Electrical Compliance Test Specification SuperSpeed Universal Serial Bus
|
|
|
- Bethany Hall
- 9 years ago
- Views:
Transcription
1 Electrical Compliance Test Specification SuperSpeed Universal Serial Bus Date: March 10, 2015 Revision: 1.0a SuperSpeed Electrical Compliance i
2 Copyright 2015, USB Implementers Forum, Inc. All rights reserved. A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY. USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. THIS SPECIFICATION IS PROVIDED "AS IS" AND WITH NO WARRANTIES, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. NO WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. ii SuperSpeed Electrical Compliance
3 Scope of this Revision This revision of the specification describes the testing to be applied to hardware based on the Universal Serial Bus 3.0 Specification, revision 1.0.
4 This document is an intermediate draft for comment only and is subject to change without notice. *Third-party brands and names are the property of their respective owners. Significant Contributors: Dan Froelich (author) Intel Steven Sanders Teledyne Lecroy Howard Heck (author) Intel Dan Weinlader Synopsys Jim Choate Agilent Hajime Nozaki NEC Mike Engbretson Tektronix Jin-sheng Wang Texas instruments Christopher Skach Tektronix Masami Katagiri NEC Greg Daly Intel Dan Smith Seagate David Li Teledyne-Lecroy Randy White Tektronix John Stonick Synopsys Jim Mueller Teledyne Lecroy iv SuperSpeed Electrical Compliance
5 Table of Contents REVISION HISTORY... IV TABLE OF CONTENTS... V 1 INTRODUCTION Related Documents USB 2.0 Compliance TEST DESCRIPTIONS... 2 TD.1.1 Low Frequency Periodic Signaling TX Test TD.1.2 Low Frequency Periodic Signaling RX Test TD.1.3 Transmitted Eye Test... 3 TD.1.4 Transmitted SSC Profile Test... 4 TD.1.5 Receiver Jitter Tolerance Test... 5
6
7 Chapter 1: SuperSpeed Electrical Compliance 1
8 Chapter 1: Introduction 1 Introduction This document provides the compliance criteria and test descriptions for SuperSpeed USB devices, hubs and host controllers that conform to the Universal Serial Bus 3.0 Specification, rev 1.0. It is relevant for anyone building SuperSpeed USB hardware. These criteria address the electrical requirements for a SuperSpeed physical layer design. Test descriptions provide a high level overview of the tests that are performed to check the compliance criteria. The descriptions are provided with enough detail so that a reader can understand what the test does. The descriptions do not describe the actual step-by-step procedure to perform the test. 1.1 Related Documents [1] Universal Serial Bus 3.0 Specification, revision 1.0, November 12, 2008 [2] USB 3.0 Super Speed Electrical Compliance Methodology, revision 0.5. [3] Universal Serial Bus Specification, Revision 2.0, April 27, [4] USB-IF USB 2.0 Electrical Test Specification, Version 1.03, January USB 2.0 Compliance USB 2,0 testing is required for USB 3.0 devices and is covered by a separate compliance testing program. Refer to [3] and [4] for details. 2 Test Descriptions TD.1.1 Low Frequency Periodic Signaling TX Test. This test verifies that the low frequency periodic signal transmitter meets the timing requirements when measured at the compliance test port. Overview of Test Steps 1. The test performs the following steps. Connect the DUT to a simple breakout test fixture. Disconnect bus power if the DUT is a bus powered device. 2. Power on the device under test (connect bus powered if DUT is a bus powered device) and let it pass through the Rx.Detect state to the Polling.LFPS substate. 3. Trigger on the initial LFPS burst sent by the DUT and capture the first five bursts for analysis.. 4. Measure the following LFPS parameters and compare against the USB 3.0 specification requirements: tburst, trepeat, tperiod, trisefall2080, Duty cycle, V CM-AC-LFPS, and V TX-DIFF-PP-LFPS. For these measurements the start of an LFPS burst is defined as starting when the absolute value of the differential voltage has exceeded 100 mv and the end of an LFPS burst is defined as when the absolute value of the differential voltage has been below 100 mv for 50 ns. tperiod, trisefall2080, Duty cycle, V CM-AC-LFPS, and V TX-DIFF-PP-LFPS are only measured during the period from 100 nanoseconds after the burst start to 100 nanoseconds before the burst stop. TD.1.2 Low Frequency Periodic Signaling RX Test. This test verifies that the DUT low frequency periodic signal receiver recognizes LFPS signaling with voltage swings and duty cycles that are at the limits of what the specification allows. The link test specification includes test that vary additional LFPS parameters to test the LFPS receiver. Overview of Test Steps The test performs the following steps. 2 SuperSpeed Electrical Compliance
