(D,{g i j },{R i j }),
|
|
|
- Garry Terry
- 9 years ago
- Views:
Transcription
1 leqcia III-IV. interpretacia. Sesrulebadoba da WeSmaritoba. modelebi. formulebs gaacnia azri mxolod masin, roca matsi Semaval simboloebs gaacnia interpretacia. rogorc vicit, simboloebi warmoadgenen Teoriis enis nawils. Teoriis ena arvnisnot L-iT. interpretaciis qves Cven gvesmis funqcia :L D, romelic asaxavs enas algebrul sistemasi (D,{g i j },{R i j }), sadac (a i ) D, (f i j )=g i j, (P i j )=R i j, da g i j :D j D da R i j D j aris Sesabamisad j adgiliani operacia da mimarteba D-Si. D-s ewodeba interpretaciis are. mocemul interpretaciasi cvladebi moisazreba rogorc cvladebi D ze, xolo kavsirebs, da kvantorebs eniweba mati Cveulebrivi azri. mocemuli interpretaciisatvis nebismieri formula Tavisufali cvladebis garese (an sxvanairad, Caketili formula) warmoadgens gamonatqvams, romelic WeSmaritia an mcdaria, xolo nebismieri formula Tavisufali cvladebit gamoxatavs romelirac mimartebas interpretaciis aresi; es mimarteba SeiZleba iyos Sesrulebadi (WeSmariti) cvladebis romelirac mnisvnelobebisatvis interpretaciis aredan da ar iyos Sesrulebadi (mcdari) sxva mnisvnelobebisatvis. m a g a l i T e b i: (i) P 2 (x, x 2 ) ; (ii) x 2 P 2 (x, x 2 ) ; (iii) x 2 x P 2 (x 2, x ). Tu Cven virebt interpretaciis ared dadebit mtel ricxvta simravles da P 2 (y,z)-is interpretacia aris y z, masin (i) warmoadgens mimartebas y z, romelic Sesrulebadia yvela iset dadebit mtel ricxvta (a,b) dalagebul wyvilebistvis, sadac a naklebia an tolia b-ze; (ii) warmoadgens Tvisebas (e. i. unarul (ertadgilian) mimartebas) yoveli dadebiti mteli y ricxvistvis, y z, romelic sruldeba mxolod ricxvistvis ; dabolos, (iii) aris WeSmariti gamonatqvami, romelic amtkicebs umciresi dadebiti mteli ricxvis arsebobas. Cven rom interpretaciis ared agvero yvela mteli ricxvebis simravle, masin (iii)aarmocndeboda mcdari. Sesrulebadobis da WeSmaritobis cneba intuiciurad gasagebia, magram moviyvanot ufro zusti formulireba. davusvat, gvaqvs romelime interpretacia Tavisi interpretaciis areti D da iyos yvela Tvlad mimdevrobata simravle, romlis elementebi ekutvnis D-s. ganvsazrvrot, ras nisnavs, rom formula Sesrulebadia s = (b, b 2,. ) mimdevrobaze - dan mocemuli interpretaciisatvis. winaswar Cven ganvsazrvravt ertadgilian funqcias s*, romlis domeinia yvela termta simravle, xolo kodomeini aris D, e. i. s*: T D. () Tu termi t aris sagnobrivi cvladi x i, masin s*(t) = b i.
2 (2) Tu termi t aris sagnobrivi konstanta a i, masin s*( a i ) emtxveva mis interpretacias (a i ) D. (3) Tu f n i funqcionaluri asoa, romlis interpretacia ( f n n i ) = g i aris n adgiliani operacia D ze da t,, t n termebia, masin s*(f n i (t,, t n )) = g n i (s*(t ),, s*(t n )). amrigad s* aris funqcia, romelic ganisazrvreba s mimdevrobit da asaxavs termta simravles D-Si. Tu vilaparakebt araformalurad, masin nebismieri s = (b, b 2,. ) mimdevrobistvis da nebismieri t termistvis s*(t) aris D simravlis elementi, romelic miireba x i cvladis Canacvlebis Sedegad b i elementit yoveli i Tvis term t-si da Semdeg interpretaciis yvela operaciis SesrulebiT, romlebic Seesabamebian term t-si Semaval funqcionalur asoebs. magalitad, Tu t aris f 2 2 (x 3,f 2 (x, a )), interpretaciis 2 are aris mtel ricxvta simravle, f 2 da f 2 interpretirdeba Sesabamisad rogorc Cveulebrivi gamravleba da jami, xolo a rogorc 2; masin nebismieri s=(b,b 2,.) mimdevrobistvis s*(t) warmoadgens mtel ricxvs b 3 (b + 2). axla Cven SevudgeT ZiriTad gansazrvrebas, romelsac ganvmartavt formulis induqciur gansazrvraze dayrdnobit. (i) Tu aris elementaruli formula P n n j (t,, t n ) da R j aris misi Sesabamisi mimarteba (P n j ) mocemul interpretaciasi, masin formula Sesrulebulia s mimdevrobaze masin da mxolod masin, roca R n j (s*(t ),,s*(t n )), e. i. n elementiani mimdevroba n (s*(t ),,s*(t n )) ekutvnis mimarteba R j, e. i. (s*(t ),,s*(t n )) R n j. (ii) formula Sesrulebulia s-ze masin da mxolod masin, roca formula ar aris Sesrulebuli s-ze. (iii) formula Sesrulebulia s-ze masin da mxolod masin, roca formula ar aris