Some Triangle Centers Associated with the Circles Tangent to the Excircles
|
|
|
- Arline Henderson
- 9 years ago
- Views:
Transcription
1 Forum Geometricorum Volume FORUM GEOM ISSN Some Triangle Centers Associated with the Circles Tangent to the Excircles Boris Odehnal Abstract. We study those tritangent circles of the excircles of a triangle which enclose exactly one excircle and touch the two others from the outside. It turns out that these three circles share exactly the Spieker point. Moreover we show that these circles give rise to some triangles which are in perspective with the base triangle. The respective perspectors turn out to be new polynomial triangle centers. 1. Introduction Let T := ABC be a triangle in the Euclidean plane, and Γ a, Γ b, Γ c its excircles, lying opposite to A, B, C respectively, with centers I a, I b, I c and radii r a, r b, r c. There are eight circles tangent to all three excircles: the side lines of T considered as circles with infinite radius, the Feuerbach circle see [2, 4], the so-called Apollonius circle enclosing all the three excircles see for example [3, 6, 9], and three remaining circles which will in the following be denoted by K a, K b, K c. The circle K a is tangent to Γ a and externally to Γ b and Γ c ; similarly for K b and K c. The radii of these circles are computed in [1]. These circles have the Spieker center X 10 as a common point. In this note we study these circles in more details, and show that the triangle of contact points K a,a K b,b K c,c is perspective with T. Surprisingly, the triangle M a M b M c of the centers these circles is also perspective with T. 2. Main results The problem of constructing the circles tangent to three given circles is well studied. Applying the ideas of J. D. Gergonne [5] to the three excircles we see that the construction of the circles K a etc can be accomplished simply by a ruler. Let K a,b be the contact point of circle Γ a with K b, and analogously define the remaining eight contact points. The contact points K a,a, K b,a, K c,a are the intersections of the excircles Γ a, Γ b, Γ c with the lines joining their contact points with the sideline BC to the radical center radical center of the three excircles, namely, the Spieker point X 10 =b + c : c + a : a + b Publication Date: April 20, Communicating Editor: Paul Yiu.
2 36 B. Odehnal in homogeneous barycentric coordinates see for example [8]. The circle K a is the circle containing these points see Figure 1. The other two circle K b and K c can be analogously constructed. C b I b B c A I c C c X 10 B b K b,a K c,a A c B A a C A b B a C a I a K a,a Figure 1. The circle K a Let s := 1 2 a + b = c be the semiperimeter. The contact points of the excircles with the sidelines are the points A a =0 : s b : s c, B a = s b :0:s, C a = s c :s :0; A b =0 : s a :s, B b =s a :0:s c, C b =s : s c : 0; A c =0 : c : s a, B c =s :0: s b, C c =s a : s b :0. A conic is be represented by an equation in the form x T Mx =0, where x T = x 0 x 1 x 2 is the vector collecting the homogeneous barycentric coordinates of a
3 Some triangle centers associated with the circles tangent to the excircles 37 K c,c M b I b K b,b K c,b A K b,c I c M c K c,a X 10 K b,a B C K a,b K a,c M a I a K a,a Figure 2. point X, and M is a symmetric 3 3-matrix. For the excircles, these matrices are M a = s2 ss c ss b ss c s c 2 s bs c, ss b s bs c s b 2 M b = s c2 ss c s as c ss c s 2 ss a, s as c ss a s a 2 M c = s b2 s as b ss b s as b s a 2 ss a. ss b ss a s 2 It is elementary to verify that the homogeneous barycentrics of the contact points are given by:
4 38 B. Odehnal K a,a = b + c 2 s bs c :c 2 ss b :b 2 ss c, K a,b = c 2 ss b :c + a 2 s bs c :as + bc 2, K a,c = b 2 ss c :as + bc 2 :a + b 2 s bs c; K b,a = b + c 2 s as c : c 2 ss a :bs + ac 2, K b,b = c 2 ss a : c + a 2 s as c :a 2 ss c, K b,c = bs + ac 2 : a 2 ss c :a + b 2 s as c; K c,a = b + c 2 s as b :cs + ab 2 : b 2 ss a, K c,b = cs + ab 2 :c + a 2 s as c : a 2 ss b, K c,c = b 2 ss a :a 2 ss b : a + b 2 s as b. 1 Theorem 1. The triangle K a,a K b,c K c,c of contact points is perspective with T at a point with homogeneous barycentric coordinates s a a 2 : s b b 2 : s c c 2. 2 Proof. The coordinates of K a,a, K b,b, K c,c can be rewritten as K a,a = b+c2 s bs c : s b : s c, b 2 c 2 s b 2 c 2 K b,b = K c,c = s a a 2 s a a 2 : c+a2 s as c c 2 a 2 s : s b b 2 : s c c 2 : a+b2 s as b a 2 b 2 s From these, it is clear that the lines AK a,a, BK b,b, CK c,c meet in the point given in 2. Remark. The triangle center P K is not listed in [7]. Theorem 2. The lines AK a,a, BK a,b, and CK a,c are concurrent. Proof. The coordinates of the points K a,a, K a,b, K a,c can be rewritten in the form K a,a = K a,b = K a,c = b+c2 s bs c s b s c : : b 2 c 2 s b 2 c 2 ss bs c c+a : 2 s bs c 2 as+bc 2 c 2 as+b 2 2 ss bs c s b : as+bc 2 b 2,,. s c :, c 2 : a+b2 s b 2 s c. b 2 as+bc 2 From these, the lines AK a,a, BK a,b, and CK a,c intersect at the point ss bs c s b s c as + bc 2 : b 2 : c 2. Let M i be the center of the circle K i. 3 4