9 Chapter 2: Test Descriptions 1. Connect the DUT to a simple breakout test fixture. Disconnect bus power if the DUT is a bus powered device. 2. Power on the device under test (connect bus powered if DUT is a bus powered device) and let it pass through the Rx.Detect state to the Polling.LFPS substate. 3. Trigger on the initial LFPS burst sent by the DUT and send LFPS signals to the DUT with the following parameters: a. tperiod 50 ns. b. V TX-DIFF-PP-LFPS 800 mv. c. Duty Cycle 50% 4. The test passes if the device recognizes the LFPS and starts sending the TSEQ sequence. 5. The test is repeated with the following parameters: a. tperiod 50 ns, V TX-DIFF-PP-LFPS 1200 mv, Duty Cycle 50%. b. tperiod 50 ns, V TX-DIFF-PP-LFPS 1000 mv, Duty Cycle 40%. c. tperiod 50 ns, V TX-DIFF-PP-LFPS 1000 mv, Duty Cycle 60%. TD.1.3 Transmitted Eye Test This test verifies that the transmitter meets the eye width, deterministic jitter and random jitter requirements when measured at the compliance test port with nominal transmitter equalization and after processing with the appropriate channels and post processing as shown in Table 2-1. Connector Type Channel Reference Equalizer Std-A 3m Cable + 5 PCB Long Channel Std-B 3m Cable + 11 PCB Long Channel Micro-B 1m Cable + 11 PCB Long Channel Micro-AB (Host Only) 1m Cable + 5 PCB + Micro-A to Std-A Receptacle adapter Micro-AB (DRD) 1m Cable + 11 PCB (device mode) 1m Cable + 5 PCB + Micro-A to Std-A Receptacle adapter (host mode) Both tests are required Long Channel Long Channel Tethered (Standard A Plug) 11 PCB Long Channel All Types No Channel (fixture only) Short Channel Table 2-1 Channels and Reference Equalizer for Testing Device Types Note: Refer to USB.ORG for s-parameter files for embedding the long channels when using breakout fixtures. In order to comprehend noise effects, such as crosstalk, it is up to the DUT manufacturer to make sure that any other links are active for the various DUT types. SuperSpeed Electrical Compliance 3
10 Chapter 2: Test Descriptions Overview of Test Steps The test runs in the Polling.Compliance substate, and performs the following steps. 1. Connect the DUT to a simple break-out test fixture without VBUS supplied. 2. Power on the device under test and apply VBUS if the DUT is not a host, let it pass through the Rx.Detect state to the Compliance state. SSC shall be enabled. 3. Transmit the CP0 compliance pattern on the SuperSpeed USB port under test and capture the transmitted waveform on a high speed oscilloscope over a minimum of 1,000,000 unit intervals (200 sec) at a sample rate of no more than 25 ps in a single scope capture. 4. Send a PING.LFPS to the RX port of the device under test to cause the compliance pattern to transition to CP1. A single PING.LFPS burst is sent with the following parameters: a. 100 nanosecond duration. b. 20 Mhz frequency (2 periods). 5. Transmit the CP1 compliance pattern on the SuperSpeed USB port under test and capture the transmitted waveform on a high speed oscilloscope over a minimum of 1,000,000 unit intervals (200 sec) at a sample rate of no more than 25 ps in a single scope capture. 6. The required compliance channel shown in Table 2-1 for the connector type under test is embedded to the measured CP0 and CP1 data. The following analysis in steps 7-9 is done applying the appropriate equalizer shown in Table 2-1 and JTF in the waveform analysis. 7. Compute the data eye using CP0 and compare it against the normative transmitter specifications contained in table 6-12 of the USB 3.0 specification. 8. Compute Rj using the CP1 data and compare it against the normative transmitter specifications contained in table 6-12 of the USB 3.0 specification. 