as the cathode in a diode system. Sputtering of dielectrics such as silicon dioxide or aluminum oxide requires an RF power to supply energy to the argon atoms. (usually 1-3kV and MHz) Most of the voltage drop is in the vicinity of the cathode, resulting in its bombardment by high-velocity Ar + ions. The anode is a relatively field-free region. The neutral atoms ejected from the cathode, having a energy 0-20eV, diffuse to the anode or the chamber walls and arrive in a relatively no-directed manner, posing better step coverage and adhesion from the ion mixing resulting from the energy spread. Sputtering yield
12 F. G. Tseng Lec6, Fall/2001, p12 Alloy content of a multi-component target is replicated in the source film even if it consists materials with widely different sputter yield. (the first altered layer can be as thin as few tens of angstroms for metal alloys and 1000 angstroms for targets of oxide mixtures) This can not be easily obtained by evaporation. Back-sputtering by reverse system polarity in dc sputtering can be used to clean substrate surface in-situ before film deposition, which affects electrical and mechanical properties of film-substrate combination. Sputtering can damage substrate surface for the impact of high energy species, not suitable for deposition material on gate oxide.
13 F. G. Tseng Lec6, Fall/2001, p13 Magnetron sputtering: Magnetic field can be used to confine electrons near the target surface to greatly increases the possibility of ionizing collisions with at the argon gas molecules. References: 1. Sorab K. Ghandhi, VLSI Fabrication Principles-silicon and gallium arsenide, John Wiley $ Sons, Inc, New York, Richard c. Jaeger, Introduction to Microelectronic Fabrication-Modular series on solid state devices, Addision-Wesley Publishing company, New York, S. Middleman, and A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, McGRAW International Editions, New York, 1993.
Vacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
Coating Technology: Evaporation Vs Sputtering
Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information
Ion Beam Sputtering: Practical Applications to Electron Microscopy
Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a
Deposition of Thin Metal Films " (on Polymer Substrates)!
Deposition of Thin Metal Films " (on Polymer Substrates)! Shefford P. Baker! Cornell University! Department of Materials Science and Engineering! Ithaca, New York, 14853! MS&E 5420 Flexible Electronics,
Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle
Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.
Electron Beam and Sputter Deposition Choosing Process Parameters
Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,
Planar Magnetron Sputtering Sources
Planar Magnetron puttering ources INTRODUCTION TABLE OF CONTENT PAGE Introduction........................ 2 MAK 1.3...........................3 MAK 2............................4 MAK 3............................5
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited
Dry Etching and Reactive Ion Etching (RIE)
Dry Etching and Reactive Ion Etching (RIE) MEMS 5611 Feb 19 th 2013 Shengkui Gao Contents refer slides from UC Berkeley, Georgia Tech., KU, etc. (see reference) 1 Contents Etching and its terminologies
Reactive Sputtering Using a Dual-Anode Magnetron System
Reactive Sputtering Using a Dual-Anode Magnetron System A. Belkind and Z. Zhao, Stevens Institute of Technology, Hoboken, NJ; and D. Carter, G. McDonough, G. Roche, and R. Scholl, Advanced Energy Industries,
Sputtering. Ion-Solid Interactions
ssistant Professor Department of Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (716) 475-2923 Fax (716) 475-5041 [email protected] Page 1
Methods of plasma generation and plasma sources
Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development
THIN FILM MATERIALS TECHNOLOGY
THIN FILM MATERIALS TECHNOLOGY Sputtering of Compound Materials by Kiyotaka Wasa Yokohama City University Yokohama, Japan Makoto Kitabatake Matsushita Electric Industrial Co., Ltd. Kyoto, Japan Hideaki
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,
2. Nanoparticles. Introduction to Nanoscience, 2005 1
2. Nanoparticles Nanoparticles are the simplest form of structures with sizes in the nm range. In principle any collection of atoms bonded together with a structural radius of < 100 nm can be considered
Chapter 11 PVD and Metallization
Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology
Coating technology High performance low-emissivity coating Growing concern with energy efficiency has sparked the development of double low-emissivity coatings in architectural glass. BOC Coating has designed
PLASMA TECHNOLOGY OVERVIEW
PLASMA TECHNOLOGY OVERVIEW Plasmas are not a lab curiosity. Plasma processing has been an essential production tool for more than 30 years in the fabrication of microelectronic devices for example. Over
Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition
Université Paris-Sud XI Laboratoire de Physique des Gaz et des Plasmas Orsay, France & Masaryk University in Brno Department of Physical Electronics Brno, Czech Republic Plasma diagnostics focused on new
3 - Atomic Absorption Spectroscopy
3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,
Deposition Overview for Microsytems
Deposition Overview for Microsytems Deposition PK Activity Terminology Participant Guide www.scme-nm.org Deposition Overview for Microsystems Primary Knowledge Participant Guide Description and Estimated
Lasers Design and Laser Systems
Lasers Design and Laser Systems Tel: 04-8563674 Nir Dahan Tel: 04-8292151 [email protected] Thank You 1 Example isn't another way to teach, it is the only way to teach. -- Albert Einstein Course
Plasma Cleaner: Physics of Plasma
Plasma Cleaner: Physics of Plasma Nature of Plasma A plasma is a partially ionized gas consisting of electrons, ions and neutral atoms or molecules The plasma electrons are at a much higher temperatures
Sputter deposition processes
Sputter deposition processes D. Depla 1, S. Mahieu 1, J.E. Greene 2 1 Ghent University, Department of Solid State Sciences, Krijgslaan 281 (S1), 9000 Ghent, Belgium 2 Materials Science and Physics Departments
How compact discs are made
How compact discs are made Explained by a layman for the laymen By Kevin McCormick For Science project at the Mountain View Los Altos High School Abstract As the major media for music distribution for
2. Deposition process
Properties of optical thin films produced by reactive low voltage ion plating (RLVIP) Antje Hallbauer Thin Film Technology Institute of Ion Physics & Applied Physics University of Innsbruck Investigations
Module 7 Wet and Dry Etching. Class Notes
Module 7 Wet and Dry Etching Class Notes 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A.
LUMINOUS CHEMICAL VAPOR DEPOSITION and INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. MARCEL MARCEL DEKKER. NEW YORK DEKKER Contents Preface iii Part I.
Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems
Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems Georgy L. Saksaganski D.V. Efremov Institute, St Petersburg, Russia [email protected] An overview of the methods for reducing of
Direct Energy Influx Measurements. in Low Pressure Plasma Processes
Direct Energy Influx Measurements in Low Pressure Plasma Processes A.L. Thomann, GREMI Orléans R. Dussart, N. Semmar, J. Mathias, T. Lecas L. Bedra, P.A. Cormier, V. Dolique Outline I. Introduction: Why
VCR Ion Beam Sputter Coater
VCR Ion Beam Sputter Coater Sputtering Process and Rates 2 Vacuum System 3 Loading the Sputter Chamber 4 Sputter Coating 5 Removing Samples from Chamber 6 Appendix A: VCR High Vacuum Gauge Conditioning
The physics of plasmas and particularly the physics of plasma arcs and their
WHITEPAPER By Thomas C. Grove, Advanced Energy Industries, Inc. ARCING PROBLEMS ENCOUNTERED DURING The physics of plasmas and particularly the physics of plasma arcs and their SPUTTER DEPOSITION genesis
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma Songlin Xu a and Li Diao Mattson Technology, Inc., Fremont, California 94538 Received 17 September 2007; accepted 21 February 2008; published
Types of Epitaxy. Homoepitaxy. Heteroepitaxy
Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)
Electricity. Investigating spontaneous gas discharge in air as a function of pressure. LD Physics Leaflets P3.9.2.1. 0210-Sel
Electricity Electrical conduction in gases Gas discharge at reduced pressure LD Physics Leaflets P3.9.2.1 Investigating spontaneous gas discharge in air as a function of pressure Objects of the experiments
State of the art in reactive magnetron sputtering
State of the art in reactive magnetron sputtering T. Nyberg, O. Kappertz, T. Kubart and S. Berg Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, S-751 21 Uppsala, Sweden D.