Sesrulebuli mimdevroba s-ze an roca formula Sesrulebulia s-ze. (iv) formula x i Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia nebismier mimdevrobaze -dan, romelic gansxvavebulia s-gan araumetes Tavisi i-uri komponentit. sxvagvarad rom vtqvat, formula Sesrulebadia s=(b,b 2,.) mimdevrobaze masin da mxolod masin, roca formulis Tavisufali x i cvladis nebismieri b D simboloti Canacvleba gvazlevs WeSmarit winadadebas mocemul interpretaciasi. formula -s ewodeba WeSmariti (mocemul interpretaciasi) masin da mxolod masin, roca is sruldeba nebismier mimdevrobaze dan. formula -s ewodeba mcdari (mocemul interpretaciasi), Tu is ar sruldeba arcert mimdevrobaze dan. mocemul interpretacias ewodeba modeli formulata mocemuli simravlisatvis, Tu yoveli formula -dan WeSmaritia mocemul interpretaciasi. 2
3 SeamowmeT Semdegi debulebebi, romlebic gamomdinareoben gansazrvrebidan. (I) mcdaria mocemul interpretaciasi masin da mxolod masin, roca WeSmaritia igive interpretaciasi, da WeSmaritia masin da mxolod masin, roca mcdaria. (II) arcerti formula ar SeiZleba iyos ertdroulad WeSmariti da mcdari ertdaigive interpretaciasi. (III) Tu mocemul interpretaciasi WeSmaritia da, masin WeSmaritia. (IV) mcdaria mocemul interpretaciasi masin da mxolod masin, roca WeSmaritia amave interpretaciasi, xolo mcdaria. (V) (i) Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia s ze da Sesrulebulia s ze. Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia s ze an Sesrulebulia s ze. Sesrulebulia s-ze masin da mxolod masin, roca an formula Sesrulebulia s ze da Sesrulebulia s ze, an ar aris Sesrulebuli s ze da ar aris Sesrulebulia s ze. (ii) x i Sesrulebulia s ze masin da mxolod masin, roca Sesrulebulia ert mainc s mimdevrobaze, romelic gansxvavdeba s gan araumetes mxolod i uri komponentit. (VI) WeSmaritia mocmul interpretaciasi masin da mxolod masin, roca amave interpretaciasi WeSmaritia x i. mocemuli formulis Caketva ewodeba formulas, romelic miireba zogadobis kvantorebis minawerit -s win, romlebic Seicaven indeqsebis klebadobis mixedvit -s yvela Tavisufal cvladebs. formulis Caketvas, romelic ar Seicavs Tavisufal cvladebs, vuwodebt TviT am formula -s. (magalitad, Tu aris P 2 (x 2, x 5 ) x 2 P 3 (x, x 2, x 3 ), masin -s Caketva iqneba x 5 x 3 x 2 x.) (VII) tavtologiis yoveli kerzo SemTxveva WeSmaritia nebismier interpretaciasi. (mocemuli propoziciuli formis kerzo SemTxvevas Cven vuwodebt nebismier formulas, romelic miireba am formulasi propoziciuli asoebis nacvlad I rigis Teoriis (predikatta arricxvis) formulebis CanacvlebiT im pirobit, rom ertdaigive propoziciuli asoebis Semavlobis adgilas ertdaigive formula Cainacvleba.) (VIII) davusvat, rom formula -s yvela Tavisufali cvladi imyofeba x,..., cvladebs Soris. masin Tu s da s i x in mimdevrobebis komponentebi i,,i n nomrit emtxveva ertmanets, masin formula Sesrulebulia s-ze masin da mxolod masin, roca is Sesrulebulia s -ze. (m i T i T e b a. induqcia kavsirebis da kvantorebis raodenobis mixedvit formula 3
4 Si. jer damtkicdes, rom Tu term t-s cvladebi imyofeba x,..., Soris, xolo s da s mimdevrobebis wevrebi i,, i n i x in nomrit emtxveva ertmanets, masin s*(t) = (s )*(t). kerzod, Tu t ar Seicavs cvladebs, masin s *(t) = s 2 *(t) nebismieri s da s 2 mimdevrobebisatvis. yvela iseti n-elementiani b,..., ) mimdevrobebis ( i b ik simravles, sadac misi elementebi ekutvnis interpretaciis ares D, rom formula Sesrulebulia yovel mimdevroba s ze, romlis i,, i n komponentebi emtxveva Sesabamisad b,...,, i b in ewodeba interpretaciis mimarteba (an Tviseba), romelic Seesabameba formula s. davusvat, magalitad, rom D aris yvela adamianta simravle, P 2 (x,y) da P 2 2 (x,y) interpretaciebi Sesabamisad arian x aris y-is Zma da x aris y-is msobeli ; masin binaruli mimarteba D_Si, romelic Seesabameba formulas x 3 (P 2 (x,x 3 ) & P 2 2 (x 3,x 2 )), warmoadgens mimartebas natesaur kavsirs, romelic akavsirebs ZmisSvils da bizas. Tu interpretaciis ared avirebt mtel dadebit ricxvta simravles, xolo P 2, f 2 da a interpretirebulia Sesabamisad rogorc =, gamravleba da, masin