Biopotential Amplifiers. p. 2
|
|
|
- Austin Jones
- 9 years ago
- Views:
Transcription
1 Biopotential Ampliiers Basic unction to increase the amplitude o a weak electric signal o biological origin (next slide) typically process oltages but in some cases also process currents Typical bio-amp requirements high input impedance -greater than 10 Mohms saety: protect the organism being studied careul design to preent macro and microshocks isolation and protection circuitry to limit the current through the electrode to sae leel output impedance o the ampliier should be low to drie any external load with minimal distortion gain greater than 1000 biopotentials are typically less than a milliolt most biopotential ampliiers are dierential signals are recorded using a bipolar electrodes which are symmetrically located high common mode rejection ratio biopotentials ride on a large oset signals rapid calibration o the ampliier in laboratory conditions adjustable gains oten the change in scale is automatic thereore calibration o the equipment is ery important Biopotential Ampliiers. p. 1 Voltage and Frequency Range or Biopotentials Biopotential Ampliiers. p. 2
2 Electrocardiograph ampliiers Beating heart generates electric signal monitored to understand heart unctions Measurements are unctions o location at which the signal is detected time-dependence o the signal amplitude Dierent pairs o electrodes at dierent locations yield dierent measurements hence placement is standardized Electrical model o heart electric dipole located in a partially conducting medium (thorax) dipole represented as a cardiac ector M Mi is the dipole moment during the cardiac cycle magnitude and direction o the dipole ector will ary electric ect c potentials t appears throughout out the body and on its surace a1 M a 1, a1 M cos Biopotential Ampliiers. p. 3 Electrocardiograph Leads In clinical electrocardiography more than one lead must be recorded to describe the heart's electric actiity ully seeral leads are taken in the rontal plane and the transerse plane rontal plane: parallel to the back when lying transerse plane: parallel to the ground when standing Frontal plane lead placement called Eindhoen s triangle Additional leads unipolar measurements potential measured at electrodes wrt a reerence; aerage o the 2 electrodes Wilson central terminal three limb electrodes connected through equal-alued resistors to a common node augmented leads some nodes disconnected increase the amplitude o measurement using Biopotential Ampliiers. p. 4
3 Functional blocks o electrocardiograph Biopotential Ampliiers. p. 5 Problems in ECG Measurement Frequency distortion i ilter speciication does not match the requency content o biopotential then the result is high and low requency distortion Saturation or cuto distortion high electrode oset oltage or improperly calibrated ampliiers can drie the ampliier into saturation then the peaks o QRS waeorms are cut o Ground loops i two monitoring instruments are placed at disjoint ground points then small current could low through the patient s body Electric/magnetic ield coupling open lead wires (loating connections) pick up EMI long leads produce loop that picks up EMI (induces loop current) Intererence rom power lines (common mode intererence) can couple onto ECG signal 60Hz supply noise Coupled to ECG Biopotential Ampliiers. p. 6
4 Intererence Reduction Techniques Common-mode oltages can be responsible or much o the intererence in biopotential ampliiers. Solution 1: ampliier with a ery high common-mode rejection Solution 2: eliminate the source o intererence Ways to eliminate intererence Use shielding techniques electrostatic shielding: Place a grounded conducting plane between the source o the electric ield and the measurement system ery important or EEG measurement Magnetic shield use high permeability materials (sheet steel) Use twisted t cables to reduce magnetic lux, reduce lead loop area Biopotential Ampliiers. p. 7 One-amp dierential ampliier Dierential Ampliier gain determination Rule 1: irtual short at op-amp inputs Rule 2: no current into op-amp inr4 in 5 5 o 5 i R 3 R 4 R 3 R 4 ( ) R in in 4 o R3 Gain o dierential ampliier o R4 = Gd (not gain o op-amp) R in Vin+ characteristics no common mode gain, Gc = 1 input resistance o the di. amp is lower than ideal op-amp 3 OK or low resistance sources (like Wheatstone bridge), but not good or many biomedical applications common mode rejection ratio: G CMRR d G Vin- - Vin + i c Biopotential Ampliiers. p. 8