9. Compute the total jitter at BER using the CP0 data to compute a measured Tj and the Rj value from CP1 with the dual dirac method and compare it against the normative transmitter specification contained in table 6-12 of the USB 3.0 specification. Note: Extrapolate Tj E-12 based on Tj measured with CP0 and CP1 Rj only. 10. Repeat the analysis in steps 7-9 for the short channel and reference equalizer shown in Table 2-1. TD.1.4 Transmitted SSC Profile Test This test verifies that the transmitter meets SSC profile requirements when measured at the compliance test port with -3.5dB of transmitter equalization and after processing with the JTF. In order to comprehend noise effects, such as crosstalk, it is up to the DUT manufacturer to make sure that any other links are active for the various DUT types. Note: A PCI Express host adaptor is tested in a system that provides a 100 Mhz PCI Express reference clock with a valid SSC profile and in a system with a 100 Mhz PCI Express reference clock that does not have SSC. The host adaptor must pass all tests in both cases. No transmitter testing is done with multiple downstream ports active on hosts/hubs. Overview of Test Steps The test runs in the Polling.Compliance substate, and performs the following steps. 4 SuperSpeed Electrical Compliance
11 Chapter 2: Test Descriptions 1. Connect the DUT to a simple break-out test fixture. 2. Power on the device under test, let it pass through the Rx.Detect state to the Polling.Compliance substate. 3. Send a PING.LFPS to the RX port of the device under test to cause the compliance pattern to transition to CP1. 4. Transmit the CP1 compliance pattern on the SuperSpeed USB port under test and capture the transmitted waveform on a high speed oscilloscope over a minimum of 1,000,000 unit intervals (200 sec) at a sample rate of no more than 25 ps in a single scope capture. 5. The CP1 waveform is used to analyze that the slew rate (derivative) of the period jitter after applying the CDR filter does not exceed TCDR_SLEW_MAX at any point in any of the captured SSC cyles. 6. The CP1 waveform is used to test that t SSC-MOD-RATE and t SSC-FREQ-DEVIATION meet the USB 3.0 specification for each SSC cycle. t SSC-FREQ-DEVIATION must vary between one of the following two ranges: a. +300/-300 and -3700/-5300 PPM b. 1700/-2300 and -3700/-5300 PPM TD.1.5 Receiver Jitter Tolerance Test This test verifies that the receiver properly functions in the presence of deterministic and random jitter at multiple frequencies. The jitter characteristics are defined by the USB 3.0 specification. In order to reduce test time, the receiver is tested to a bit error ratio (BER) of In order to comprehend noise effects, such as crosstalk, it is up to the component manufacturer to make sure that any other links are active for the DUT. The receiver test is performed with asynchronous SSC clocks in the test system and the device under test. The test system SSC shall be triangular at the maximum specified SSC frequency (33 Khz) and downspread 5000 ppm. The test system SSC shall meet the specification limits on slew rate. Note: When the DUT is in loopback for this test it shall not exit loopback unless it receives a warm reset or an LFPS Exit Handshake. Note: The test procedures for channels involving a 1 meter Micro-A to Micro-B cable assume the cable is selected to have a well-controlled nominal loss of 3.5 DB at 2.5 GHz. Connector Type Calibration Channel (Using breakout fixture to measure at end of channel) Test Channel Std-A 3m Cable + 5 PCB 3m Cable + 5 PCB Std-B 3m Cable + 11 PCB 3m Cable + 11 PCB Micro-B 3m Cable + 11 PCB 1m Cable + 11 PCB Micro-AB (Host Only) 3m Cable + 5 PCB 1m Cable + 5 PCB + Micro-A to Std-A Receptacle adapter Micro-AB (DRD) 3m Cable + 11 PCB 1m Cable + 11 PCB (device mode) 1m Cable + 5 PCB + Micro-A to Std-A Receptacle adapter (host mode) SuperSpeed Electrical Compliance 5