formulas P 2 (x, a ) & x 2 ( x 3 P 2 (x,f 2 (x 2, x 3 )) P 2 (x 2, x ) P 2 (x 2, a )) (IX) (X) Seesabameba mocemuli azrit ricxvis Tviseba iyos martivi. Tu formula Caketilia, masin nebismier interpretaciasi WeSmaritia an, an (e. i. mcdaria). aracaketili, e. i. romelic Seicavs Tavisufal cvladebs, formula SeiZleba zogiert interpretaciasi arc WeSmariti da arc mcdari. davusvat, magalitad, aris P 2 (x,x 2 ). ganvixilot interpretacia, romlis are aris mtel ricxvta simravle da sadac P 2 (x,x 2 ) interpretacia aris x < y. am interpretaciasi Sesrulebadia mxolod mimdevroba s = (b, b 2, ) ze, romelic akmayofilebs pirobas b < b 2. masasadame, am interpretciasi ganxiluli formula arc WeSmariti da arc mcdari. lema. davusvat, rom t da v termebia, s mimdevroba -dan, t miireba t-dan yvela x i Semavlobebis CanacvlebiT v termit da s miireba s-dan massi i-uri komponentis SecvliT s*(v) Ti; masin s*(t ) = (s )*(t). damtkiceba. davusvat, rom (x i ) formulaa, t termia, romelic Tavisufalia x i -Tvis (x i )-Si, da (t) formulaa, romelic mirebulia (x i )-is yvela Tavisufali x i cvladis SenacvlebiT t-ti. masin formula (t) Sesrulebadia mimdevroba s = (b, b 2, )-ze masin da mxolod masin, roca is Sesrulebadia s, romelic mirebulia s-dan element b i -is SecvliT s*(t)-t. 4
5 Sedegi. Tu mimdevroba s-ze Sesrulebadia formula x i (x i ), masin Sesrulebadia agretve formula (t). masasadame, formula x i (x i ) (t) WeSmaritia nebismier interpretaciasi. (XI) Tu formula ar Seicavs x i rogorc Tavisufal cvlads, masin formula x i ( ) ( x i ) WeSmaritia nebismier interpretaciasi. savarjiso daamtkicet (I) (XI). magalitis saxit Cven davamtkicot (XI). dausvat, rom (XI) arasworia. es nisnavs, rom romelirac da formulebistvis formula x i ( ) ( x i ) ar aris WeSmariti romelirac interpretaciasi. gansazrvris me -(iii) punqtis Tanaxmad unda arsebobdes mimdevroba s, romelzedac x i ( ) Sesrulebadia, xolo ( x i ) ar aris Sesrulebadi. masin, isev imave me -(iii) punqtis Tanaxmad am mimdevroba s-ze Sesrulebadia da ar aris Sesrulebadi x i.. e. i., igive gansazrvrebis me- (iv) punqtis Tnaxmad, arsebobs mimdevroba s, romelic SeiZleba gansxvavdebodes s gan mxolod erti i-uri komponentit, romelzedac ar aris Sesrulebadi. vinaidan x i ar aris Tvisufali arc x i ( ) Si da arc -Si, xolo TviT es formulebi Sesrulebadia s-ze, masin, Tanaxmad (VIII), iseni Sesrulebadia agretve s -ze, (iv) Tanaxmad gamomdinareobs, rom agretve Sesrulebadia s -ze. amgvarad, da Sesrulebadia s -ze, saidanac, punqti (iii) mixedvit, gamomdinareobs, rom -c Sesrulebadia s -ze. miviret winaamrdegoba, rom ar aris Sesrulebadi s -ze. amit (XI) damtkicebulia. formula -s ewodeba logikurad zogadmartebuli (predikatta arricxvasi), Tu is WeSmaritia nebismier interpretaciasi. formula -s ewodeba Sesrulebadi (predikatta arricxvasi), Tu arsebobs interpretacia, romelsic Sesrulebadia ertze mainc mimdevrobaze -dan. cxadia, rom formula logikurad zogadmartebulia masin da mxolod masin, roca formula ar aris Sesrulebadi, da Sesrulebadia masin da mxolod masin, roca formula ar aris logikurad zogadmartebuli. rogorc vicit, nebismier interpretaciasi Caketili formula an WeSmaritia an mcdari, e. i. Sesrulebadia an nebismier mimdevrobaze, an arcertze. amgvarad, nebismieri Caketili formula Sesrulebadia masin da mxolod masin, roca is WeSmaritia romelirac interpretaciasi. formula vuwodebt winaamrdegobrivs (predikatta arricxvasi), Tu formula logikurad zogadmartebulia, an, rac igivea, Tu formula mcdaria nebismier interpretaciasi. 5