5 Dierential Ampliier How do we ix low input resistance o 1-op-amp di amp? Option 1: Add oltage ollower to each input Problem:? Option 2: Add non-inerting amp at each input Proides additional gain Problem:? Biopotential Ampliiers. p. 9 Better option: Instrumentation Ampliier connect Ri s o input amps together eliminate ground connection This 3-op-amp circuit is called an instrumentation ampliier Input stage characteristics acte low common-mode gain -rejects common mode oltages (noise) high input impedance 3 4 2R 2 R 1 input stage gain adjusted d by R 1 Gd 1 2 R1 Biopotential Ampliiers. p. 10
6 Instrumentation Ampliier Input stage high input impedance buers gain stage no common mode gain can hae dierential gain input stage gain stage Gain stage d dierential gain, low input impedance total dierential gain 2R 2 R1 R4 ampliies only the dierential component G d R high common mode rejection ratio 1 R3 high input impedance suitable or biopotential electrodes with high output impedance Oerall ampliier Biopotential Ampliiers. p. 11 ECG Ampliier instrumentation ampliier HPF non-inerting amp With 776 op amps, the circuit was ound to hae a CMRR o 86 db at 100 Hz and a noise leel o 40 mv peak to peak at the output. t The requency response was to 150 Hz or ±3 db and was lat oer 4 to 40 Hz. The total gain is 25 (instrument amp) x 32 (non-inerting amp) = 800. Biopotential Ampliiers. p. 12
7 Motiation reduce intererence in ampliier improe patient saety Drien Right Leg System Approach patient right leg tied to output o an auxiliary amp rather than ground common mode oltage on body sensed by aeraging resistors, Ra s & ed back to right leg proides negatie eedback to reduce common mode oltage i high oltage appears between patient t and ground, auxiliary amp eectiely un-grounds the patient to stop current low Biopotential Ampliiers. p. 13 Drien Right Leg System: Example Problem: Determine the common-mode oltage cm on the patient in the drienright-leg circuit o Slide 13 when a displacement current d i lows to the patient rom the power lines. Choose appropriate alues or the resistances in the circuit so that the common-mode oltage is minimal and there is only a high-resistance path to ground when the auxiliary operational ampliier saturates. What is cm or this circuit when d i =0.2A? Answer: The equialent circuit is shown here. Note that because the commonmode gain o the input stage is 1, and because the input stage as shown has a ery high input impedance, cm at the input is isolated rom the output circuit. R RL represents the resistance o the right-leg electrode. Summing the currents at the negatie input o the operational ampliier, we get 2cm o 0 R this gies a R 2R 1 2 o but cm cm RRLid o Ra thus, substituting (1) into (2) yields R RLi d cm 1 2R / R a Biopotential Ampliiers. p. 14
8 Example continued The eectie resistance between the right leg and ground is the resistance o the right-leg electrode diided by 1 plus the gain o the auxiliary operational-ampliier circuit. When the ampliier saturates, as would occur during a large transient cm, its output appears as the saturation oltage s. The right leg is now connected to ground through this source and the parallel resistances R and Ro. To limit the current, R and Ro should be large. Values as high as 5 M are used. When the ampliier is not saturated, we would like cm to be as small as possible or, in other words, to be an eectie low-resistance path to ground. This can be achieed by making R large and Ra relatiely small. R can be equal to Ro, but Ra can be much smaller. A typical alue o Ra would be 25 k. A worst-case electrode resistance R RL would be 100 k. The eectie resistance between the right leg and ground would then be 100k 2 5 M 1 25 k For the 0.2 A displacement current, the common-mode oltage is cm μa 50 μv Biopotential Ampliiers. p. 15 Compensation o electrode artiacts - Microelectrodes detect potentials on the order o mV. -Small size implies high source impedance which also results in a large shunting capacitance. - Degraded d requency response. Biopotential Ampliiers. p. 16
9 Compensation o electrode artiacts - Compensate large shunt capacitance using a positie eedback -Circuit below realizes a negatie capacitance i 1 i dt A C 1 1 (1 A ) C i 1 ) i i dt - Total capacitance C C ( 1 A ) C s - Compensation criteria C ( A 1) C s Biopotential Ampliiers. p. 17
Lecture 39: Intro to Differential Amplifiers. Context
Lecture 39: Intro to Differential Amplifiers Prof J. S. Smith Context Next week is the last week of lecture, and we will spend those three lectures reiewing the material of the course, and looking at applications
Cardiac Conduction System (1) ECG (Electrocardiogram) Cardiac Conduction System (2) The ECG (1) The ECG (1) The ECG (1) Achmad Rizal BioSPIN