5 Some triangle centers associated with the circles tangent to the excircles 39 Theorem 3. The triangle M 1 M 2 M 3 is perspective with T at the point 1 a 5 a 4 b + c+a 3 b c 2 + a 2 b + cb 2 + c 2 +2abcb 2 + bc + c 2 +2b + cb 2 c 2 : :. K c,c M b I b K b,b K c,b A K b,c I c M c K c,a P M X 10 K b,a B C K a,b K a,c M a I a K a,a Figure 3. Proof. The center of the circle K a is the point M a = 2a 4 b + c a 3 4b 2 +4bc +3c 2 +a 2 b + cb 2 + c 2 b + c ab 2 c 2 2 : c 5 c 4 a + b+c 3 a b 2 + c 2 a + ba 2 + b 2 +2abca 2 + ab + b 2 +2a 2 b 2 a + b : b 5 b 4 c + a+b 3 c a 2 + b 2 c + ac 2 + a 2 +2abcc 2 + ca + a 2 +2c 2 a 2 c + a.
6 40 B. Odehnal Similarly, the coordinates of M b and M c can be written down. From these, the perspectivity of T and M a M b M c follows, with the perspector given above. References [1] A. Aeppli, Das Taktionsproblem von Apollonius angewandt auf die vier Berührungskreise eines Dreiecks, Elem. Math., [2] C. B. Boyer, A History of Mathematics, J. Wiley, New York, [3] N. Dergiades and J. C. Salazaar, Some triangle centers associated with the tritangent circles, Forum Geom., [4] K. W. Feuerbach, Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks und mehrerer durch sie bestimmten Figuren PhD thesis, Riegel und Wießner, Nürnberg, [5] J. D. Gergonne, Recherche du cercle qui en touche trois autres sur une sphère, Ann. math. pures appl., [6] D. Grinberg and P. Yiu, The Apollonius circle as a Tucker circle, Forum Geom., [7] C. Kimberling, Encyclopedia of Triangle Centers, available at: [8] C. Kimberling, Triangle centers and central triangles, Congressus numerantium, [9] M. R. Stevanović, The Apollonius circle and related triangle centers, Forum Geom., Boris Odehnal: Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria address: [email protected]
Some triangle centers associated with the circles tangent to the excircles
Some triangle centers associated with the circles tangent to the excircles Boris Odehnal February 19, 010 Abstract We study those tritangent circles of the excirlces of a triangle which enclose exactly
On Triangles with Vertices on the Angle Bisectors
Forum Geometricorum Volume 6 (2006) 247 253. FORUM GEOM SSN 1534-1178 On Triangles with Vertices on the ngle isectors Eric Danneels bstract. We study interesting properties of triangles whose vertices
Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16
Cevians, Symmedians, and Excircles MA 341 Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian
On Mixtilinear Incircles and Excircles
Forum Geometricorum Volume 6 (2006) 1 16. FORUM GEOM ISSN 1534-1178 On Mixtilinear Incircles and Excircles Khoa Lu Nguyen and Juan arlos Salazar bstract. mixtilinear incircle (respectively excircle) of
A note on the geometry of three circles
A note on the geometry of three circles R. Pacheco, F. Pinheiro and R. Portugal Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d Ávila e Bolama, 6201-001, Covilhã - Portugal. email:
Three Pairs of Congruent Circles in a Circle
Forum Geometricorum Volume 4 (004) 117 14. FRUM GEM ISSN 1534-1178 Three Pairs of ongruent ircles in a ircle Li. Tien bstract. onsider a closed chain of three pairs of congruent circles of radii a, b,
Angle bisectors of a triangle in I 2
Mathematical Communications 3(008), 97-05 97 Angle bisectors of a triangle in I Zdenka Kolar Begović,Ružica Kolar Šuper and Vladimir Volenec Abstract. The concept of an angle bisector of the triangle will
Projective Geometry - Part 2
Projective Geometry - Part 2 Alexander Remorov [email protected] Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Triangle Centers MOP 2007, Black Group
Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem
The Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
The Inversion Transformation
The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations
ON THE SIMSON WALLACE THEOREM
South Bohemia Mathematical Letters Volume 21, (2013), No. 1, 59 66. ON THE SIMSON WALLACE THEOREM PAVEL PECH 1, EMIL SKŘÍŠOVSKÝ2 Abstract. The paper deals with the well-known Simson Wallace theorem and
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
The Area of a Polygon with an Inscribed Circle
arxiv:12033438v1 [mathmg] 15 Mar 2012 The Area of a Polygon with an Inscribed Circle Marshall W Buck Robert L Siddon April 2005 Abstract Heron s formula states that the area K of a triangle with sides
Triangle Circle Limits
The Journal of Symbolic Geometry Volume (006) Triangle Circle Limits Walker Ray Lakeside High School Lake Oswego, OR [email protected] Abstract: We examine the limit behavior of various triangle circles,
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
Collinearity and concurrence
Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the
Synthetic Projective Treatment of Cevian Nests and Graves Triangles
Synthetic Projective Treatment of Cevian Nests and Graves Triangles Igor Minevich 1 Introduction Several proofs of the cevian nest theorem (given below) are known, including one using ratios along sides
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
A Nice Theorem on Mixtilinear Incircles
A Nice Theorem on Mixtilinear Incircles Khakimboy Egamberganov Abstract There are three mixtilinear incircles and three mixtilinear excircles in an arbitrary triangle. In this paper, we will present many
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
arxiv:1404.6042v1 [math.dg] 24 Apr 2014
Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle
PCHS ALGEBRA PLACEMENT TEST
MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If
CK-12 Geometry: Parts of Circles and Tangent Lines
CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.