6 vityvit, rom formula logikurad gamomdinareobs formula - dan (predikatta arricxvasi), Tu nebismier interpretaciasi formula Sesrulebadia nebismier mimdevrobaze, romelzedac Sesrulebadia formula. (ufro zogadad, formula logikurad gamomdinareobs (predikatta arricxvasi) formulata simravlidan, Tu nebismier interpretaciasi formula Sesrulebadia nebismier mimdevrobaze, romelzedac Sesrulebadia, romelzedac Sesrulebadia yoveli formula -dan.) formulebs vuwodebt logikurad eqvivalenturebs (predikatta arricxvasi), Tu yoveli matgani logikurad gamomdinareobs meoredan. am gansazrvrebebidan usualod gamomdinareobs Semdegi mtkicebebi: (a) formula logikurad gamomdinareobs formula -dan masin da mxolod masin, roca formula logikurad zogadmartebulia. (b) da formulebi logikurad eqvivalenturia masin da mxolod masin, roca formula logikurad zogadmartebulia. (c) Tu formula logikurad gamomdinareobs formula -dan da WeSmaritia mocemul interpretaciasi, masin amave interpretaciasi WeSmaritia. (d) Tu formula logikurad gamomdinareobs formulebis simravlidan, romlebic WeSmaritia mocemul interpretaciasi, masin amave interpretaciasi WeSmaritia. yovel winadadebas romelime formalur an bunebriv enasi ewodeba logikurad WeSmariti (predikatta arricxvasi), Tu is aris romelirac logikurad zogadmartebuli formulis kerzo SemTxveva, da ewodeba logikurad mcdari (predikatta arricxvasi), Tu is aris kerzo SemTxveva romelirac winaamrdegobrivi formulisa. 6
Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.
New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New
liberalizmi da sakutreba
liberalizmi da sakutreba Tavisuflebis bibliotekis krebulis III wigni gia jandieri axali ekonomikuri skola saqartvelos damfuznebeli da vice prezidenti. daibada 1961 wels. 1983 wels daamtavra saqartvelos
socialuri kapitalis roli soflis ganvitarebasi
0 sazogadoebis kvlevis centri marina musxelisvili, lia mezvrisvili, beqa nacvlisvili, mariam elizbarasvili socialuri kapitalis roli saqartvelos soflis ganvitarebasi gamomcemloba `universali~ Tbilisi 2012
PhD Concept Paper. winasityvaoba
umarlesi ganatlebis samsafexuriani sistemis SemoReba saqartvelosi PhD Concept Paper Tbilisi 2005 PhD Concept Paper winasityvaoba ganatlebis, da kerzod umarlesi ganatlebis reforma saqartvelosi Zlieri da
ROLE OF SOCIAL NETWORKS IN GEORGIAN PARTY POLITICS
socialuri qselebis roli qartul partiul politikasi ROLE OF SOCIAL NETWORKS IN GEORGIAN PARTY POLITICS korneli kakacia KORNELY KAKACHIA Tamar pataraia TAMARA PATARAIA Tbilisi 2013 TBILISI 2013 socialuri
revolucia martvasi qartuli TviTmmarTvelobisTvis
revolucia martvasi qartuli TviTmmarTvelobisTvis anu polonuri gamocdileba sajaro servizebis standartebis SemoRebaSi revolucia martvasi qartuli TviTmmarTvelobisTvis anu polonuri gamocdileba sajaro servizebis
PhD Concept Paper. Preface
PhD Concept Paper Tbilisi 2005 PhD Concept Paper Preface The reform of education and namely of higher education in Georgia is an indispensable prerequisite for the development of a strong and modern state.
civilizaciuri Ziebani CIVILIZATION RESEARCHES
ivane javaxisvilis sax. Tbilisis saxelmwifo universiteti Ivane Javakhishvili Tbilisi State University kulturis mecnierebata instituti interkulturuli dialogis iuneskos katedra Institute of Cultural Studies
How To Build A City On A River
saqartvelos sajaro moxeleta profesiuli SesaZleblobebis zrda gadawyvetilebis mirebasa da molaparakebebis warmartvis teqnikasi CAPACITY BUILDING OF THE GEORGIAN LEADERSHIP COMMUNITY FOR IMPROVED DECISION
kompiuteruli - kitxva, savarjiso daimaxsovre,? simrera,? TamaSi.
dawyebiti safexuris mesame donis inglisuri enis saxelmzrvanelo- diii Sedgenilia erovnuli saswavlo gegmit gatvaliswinebuli ucxouri enis standartis motxovnata Sesabamisad. saxelmzrvanelo Sedgeba moswavlis
gamocdebis erovnuli centris ucxouri enebis jgufig rogor movemzadot erovnuli gamocdebisatvis inglisuri ena 2012-2013 saswavlo weli
gamocdebis erovnuli centris ucxouri enebis jgufig rogor movemzadot erovnuli gamocdebisatvis inglisuri ena U 2012-2013 saswavlo weli sarcevi zogadi rekomendaciebi 3 sagamocdo programa 4 sagamocdo testis
Capital markets in developing countries
School of Business STOCKHOLM UNIVERSITY Master thesis 10 credits Spring semester 2006 Capital markets in developing countries A model for capital market diagnostics, with a field study implementation in
Tavmjdomaris sveti Chairman s column
Tavmjdomaris sveti Chairman s column Dear Reader, As you may agree, it is a great responsibility to lead the agency that protects intellectual property the most valuable asset for any country from the
1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.