ECG (Electrocardiogram) Cardiac Conduction System (1) Achmad Rizal BioSPIN ARL-EL4703-Instrumentasi Biomedis 2 Cardiac Conduction System (2) The ECG (1) ARL-EL4703-Instrumentasi Biomedis 3 ARL-EL4703-Instrumentasi
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
AM Receiver. Prelab. baseband
AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
Log and AntiLog Amplifiers. Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (1999) pp. 293-321
Log and AntiLog Amplifiers Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (999) pp. 93-3 ntroduction Log and Antilog Amplifiers are non-linear circuits in which the
White Paper: Electrical Ground Rules
Acromag, Incorporated 30765 S Wixom Rd, Wixom, MI 48393 USA Tel: 248-295-0880 Fax: 248-624-9234 www.acromag.com White Paper: Electrical Ground Rules Best Practices for Grounding Your Electrical Equipment
Balanced vs. Unbalanced Audio Interconnections
Revised 7/2/08 Balanced vs. Unbalanced Audio Interconnections In discussing the characteristics and performance of various interconnect systems; two points should be kept in mind. Balance is defined in
UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS
Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com [email protected] Page 2 THE BASIC
How To Calculate The Power Gain Of An Opamp
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
Biomedical Instrumentation A. Intro & ECG
Biomedical Instrumentation A. Intro & ECG B8/BME Dr Gari Clifford (Based on slides from Prof. Lionel Tarassenko) Who am I? UL in Biomed Eng Dir CDT in Healthcare Innoation @ IBME Signal Processing & Machine
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
Pressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
Precision, Unity-Gain Differential Amplifier AMP03
a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation
Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout
FPA Printed Circuit Board Layout Guidelines By Paul Yeaman Principal Product Line Engineer V I Chip Strategic Accounts Introduction Contents Page Introduction 1 The Importance of 1 Board Layout Low DC
J.L. Kirtley Jr. Electric network theory deals with two primitive quantities, which we will refer to as: 1. Potential (or voltage), and
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Class Notes Chapter 1: eiew of Network Theory J.L. Kirtley Jr. 1 Introduction
Errors Due to Shared Leadwires in Parallel Strain Gage Circuits
Micro-Measurements Strain Gages and Instruments Errors Due to Shared Leadwires in Parallel Strain Gage Circuits TN-516 1. Introduction The usual, and preferred, practice with multiple quarterbridge strain
Pulsed Power Engineering Diagnostics
Pulsed Power Engineering Diagnostics January 12-16, 2009 Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory Diagnostic Techniques and Considerations in Pulsed Power Systems
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Op amp DC error characteristics and the effect on high-precision applications
Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of
Current Probes. User Manual
Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)
Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have
Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II
1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.
Operational Amplifiers / Comparators Application Note Op-Amp / Comparator Tutorial
Operational Ampliiers / Comparators Op-Amp / Comparator Tutorial No.1149EBY4 A TABLE OF CONTENTS 1.What is Op-Amp/Comparator? 1.1 Model o ampliier (Voltage ampliier) and Op-Amp 1.2 What is Op-amp/Comparator?
PS25202 EPIC Ultra High Impedance ECG Sensor Advance Information
EPIC Ultra High Impedance ECG Sensor Advance Information Data Sheet 291498 issue 2 FEATURES Ultra high input resistance, typically 20GΩ. Dry-contact capacitive coupling. Input capacitance as low as 15pF.
G019.A (4/99) UNDERSTANDING COMMON MODE NOISE
UNDERSTANDING COMMON MODE NOISE PAGE 2 OF 7 TABLE OF CONTENTS 1 INTRODUCTION 2 DIFFERENTIAL MODE AND COMMON MODE SIGNALS 2.1 Differential Mode signals 2.2 Common Mode signals 3 DIFFERENTIAL AND COMMON
Equivalent Circuits and Transfer Functions
R eq isc Equialent Circuits and Transfer Functions Samantha R Summerson 14 September, 009 1 Equialent Circuits eq ± Figure 1: Théenin equialent circuit. i sc R eq oc Figure : Mayer-Norton equialent circuit.
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).
1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;
TS321 Low Power Single Operational Amplifier
SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed
Chapter 19 Operational Amplifiers
Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common
This application note is written for a reader that is familiar with Ethernet hardware design.