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
III. Wet and Dry Etching
III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
TOF FUNDAMENTALS TUTORIAL
TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] [email protected] [e-mail] This
Thin Film Deposition techniques. SCPY663 Sem2/2009 (Physics-MUSC)
Thin Film Deposition techniques Thermal Evaporation 1 An evaporator Evaporator SCPY663 Sem2/2009 (Physics 2 Evaporation rate all materials have an equilibrium vapor pressure, p e (T) (T: source temperature)
Cathode Ray Tube. Introduction. Functional principle
Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the
Dry Etch Process Application Note
G-106-0405 pplication ulletin Dry Etch Process pplication Note nthony Ricci Etch Process Overview The etching process removes selected areas from wafer substrates. The two types of etching processes used
Decorative vacuum coating technologies 30.05.2014 Certottica Longarone. Thin Film Plasma Coating Technologies
Dr. Stefan Schlichtherle Dr. Georg Strauss PhysTech Coating Technology GmbH Decorative vacuum coating technologies 30.05.2014 Certottica Longarone Thin Film Plasma Coating Technologies Content The fascination
Lezioni di Tecnologie e Materiali per l Elettronica
Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta [email protected] microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies
Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors
Integrated Ferroelectrics, 53: 503 511, 2003 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580390258651 Observation of Long Transients in the Electrical Characterization
Chapter 7: Oil Vapor Diffusion Pumps
Chapter 7: Oil Vapor Diffusion Pumps It wasn't that long ago when you could walk into any vacuum laboratory and find a vapor diffusion pump on every system. Vapor diffusion pumps were first conceived about
Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack
Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
THE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
DEPOSITION METHODS AND THERMORESISTIVE PROPERTIES OF VANADIUM OXIDE AND AMORPHOUS SILICON THIN FILMS. Thesis. Submitted to
DEPOSITION METHODS AND THERMORESISTIVE PROPERTIES OF VANADIUM OXIDE AND AMORPHOUS SILICON THIN FILMS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of
Cathodic Arc Deposition of superconducting thin films of MgB 2 for RF cavities*
Alameda Applied Sciences Corporation Cathodic Arc Deposition of superconducting thin films of MgB 2 for RF cavities* Mahadevan Krishnan, Andrew Gerhan, Kristi Wilson and Brian Bures Alameda Applied Sciences
Optical Properties of Thin Film Molecular Mixtures
Optical Properties of Thin Film Molecular Mixtures Donald A. Jaworske NASA Glenn Research Center 2 Brookpark Road Cleveland, OH 4435 e-maih Donald. A.J aworske((_grc.nasa.gov Dean A. Shumway Brigham Young
Tableting Punch Performance Can Be Improved With Precision Coatings
Tableting Punch Performance Can Be Improved With Precision Coatings by Arnold H. Deutchman, Ph. D. Director of Research and Development (614) 873-4529 X 114 [email protected] Mr. Dale C. Natoli
Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray
Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Hannu Teisala a, Mikko Tuominen a, Mikko Aromaa b, Jyrki M. Mäkelä b, Milena Stepien c, Jarkko J. Saarinen c, Martti Toivakka c
Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob
Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
Sputtering Targets for Microelectronics. Sputtering Targets for Semiconductor Applications
Sputtering Targets for Microelectronics Sputtering Targets for Semiconductor Applications Umicore Thin Film Products Umicore Thin Film Products, a globally active business unit within the Umicore Group,
Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
Lecture 9. Surface Treatment, Coating, Cleaning
1 Lecture 9. Surface Treatment, Coating, Cleaning These processes are sometimes referred to as post-processing. They play a very important role in the appearance, function and life of the product. Broadly,
The photoionization detector (PID) utilizes ultraviolet
Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive Sputtertechnologien Wolfgang Hentsch, Dr. Reinhard Fendler FHR Anlagenbau GmbH Germany Contents: 1. FHR Anlagenbau GmbH in Brief
Deposition of Silicon Oxide, Silicon Nitride and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology
General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology M.
Damage-free, All-dry Via Etch Resist and Residue Removal Processes
Damage-free, All-dry Via Etch Resist and Residue Removal Processes Nirmal Chaudhary Siemens Components East Fishkill, 1580 Route 52, Bldg. 630-1, Hopewell Junction, NY 12533 Tel: (914)892-9053, Fax: (914)892-9068
Surface activation of plastics by plasma for adhesion promotion
Surface activation of plastics by plasma for adhesion promotion Uwe Stöhr, Ph. D. 1 Introduction In many fields a good adhesion between two materials is necessary. The adhesion should exist at the whole
Plasma Source. Atom Source, Ion Source and Atom/Ion Hybrid Source
Plasma Source Atom Source, Ion Source and Atom/Ion Hybrid Source The tectra Plasma Source* is a multi-purpose source which can easily be user configured to produce either atoms or ions and finds uses in
Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9
Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation
Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.