1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í
Chapter 17. Review. 1. Vector Fields (Section 17.1)
hapter 17 Review 1. Vector Fields (Section 17.1) There isn t much I can say in this section. Most of the material has to do with sketching vector fields. Please provide some explanation to support your
saqartvelos statistikis erovnuli samsaxuri NATIONAL STATISTICS OFFICE OF GEORGIA saqartvelos statistikuri weliwdeuli STATISTICAL YEARBOOK OF GEORGIA
saqartvelos statistikis erovnuli samsaxuri NATIONAL STATISTICS OFFICE OF GEORGIA saqartvelos statistikuri weliwdeuli 2014 STATISTICAL YEARBOOK OF GEORGIA saqartvelos statistikuri weliwdeuli: 2014 / saqartvelos
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
MONTANA STATE HOSPITAL POLICY AND PROCEDURE WORKER S COMPENSATION
MONTANA STATE HOSPITAL POLICY AND PROCEDURE WORKER S COMPENSATION Effective Date: May 14, 2015 Policy #: SF-07 Page 1 of 4 I. PURPOSE: A. To identify responsibilities in the event of a work related injury
SCO TT G LEA SO N D EM O Z G EB R E-
SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e
EM EA. D is trib u te d D e n ia l O f S e rv ic e
EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es
H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct
H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili
San$Diego$Imperial$Counties$Region$of$Narcotics$Anonymous$ Western$Service$Learning$Days$$ XXX$Host$Committee!Guidelines$ $$
SanDiegoImperialCountiesRegionofNarcoticsAnonymous WesternServiceLearningDays XXXHostCommitteeGuidelines I. Purpose ThepurposeoftheWesternServiceLearningDays(WSLD)XXXHostCommittee(HostCommittee)isto organize,coordinateandproducethewsldxxxeventwithinthe6weekperiodof3weekspriortotheendof
W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e
CHAPTER 5 Energy Efficient HVAC Design
CHAPTER 5 Energy 5.1 Guideline 5.2 Mandatory clause 5.3 Technical notes #$$% #$$% #$$& ( ) +, (./ 5.3.1 on optimization of cooling load estimation %0 Table 5.3.1: Inside design conditions for airconditioned
i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner
í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo
TABLE OF CONTENTS{PRIVATE } PAGE
TABLE OF CONTENTS{PRIVATE } Introduction ix Survey Methodology ix Response Rates ix Carnegie Classification Definitions x Definition of Terms and General Considerations xi Highlights 1 All Full-Time Nurse
PG DIPLOMA IN GLOBAL STRATEGIC MANAGEMENT LIST OF BOOKS*
PG DIPLOMA IN GLOBAL STRATEGIC MANAGEMENT LIST OF BOOKS* Paper I: INTERNATIONAL BUSINESS ENVIRONMENT Global Business Environment (ICMR Publication Textbook) [Ref. No: GBE 11 2K4 23] [ISBN: 81-7881-693-8]
CRM Fundamentals. Apress" Scott Kostojohn. Mathew Johnson. Brian Paulen
CRM Fundamentals Scott Kostojohn Mathew Johnson Brian Paulen Apress" Contents at a Glance J About the Authors n About the Technical Reviewer n Acknowledgments Introduction ix x > xi xii Chapter 1: Introduction
Strategic Technology Plan
Strategic Technology Plan What is a Strategic Technology Plan? The strategic technology plan is a guide to how the organization will use technology to help accomplish its goals. The plan is created with
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Evobike 2014 Árak szerzõdött partnereink számára Mounty
Evobike 2014 Árak szerzõdött partnereink számára Mounty Cikksz. Termék neve Szerzõdött árak (Ft) nettó Szerzõdött árak (Ft) bruttó Fogyasztói ár (Ft) 0713 MOUNTY LITE-PEDAL 6126 7780 10427 0713COMP MOUNTY
Ź Ź ł ź Ź ś ź ł ź Ś ę ż ż ł ż ż Ż Ś ę Ż Ż ę ś ź ł Ź ł ł ż ż ź ż ż Ś ę ż ż Ź Ł Ż Ż Ą ż ż ę ź Ń Ź ś ł ź ż ł ś ź ź Ą ć ś ś Ź Ś ę ę ć ż Ź Ą Ń Ą ł ć ć ł ł ź ę Ś ę ś ę ł ś ć ź ś ł ś ł ł ł ł ć ć Ś ł ź Ś ł
Facility Online Manager
Facility Online Manager Instruction for users FOM TM is an online accounting and instrument management software. This software can be used as a simple online scheduler for small research group, or as a
wliuri angarisi ANNUAL REPORT
wliuri angarisi ANNUAL REPORT 2008 www.tbcbank.ge Sinaarsi misia da xedvan bankis istoria sametvalyureo sabwos Tavmjdomaris mimartva bankis menejmenti bankis prezidentis mimartva finansuri Sedegebi moziduli
Software Monthly Maintenance (Non Accounting Use) Quick Reference Guide
Software Monthly Maintenance (Non Accounting Use) Quick Reference Guide When not using the accounting within the software the system will build up information that will affect the performance and speed
Der Bologna- P roz es s u nd d i e S t aat s ex am Stefan Bienefeld i na Service-St el l e B o l o g n a d er H R K Sem in a r D er B o l o g n a P ro z es s U m s et z u n g u n d M it g es t a l t u
Cikkszám Termék neve Fogyasztói bruttó árak