AN18.6 SMSC Ethernet Physical Layer Layout Guidelines 1 Introduction 1.1 Audience 1.2 Overview SMSC Ethernet products are highly-integrated devices designed for 10 or 100 Mbps Ethernet systems. They are
High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection
a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
Current Probes, More Useful Than You Think
Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998
Buffer Op Amp to ADC Circuit Collection
Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op
EMI and t Layout Fundamentals for Switched-Mode Circuits
v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary
ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM
ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM Scridon Alina, Șerban Răzvan Constantin 1. Definition The electrocardiogram (abbreviated ECG or EKG) represents the graphic recording of electrical
Section 3. Sensor to ADC Design Example
Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER FEATURES HIGH GAIN-BANDWIDTH: 35MHz LOW INPUT NOISE: 1nV/ Hz HIGH SLEW RATE: V/µs FAST SETTLING: 24ns to.1% FET INPUT: I B = 5pA max HIGH OUTPUT
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
High Speed, Low Cost, Triple Op Amp ADA4861-3
High Speed, Low Cost, Triple Op Amp ADA486-3 FEATURES High speed 73 MHz, 3 db bandwidth 625 V/μs slew rate 3 ns settling time to.5% Wide supply range: 5 V to 2 V Low power: 6 ma/amplifier. db flatness:
Description. 5k (10k) - + 5k (10k)
THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power
Analog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
Transmission Line Transformers
Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal Copyright 2001 John Wiley & Sons, Inc. Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9 CHAPTER SIX Transmission Line Transformers 6.1
Grounding Demystified
Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%
PHYSICS 360 - LAB #2 Passive Low-pass and High-pass Filter Circuits and Integrator and Differentiator Circuits
PHYSICS 360 - LAB #2 Passie Low-pass and High-pass Filter Circuits and Integrator and Differentiator Circuits Objectie: Study the behaior of low-pass and high-pass filters. Study the differentiator and
Why to use isolated amplifiers
Why to use isolated amplifiers AppNote v1.0 www.dewesoft.com Table of Contents Table Of Contents 1Introduction...1 1.1Amplifier technologies...1 1.1.1Single-ended amplifier...1 1.1.2Differential amplifier...1
Transmissão em Corrente Contínua em Ultra-Alta Tensão
Transmissão em Corrente Contínua Panorama Atual e Perspectias Futuras no Brasil Siemens AG 2012 Energy Sector Ultra-High Voltage Transmission Systems 2 Brazilian SC B4 Multiterminal HVDC Systems / VSC
Technical Note Series
Technical Note Series SKIN CONDUCTANCE SENSOR (SA9309M) S TN0 0 0 8-0 0 S k i n C o n d u c t a n c e S e n s o r Page 2 IMPORTANT OPERATION INFORMATION WARNING Type BF Equipment Internally powered equipment
High Speed, Low Power Monolithic Op Amp AD847
a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and
PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages
DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected
Measuring Insulation Resistance of Capacitors
Application Note Measuring Insulation Resistance of Capacitors A common use of high resistance measuring instruments (often called megohmmeters or insulation resistance testers) is measuring the insulation
************* OWNER'S MANUAL BAMF800/2 BAMF1250/2 BAMF1800/2 BAMF2200/2 BAMF2600/2 BAMF1200/4 BAMF1600/4 BAMF2000/1D BAMF4000/1D BAMF5500/1D
************* OWNER'S MANUAL BAMF800/2 BAMF1250/2 BAMF1800/2 BAMF2200/2 BAMF2600/2 BAMF1200/4 BAMF1600/4 BAMF2000/1D BAMF4000/1D BAMF5500/1D INTRODUCTION Power Acoustik amplifiers provide high-performance
Fully Differential CMOS Amplifier
ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays
AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as
ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742
1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers
Crosstalk effects of shielded twisted pairs
This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production
Common Mode and Differential Mode Noise Filtering
Summary Introduction This application note gives a practical explanation of differential mode and common mode noise along with the traditional filtering approaches. In addition, an alternative method of
3.4 - BJT DIFFERENTIAL AMPLIFIERS
BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the
High Voltage Current Shunt Monitor AD8212
High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function
Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011
Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications June 2011 Application Note Common mode chokes provide an effective EMI filtering solution for Ethernet transformer applications.