12 Chapter 2: Test Descriptions Both tests are required Tethered (Standard A Plug) 3m Cable + 11 PCB 8 (short) Std-A to Std-B cable + 11 PCB All Connector Types Must Also Perform Short Channel Test Same as above (Either 3m Cable + 5 PCB or 3m Cable + 11 PCB) depending on connector type Breakout Fixture Only Note: Refer to Overview of Test Steps The test runs in the Polling.Loopback substate, and performs the following steps. 1. Calibrate swing and de-emphasis a. Connect the end of the cables that will connect to the SMAs on the test fixture (as directly as possible) to a real time oscilloscope and the other end to the test equipment generator. b. Calibrate the differential amplitude of the measured signal to 800 mv peak to peak. c. Calibrate the measured de-emphasis to /-0 db fixed de-emphasis. Note: The signal source must support full bit de-emphasis. 2. Connect the calibration channel to the signal source. Calibrate Rj (2.42 +/- 10% ps RMS/30.8 +/- 10% ps peak to peak at a BER of ) with clock pattern (CP1). Calibrate at the end of the channel applying the CTLE and JTF. SSC and all other noise sources are off for this step. Calibrate Sj (40.0 ps +0/-10% at 50 MHz) with CP0. Calibrate at the end of the channel applying only CTLE. SSC is off for this step. (Calibration is done by testing measured maximum peak to peak jitter without extrapolation (measured TJ) without Sj and then adding Sj until measured maximum peak to peak jitter without extrapolation (measured Tj) increased by 40 ps). All other noise sources are off during this calibration. Measure eye height with CP0 at a BER of 10-6 at the end of the channel with the host fixtures with all jitter sources and SSC on applying JTF and the Long channel reference equalizer. Adjust the signal source amplitude to provide 180 mv +5/-0 mv of eye height with host test fixtures for testing a host. 145 mv +5/-0 mv of eye height with device test fixtures for testing a device. Note: Amplitude should be calibrated to be as close to the minimum value as possible without going under the minimum. Note: De-emphasis at the instrument output must be adjusted to remain at / - 0 db after the eye height calibration process is complete. After calibration is complete the Tj at a BER of with CP0 and all jitter sources on must be between 90 and 95 picoseconds. This measurement is done only with the Sj frequency of 50 Mhz and is performed by checking the average Tj over three 1 million unit interval oscilloscope captures. Due to degradation in connections in the test channel or other test channel issues it may be necessary to switch to a new test channel to achieve a calibrated Tj value in the expected range. 6 SuperSpeed Electrical Compliance
13 Chapter 2: Test Descriptions 3. Connect the DUT to the appropriate test channel. 4. Power on the device under test. 5. Transmit 200 Polling.LFPS (2ms). Note that all jitter sources are added during all transmissions to the device under test. If the device does not go into loopback it fails the test. 6. Transmit TSEQ. 7. Transmit 256 TS1. 8. Transmit 256 TS2 with loopback bit set. 9. Start transmitting the BDAT test pattern. 10. Transmit BDAT for 2 ms before starting error calculations. 11. Transmit the BDAT sequence from the signal source for a total of 3x10 9 symbols (3x10 10 bits). A single SKP ordered set is inserted in the sequence every 354 symbols. 12. The DUT fails if more than one error is encountered.. Note: The channel to the test equipment receiver is kept as short and clean as possible. 13. Repeat steps 3-11 with /-10% ps of periodic (sinusoidal) at a 33 MHz frequency with -3dB of 14. Repeat steps 3-11 with /-10% ps of periodic (sinusoidal) at a 20 MHz frequency with -3dB of 15. Repeat steps 3-11with /-10% ps of periodic (sinusoidal) at a 10 MHz frequency with -3dB of 16. Repeat steps 3-11 with /-10% ps of periodic (sinusoidal) at a 4.9 MHz frequency with -3dB of 17. Repeat steps 3-11 with /-5% ps of periodic (sinusoidal) at a 2 MHz frequency with -3dB of 18. Repeat steps 3-11 with /-5% ps of periodic (sinusoidal) at a 1 MHz frequency -3dB of 19. Repeat steps 3-11 with /-5% ps of periodic (sinusoidal) at a 500 KHz frequency -3dB of Connect the breakout fixture only (short channel) to the signal source with the signal source keeping all settings the same as the calibrated settings with the calibration channel. 20. Measure the maximum peak to peak differential voltage with CP0 with a record depth of one million unit intervals at the end of the breakout fixture only channel with all jitter sources and SSC on applying JTF and the short channel reference equalizer. Adjust amplitude to provide a maximum peak to peak differential voltage of 1200 mv +0/-20 mv. Note: Amplitude should be calibrated to be as close to the maximum value as possible without going over the maximum. Note: De-emphasis at the instrument output must be adjusted to remain at / - 0 db. 21. Repeat steps SuperSpeed Electrical Compliance 7