Evobike 2014 Mounty termékcsalád Cikkszám Termék neve Fogyasztói bruttó árak 0713 MOUNTY LITE-PEDAL 10598 0713COMP MOUNTY COMP-PEDAL SCHWARZ/SILBER 16568 0713DH 0713DH nicht mehr lieferbar/11 13251 0713FREE
Subsidiary papers Compulsory Language Subject. Education paper B. A.(Honours) Part I
BACHELOR OF ARTS (HONS) COURSES (B.A): Objective: The course aims at providing an opportunity to obtain Bachelor's education through distance mode in Arts subjects. The course is useful to such persons
Isle of Man Law Society (the Society ) Professional Indemnity Premium Payment Rules (the Rules )
Isle of Man Law Society (the Society ) Professional Indemnity Premium Payment Rules (the Rules ) Preamble As at June 2007, the Society negotiated a favourable change to the cost of the Society s Professional
b) Discussion of Bid c) Voting (1) Results: Coastal Carolina wins B. State Communications Coordinator of the Year 1. Winthrop University
South Carolina Organization for Residential Education 2015 SCORE Boardroom Minutes I. Call to order at 8:02 am II. Roll Call: Clemson, Coastal Carolina, College of Charleston, Winthrop University, University
1 of 7 31/10/2012 18:34
Regulatory Story Go to market news section Company TIDM Headline Released Number Ironveld PLC IRON Holding(s) in Company 18:01 31-Oct-2012 0348Q18 RNS Number : 0348Q Ironveld PLC 31 October 2012 TR-1:
2014 Legislation Regarding A-F School Grading Formula. September 17, 2014
2014 Legislation Regarding A-F School Grading Formula September 17, 2014 2 Delays issuance of school grades from October 2014 to October 2016 Board of Education to consider a single school grade or multiple
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III I. Basic Course Information A. Course Number and Title: MATH 251 Calculus III B. New or Modified Course: Modified Course C.
5 means to write it as a product something times something instead of a sum something plus something plus something.
Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding
ISO 9001:2008 INSTITUTE OF TAX ADMINISTRATION (ITA) APPLICATION FORM
ISO 9001:2008 INSTITUTE OF TAX ADMINISTRATION (ITA) APPLICATION FORM FOR ADMISSION TO POSTGARUDATE/UNDERGRADUATE DEGREE/DIPLOMA/CERTIFICATE PROGRAMMES FOR THE ACADEMIC YEAR 2014/2015 E-mail: [email protected]
aleqsandre kvitasvili (ivane javaxisvilis saxelobis Tbilisis saxelmwifo universitetis reqtori)
qartul istoriografiasi sruliad axali etapis dawyeba pirveli qartuli universitetis damaarseblis ivane javaxisvilis saxels ukavsirdeba. man mecnieruli morvaweobis kredod aircia istoriuli wyaroebisadmi kritikuli
Consolidated Annual Report of the AB Capital Group for the financial year 2008/2009. covering the period from July 1, 2008 to June 30, 2009
Consolidated Annual Report of the AB Capital Group for the financial year 2008/2009 covering the period from July 1, 2008 to June 30, 2009 Selected financial data converted to EUR SELECTED FINANCIAL DATA
Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i
Pre-Session Review. Part 2: Mathematics of Finance
Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions
Workflow Administration of Windchill 10.2
Workflow Administration of Windchill 10.2 Overview Course Code Course Length TRN-4339-T 2 Days In this course, you will learn about Windchill workflow features and how to design, configure, and test workflow
Higher Education Loan Authority of the State of Missouri. Student Loan Asset-Backed Notes, Series 2012-1
Higher Education Loan Authority of the State of Missouri Student Loan AssetBacked Notes, Series 20121 Fluctuations were noted in the Student Loan AssetBacked Notes, Series 20121 (20121 Bond) parity rates
How to Enable the Audit of Active Directory Objects in Windows 2008 R2 Lepide Software
How to Enable the Audit of Active Directory Objects in Windows 2008 R2 Windows 2008 R2 has much more and better features than its predecessors. It also wins in the native auditing part when it comes to
B1 Project Management 100
Assignment of points B1 Project Management 100 Requirements for Design Presentation Meetings and Proposal Submissions for Key to Project Management Design Presentation Meeting and Proposal Submissions
Matrix-Chain Multiplication
Matrix-Chain Multiplication Let A be an n by m matrix, let B be an m by p matrix, then C = AB is an n by p matrix. C = AB can be computed in O(nmp) time, using traditional matrix multiplication. Suppose
GroupWise 2012 What s New
I. Resources & Support... 2 II. Appointment Enhancements... 2 A. Recurrence Enhancements... 2 B. Delegation Enhancements... 3 C. Place Resource Enhancements... 3 D. Notification of Appointment Conflicts