Chapter 1. The Medial Triangle
Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
Conic Construction of a Triangle from the Feet of Its Angle Bisectors
onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given
Sequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
Math 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours
MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
PROJECTIVE GEOMETRY. b3 course 2003. Nigel Hitchin
PROJECTIVE GEOMETRY b3 course 2003 Nigel Hitchin [email protected] 1 1 Introduction This is a course on projective geometry. Probably your idea of geometry in the past has been based on triangles
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach
The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach Lesson Summary: This lesson is for more advanced geometry students. In this lesson,
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
CHAPTER 1. LINES AND PLANES IN SPACE
CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given
Classical theorems on hyperbolic triangles from a projective point of view
tmcs-szilasi 2012/3/1 0:14 page 175 #1 10/1 (2012), 175 181 Classical theorems on hyperbolic triangles from a projective point of view Zoltán Szilasi Abstract. Using the Cayley-Klein model of hyperbolic
MATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements
MATHEMATICS Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Paul Feit, PhD Dr. Paul Feit is Professor of Mathematics and Coordinator for Mathematics.
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
Exercise Set 3. Similar triangles. Parallel lines
Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an
Three Lemmas in Geometry
Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology [email protected] 1 iameter of incircle T Lemma 1. Let the incircle of triangle
Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter
Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Advanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
Unit 2 - Triangles. Equilateral Triangles
Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
2004 Solutions Ga lois Contest (Grade 10)
Canadian Mathematics Competition An activity of The Centre for Education in Ma thematics and Computing, University of W aterloo, Wa terloo, Ontario 2004 Solutions Ga lois Contest (Grade 10) 2004 Waterloo
Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
MATHEMATICS Department Chair: Michael Cordova - [email protected]
MATHEMATICS Department Chair: Michael Cordova - [email protected] Course Offerings Grade 9 Algebra I Algebra II/Trig Honors Geometry Honors Geometry Grade 10 Integrated Math II (2014-2015 only) Algebra
SIMSON S THEOREM MARY RIEGEL
SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology
Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
Mathematics Courses. (All Math courses not used to fulfill core requirements count as academic electives.)
(All Math courses not used to fulfill core requirements count as academic electives.) Course Number Course Name Grade Level Course Description Prerequisites Who Signs for Course 27.04810 GSE Foundations
Background Knowledge
Background Knowledge Precalculus GEOMETRY Successful completion of the course with a grade of B or higher Solid understanding of: Right Triangles Congruence Theorems Basic Trigonometry Basic understanding
How To Prove The Triangle Angle Of A Triangle
Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution.
MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
Elements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013
Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Lecture 2: Homogeneous Coordinates, Lines and Conics
Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4
IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:
IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
25 The Law of Cosines and Its Applications
Arkansas Tech University MATH 103: Trigonometry Dr Marcel B Finan 5 The Law of Cosines and Its Applications The Law of Sines is applicable when either two angles and a side are given or two sides and an
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 08028. [email protected]. 1. Introduction
1 08/0/00 THE REMARKABLE INCIRCLE OF A TRIANGLE Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 0808 [email protected] 1. Introduction The incircle of a triangle is
Archimedes and the Arbelos 1 Bobby Hanson October 17, 2007
rchimedes and the rbelos 1 obby Hanson October 17, 2007 The mathematician s patterns, like the painter s or the poet s must be beautiful; the ideas like the colours or the words, must fit together in a
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
Please start the slide show from the beginning to use links. Click here for active links to various courses
Please start the slide show from the beginning to use links Click here for active links to various courses CLICK ON ANY COURSE BELOW TO SEE DESCRIPTION AND PREREQUISITES To see the course sequence chart
Projective Geometry: A Short Introduction. Lecture Notes Edmond Boyer
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Contents 1 Introduction 2 11 Objective 2 12 Historical Background 3 13 Bibliography 4 2 Projective Spaces 5 21 Definitions 5 22 Properties
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