*For stability of the feedback loop, the differential gain must vary as
ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
POWER LINE FILTERS FOR SWITCHING POWER SUPPLIES
POWER INE FITERS FOR SWITCHING POWER SUPPIES ing. Eugen COCA *, prof. dr. ing. Dimitrie AEXA ** * EECTRICA SA - SD SUCEAVA - ROMANIA ** U.T. Gh. Asachi IASI - ROMANIA * SEM0kV - PRAM str. Stefan cel Mare,
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
ADC-20/ADC-24 Terminal Board. User Guide DO117-5
ADC-20/ADC-24 Terminal Board User Guide DO117-5 Issues: 1) 8.11.05 Created by JB. 2) 13.12.05 p10: added 0V connection to thermocouple schematic. 3) 22.3.06 p11: removed C1. 4) 20.8.07 New logo. 5) 29.9.08
Communication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING
1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L APPLICATION NOTE AN-357 1.0 INTRODUCTION In today's highly competitive market, high quality of service, QOS, and reliability is
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.
Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp
Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various
Signal Conditioning Piezoelectric Sensors
Application Report SLOA033A - September 2000 Signal Conditioning Piezoelectric Sensors James Karki Mixed Signal Products ABSTRACT Piezoelectric elements are used to construct transducers for a vast number
Field Wiring and Noise Considerations for Analog Signals Syed Jaffar Shah
NATIONAL INSTRUMENTS The Software is the Instrument Application Note 025 Field Wiring and Noise Considerations for Analog Signals Syed Jaffar Shah Overview Unfortunately, measuring analog signals with
Adding Heart to Your Technology
RMCM-01 Heart Rate Receiver Component Product code #: 39025074 KEY FEATURES High Filtering Unit Designed to work well on constant noise fields SMD component: To be installed as a standard component to
DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier
FEATRES Gain of Stable GHz Gain Bandwidth V/µs Slew Rate.6nV/ Hz Input Noise Voltage V/mV Minimum DC Gain, R L = Ω mv Maximum Input Offset Voltage ±V Minimum Output Swing into Ω ide Supply Range ±.V to
Frequency Range Extension of Spectrum Analyzers with Harmonic Mixers
Products FSEM21/31 and FSEK21/31 or FSEM20/30 and FSEK20/30 with FSE-B21 Frequency Range Extension o Spectrum Analyzers with Harmonic Mixers This application note describes the principle o harmonic mixing
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
An Ethernet Cable Discharge Event (CDE) Test and Measurement System Wei Huang, Jerry Tichenor ESDEMC Technology LLC Rolla, MO, USA [email protected] Abstract A Cable Discharge Event (CDE) is an electrostatic
Fundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
AMP CO Plus Insert for Cat. 6 A Applications
Product Specification 108-93039 10/Mar/2011 Rev F AMP CO Plus Insert for Cat. 6 A Applications 1. SCOPE 1.1 Content This specification covers performance, tests and quality requirements for AMP* CO Plus
Design of Bidirectional Coupling Circuit for Broadband Power-Line Communications
Journal of Electromagnetic Analysis and Applications, 2012, 4, 162-166 http://dx.doi.org/10.4236/jemaa.2012.44021 Published Online April 2012 (http://www.scirp.org/journal/jemaa) Design of Bidirectional
WHITE PAPER. Preventing and Attacking Measurement Noise Problems. White Paper Code: 2 Revision: 1. Copyright (C) 2001 Campbell Scientific, Inc.
White Paper Code: 2 Revision: 1 WHITE PAPER Preventing and Attacking Measurement Noise Problems 815 W. 1800 N. Logan, Utah 84321-1784 (435) 753-2342 FAX (435) 750-9540 Copyright (C) 2001 Campbell Scientific,
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
Chapter 4: Passive Analog Signal Processing
hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted
Generic - Hearing Loop - (AFILS) U.S. System Specification
This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio
Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820
Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V
OPERATIONAL AMPLIFIERS
INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering
Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
CHAPTER 16. THE NON-IDEAL OPAMP
Circuits, Deices, Networks, and Microelectronics CHPTE 6. THE NON-IDEL OPMP 6. EFFECT OF FINITE GIN OF THE OPMP In Chapter 6 on the ideal operational amplifier it is characterized as an artifact with infinite
A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved
A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved The summing network in mixing consoles is an easily misunderstood
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