Climate and Disaster Resilience Index of Asian Cities
Climate and Disaster Resilience Index of Asian Cities Coexistence of Contrast Rajib Shaw Professor, http://www.iedm.ges.kyoto-u.ac.jp/ Increasing Trend 4000 3500 Source: UNPD, 2010 3000 2500 2000 1500
GFSU Certified Cyber Crime Investigator GFSU-CCCI. Training Partner. Important dates for all batches
GFSU Certified Cyber Crime Investigator GFSU-CCCI 1. Internet Fundamentals 2. Cyber Crime Essentials 3. Cyber Investigation Essentials 4. Digital Evidence in Computer Devices 5. Cyber Forensics Essentials
Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m
MENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
OPENTRACK: Simulation of complex nodes
OPENTRACK: Simulation of complex nodes Case Studies in Italy Zurich, 21st January 2010 About Us Important railway university in Italy OT Users since 2004 Spin-off since 2007 Cloose Cooperation with RFI
Roman Numerals. Symbol Decimal Value I One (1) V Five (5) X Ten (10) L Fifty (50) C Hundred (100) D Five Hundred (500) M Thousand (1000)
Roman Numerals Pre-requisite: Number System, Addition and Subtraction. Target Audience: Standard V to Standard VII. In Syllabus Standard V. Revision Standard VI & VII. Symbol Decimal Value I One (1) V
VILLAGE OF ARLINGTON HEIGHTS
VILLAGE OF ARLINGTON HEIGHTS SMALL BUSINESS RETAIL TENANT INCENTIVE PROGRAM 2011 APPLICATION POLICY AND PROCEDURES Prepared by: Village of Arlington Heights Department of Planning & Community Development
EMPLOYEE PERFORMANCE REVIEW FORM
EMPLOYEE PERFORMANCE REVIEW FORM The employee under review must complete all sections designated Employee. Supervisors must completed all sections designated Supervisor. Performance Reviews should be submitted
Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d
TABLE OF CONTENTS CHAPTER TITLE PAGE
viii TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES I II III IV VI VII VIII
PERFECT SQUARES AND FACTORING EXAMPLES
PERFECT SQUARES AND FACTORING EXAMPLES 1. Ask the students what is meant by identical. Get their responses and then explain that when we have two factors that are identical, we call them perfect squares.
FINAL JOINT PRETRIAL ORDER. This matter is before the Court on a Final Pretrial Conference pursuant to R. 4:25-1.
SUPERIOR COURT OF NEW JERSEY MIDDLESEX COUNTY:LAW DIVISION Docket No. Plaintiff(s), v. Defendant(s). FINAL JOINT PRETRIAL ORDER This matter is before the Court on a Final Pretrial Conference pursuant to
Green Climate Fund Online Accreditation System: User s Guide
Green Climate Fund Online Accreditation System: User s Guide Page b Table of Contents I. Introduction 1 II. Contacting the Fund s administrator 1 III. Setting your account 1 IV. Accessing and logging into
fun www.sausalitos.de
O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt
CORPORATE GOVERNANCE SUMMARY OF BEST PRACTICE GUIDELINES
CORPORATE GOVERNANCE SUMMARY OF BEST PRACTICE GUIDELINES Willemstad, November 2006 Corporate Governance Summary of Best Practice Guidelines Index I II III IV V VI VII VIII IX X XI Stewardship Supervisory
1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style
Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process
Policy Title: Information and Communication Technologies (ICT) Service Management Policy. Policy Number: P60122
Policy Title: Information and Communication Technologies (ICT) Service Management Policy Policy Number: P60122 Section Reference Policy Contents Page(s) 1. Policy Administration 2 2. Policy Objective,
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
CHAPTER 6 CERTIFICATION REQUIREMENTS
CHAPTER 6 CERTIFICATION REQUIREMENTS Section 1. Psychological Practitioner. (a) Certification Requirement. An individual must be certified with the Wyoming State Board of Psychology before practicing as
Regulatory Story. RNS Number : 8343I. DCD Media PLC. 08 July 2013. TR-1: NOTIFICATION OF MAJOR INTEREST IN SHARES i
1 of 7 25/11/2013 11:51 Regulatory Story Go to market news section Company TIDM Headline Released DCD Media PLC DCD Holding(s) in Company 15:19 08-Jul-2013 8343I15 RNS : 8343I DCD Media PLC 08 July 2013
SBMF 2015 ANAIS PROCEEDINGS. 18 th BRAZILIAN,SYMPOSIUM,ON,FORMAL,METHODS September,21>22,,2015 Belo,Horizonte,,MG,,Brazil,
I SBMF 2015 18 th BRAZILIANSYMPOSIUMONFORMALMETHODS September21>222015 BeloHorizonte MGBrazil ANAIS PROCEEDINGS COORDENADORESDOCOMITÊDEPROGRAMADOSBMF2015 PROGRAM'COMMITTEE'CHAIRS'OF'SBMF'2015 MárcioCornélio(UFPEBrazil)
Come stà. Domenico Maria Ferrabosco (Bologna 1513-1574) Cantus. - ta, _e vo - lon - tie - ri M'al -le-gro _e can -to _en. Io mi son gio vi.