Fe Particles Metallic contaminants Organic contaminants Surface roughness Au Particles SiO 2 or other thin films Contamination Na Cu Photoresist Interconnect Metal N, P Damages: Oxide breakdown, metal
SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater
SALES SPECIFICATION SC7640 Auto/Manual High Resolution Sputter Coater Document Number SS-SC7640 Issue 1 (01/02) Disclaimer The components and packages described in this document are mutually compatible
Wipe Analysis to Determine Metal Contamination on Critical Surfaces
By Albert Dato, Ph.D., Warren York, Jennifer Jew, Laarni Huerta, Brice Norton, and Michael Coste On-wafer metallic contamination is detrimental to the fabrication and performance of semiconductor devices.
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
MICROPOSIT LOL 1000 AND 2000 LIFTOFF LAYERS For Microlithography Applications
Technical Data Sheet MICROPOSIT LOL 1000 AND 2000 LIFTOFF LAYERS For Microlithography Applications Regional Product Availability Description Advantages North America Europe, Middle East and Africa Latin
Semiconductor doping. Si solar Cell
Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion
TEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
MOS (metal-oxidesemiconductor) 李 2003/12/19
MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,
Plasma Electronic is Partner of. Tailor-Made Surfaces by Plasma Technology
Precision Fair 2013 Stand 171 Plasma Electronic is Partner of Tailor-Made Surfaces by Plasma Technology Dr. J. Geng, Plasma Electronic GmbH Modern Surface Technology in 1900 Overview A short introduction
For Touch Panel and LCD Sputtering/PECVD/ Wet Processing
production Systems For Touch Panel and LCD Sputtering/PECVD/ Wet Processing Pilot and Production Systems Process Solutions with over 20 Years of Know-how Process Technology at a Glance for Touch Panel,
7. The current voltage characteristic of electric conductors
KL 7. The current voltage characteristic of electric conductors 7.1 ntroduction The purpose of the present laboratory is to measure the current voltage characteristic of different conducting components.
Secondary Ion Mass Spectrometry
Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,
Balzers Sputter Coater SCD 050
Balzers Sputter Coater SCD 050 The SCD 050 is a bench top, sputter deposition system designed for thin films on substrates up to 6 inches. Morphology and thickness is user controlled using power, pressure,
WŝŽŶĞĞƌŝŶŐ > ĞdžƉĞƌŝĞŶĐĞ ƐŝŶĐĞ ϭϵϳϰ WŝĐŽƐƵŶ ^he > Ρ ZͲƐĞƌŝĞƐ > ƐLJƐƚĞŵƐ ƌŝěőŝŷő ƚśğ ŐĂƉ ďğƚǁğğŷ ƌğɛğăƌđś ĂŶĚ ƉƌŽĚƵĐƟŽŶ d, &hdhz K& d,/e &/>D /^, Z
The ALD Powerhouse Picosun Defining the future of ALD Picosun s history and background date back to the very beginning of the field of atomic layer deposition. ALD was invented in Finland in 1974 by Dr.
1 Introduction. Taking the logarithm of both sides of Equation 1.1:
j1 1 Introduction The aim of this book is to provide an understanding of the basic processes, at the atomic or molecular level, which are responsible for kinetic processes at the microscopic and macroscopic
Micro-Power Generation
Micro-Power Generation Elizabeth K. Reilly February 21, 2007 TAC-meeting 1 Energy Scavenging for Wireless Sensors Enabling Wireless Sensor Networks: Ambient energy source Piezoelectric transducer technology
Chem 1721 Brief Notes: Chapter 19
Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire
GD-Profiler Series RF Glow Discharge Optical Emission Spectrometers
GD-Profiler Series RF Glow Discharge Optical Emission Spectrometers For many applications, it is essential to know the chemical composition of a material, both at the surface, at the interfaces and in
Effect of the oxide film formed on the electrical properties of Cu-Zn alloy electric contact material
Effect of the oxide film formed on the electrical properties of Cu-Zn alloy electric contact material Hao-Long Chen *, Ke-Cheng Tseng and Yao-Sheng Yang Department of Electronic Engineering, Kao Yuan University,
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................
Anodes and Misc Equipment
Anodes and Misc Equipment Application: Platinised Titanium Anodes Platinised titanium anodes are recommended for use in the following electrolytic processes:- Precious metal electroplating - e.g. Au, Pt,
Arc Handling Considerations for DC Sputtering Power Supplies
Arc Handling Considerations for DC Sputtering Power Supplies D.J. Christie, H.V. Walde, and T.J. Ash, Advanced Energy Industries, Inc., Fort Collins, CO Key Words: Arc handling Pulsed-DC sputtering DC
CLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
Elements, Atoms & Ions
Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,