Cantus Altus Io mi son giovinetta Come stà Domenico Maria Ferrabosco (Bologna 1513-1574) Io mi son gio - vi -net - ta, _e vo - lon - tie - ri M'al -le-gro _e can -to _en Io mi son gio - vi - net - ta,
TechAdvisor & Account Coordinator Salesforce.com Training
TechAdvisor & Account Coordinator Salesforce.com Training 1 TABLE OF CONTENTS I. First-Time User... 3 Log Into Salesforce.com... 3 Setup Salesforce.com... 3 II. Salesforce.com Tabs... 6 Home... 6 Contacts...
n(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3
ACTS 4308 FORMULA SUMMARY Section 1: Calculus review and effective rates of interest and discount 1 Some useful finite and infinite series: (i) sum of the first n positive integers: (ii) finite geometric
4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin
4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the
C relative to O being abc,, respectively, then b a c.
2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip [email protected] http://home.kku.ac.th/wattou 2. Vectors A
saqartvelos sajaro moxeleta profesiuli SesaZleblobebis zrda gadawyvetilebis mirebasa da molaparakebebis warmartvis teqnikasi
saqartvelos sajaro moxeleta profesiuli SesaZleblobebis zrda gadawyvetilebis mirebasa da molaparakebebis warmartvis teqnikasi CAPACITY-BUILDING OF THE GEORGIAN LEADERSHIP COMMUNITY FOR IMPROVED DECISION-MAKING
OVERVIEW OF RESEARCH PROJECTS IN THE ICT DOMAIN 2012. ICT statistical report for annual monitoring (StReAM)
OVERVIEW OF RESEARCH PROJECTS IN THE ICT DOMAIN 2012 ICT statistical report for annual monitoring (StReAM) 12 June 2013 ACRONYMS AAL: ACC: ARTEMIS: ASS: BPN: CA: CIP: CP: CSA: EEA: EPO: FP: FET: GBAORD:
Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage
Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today
Fractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
CS 141: Introduction to (Java) Programming: Exam 1 Jenny Orr Willamette University Fall 2013
Oct 4, 2013, p 1 Name: CS 141: Introduction to (Java) Programming: Exam 1 Jenny Orr Willamette University Fall 2013 1. (max 18) 4. (max 16) 2. (max 12) 5. (max 12) 3. (max 24) 6. (max 18) Total: (max 100)
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
The GN is committed to providing programs, which facilitate local government, to promote greater local autonomy and accountability.
POLICY STATEMENT The Government of Nunavut (GN), under the authority of the Financial Administration Act, may provide operating grants and contributions to assist municipal corporations in the delivery
Final report SA-R of the AB S.A. company for the financial year 2009/2010. covering the period from 01-07-2009 to 30-06-2010
Final report SA-R of the AB S.A. company for the financial year 2009/2010 covering the period from 01-07-2009 to 30-06-2010 Selected financial data translated into euro SELECTED FINANCIAL DATA in thous.
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
PANTONE DS-C PANTONE C:0 M:5 Y:100 K:10 DS 2-1 C PANTONE C:0 M:3 Y:100 K:10 DS 2-2 C PANTONE C:0 M:0 Y:100 K:10 DS 2-3 C
18 November, 1999 10:32:02 PANTONE C:0 M:5 Y:100 K:0 DS 1-1 C PANTONE C:0 M:3 Y:100 K:0 DS 1-2 C PANTONE C:0 M:0 Y:100 K:0 DS 1-3 C PANTONE C:0 M:0 Y:85 K:0 DS 1-4 C PANTONE C:0 M:0 Y:70 K:0 DS 1-5 C PANTONE
ARTICLE 3. BEHAVIORAL HEALTH INPATIENT FACILITIES
Section R9-10-301. R9-10-302. R9-10-303. R9-10-304. R9-10-305. R9-10-306. R9-10-307. R9-10-308. R9-10-309. R9-10-310. R9-10-311. R9-10-312. R9-10-313. R9-10-314. R9-10-315. R9-10-316. R9-10-317. R9-10-318.
REGULATIONS IN TERMS OF THE NATIONAL PROSECUTING AUTHORITY ACT, 1998 (ACT 32 OF 1998)
REGULATIONS IN TERMS OF THE NATIONAL PROSECUTING AUTHORITY ACT, 1998 (ACT 32 OF 1998) Contact person: Mrs W Louw Senior State Law Adviser Department of Justice and Constitutional Development Private Bag