Electrical Compliance Test Specification SuperSpeed Universal Serial Bus
Electrical Compliance Test Specification SuperSpeed Universal Serial Bus Date: September 14, 2009 Revision: 0.9 Preface 6/3/2009 Scope of this Revision The 0.7 revision of the specification describes the
USB 3.0 Jitter Budgeting White Paper Revision 0.5
USB 3. Jitter Budgeting White Paper Revision.5 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT,
PCI-SIG ENGINEERING CHANGE NOTICE
PCI-SIG ENGINEERING CHANGE NOTICE TITLE: Separate Refclk Independent SSC Architecture (SRIS) DATE: Updated 10 January 013 AFFECTED DOCUMENT: PCI Express Base Spec. Rev. 3.0 SPONSOR: Intel, HP, AMD Part
USB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
USB 3.0 INTERNAL CONNECTOR AND CABLE SPECIFICATION
USB 3.0 INTERNAL CONNECTOR AND CABLE SPECIFICATION Revision 1.0 August 20, 2010 2007-2010 Intel Corporation All rights reserved. Legal Disclaimers THIS SPECIFICATION IS PROVIDED AS IS WITH NO WARRANTIES
Successfully negotiating the PCI EXPRESS 2.0 Super Highway Towards Full Compliance
Successfully negotiating the PCI EXPRESS 2.0 Super Highway Towards Full Compliance Page 1 Agenda Introduction PCIe 2.0 changes from 1.0a/1.1 Spec 5GT/s Challenges Error Correction Techniques Test tool
Application Note. PCIEC-85 PCI Express Jumper. High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s
PCIEC-85 PCI Express Jumper High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s Copyrights and Trademarks Copyright 2015, Inc. COPYRIGHTS, TRADEMARKS, and PATENTS Final Inch is a trademark
Eye Doctor II Advanced Signal Integrity Tools
Eye Doctor II Advanced Signal Integrity Tools EYE DOCTOR II ADVANCED SIGNAL INTEGRITY TOOLS Key Features Eye Doctor II provides the channel emulation and de-embedding tools Adds precision to signal integrity
Explore Efficient Test Approaches for PCIe at 16GT/s Kalev Sepp Principal Engineer Tektronix, Inc
Explore Efficient Test Approaches for PCIe at 16GT/s Kalev Sepp Principal Engineer Tektronix, Inc Copyright 2015, PCI-SIG, All Rights Reserved 1 Disclaimer Presentation Disclaimer: All opinions, judgments,
High-Speed Electrical Testing - Host
High-Speed Electrical Testing - Host Universal Serial Bus Measurement Package www.tektronix.com 2015-05-05 REVISION RECORD SHEET Versio Completion Initiator Page n Date s 1.0 7-16-2014 S. Harrison 35 First
81110A Pulse Pattern Generator Simulating Distorted Signals for Tolerance Testing
81110A Pulse Pattern Generator Simulating Distorted Signals for Tolerance Testing Application Note Introduction Industry sectors including computer and components, aerospace defense and education all require
Universal Serial Bus Implementers Forum EHCI and xhci High-speed Electrical Test Tool Setup Instruction
Universal Serial Bus Implementers Forum EHCI and xhci High-speed Electrical Test Tool Setup Instruction Revision 0.41 December 9, 2011 1 Revision History Rev Date Author(s) Comments 0.1 June 7, 2010 Martin
PHY Interface For the PCI Express, SATA, and USB 3.0 Architectures Version 4.0
PHY Interface For the PCI Express, SATA, and USB 3.0 Architectures Version 4.0 2007-2011 Intel Corporation All rights reserved. Intellectual Property Disclaimer THIS SPECIFICATION IS PROVIDED AS IS WITH
Intel architecture. Platform Basics. White Paper Todd Langley Systems Engineer/ Architect Intel Corporation. September 2010
White Paper Todd Langley Systems Engineer/ Architect Intel Corporation Intel architecture Platform Basics September 2010 324377 Executive Summary Creating an Intel architecture design encompasses some
High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate
Application Report SLLA091 - November 2000 High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate Boyd Barrie, Huimin Xia ABSTRACT Wizard Branch, Bus Solution
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations
Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics. Application Note (AP-438)
Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics Application Note (AP-438) Revision 1.0 November 2005 Revision History Revision Revision Date Description 1.1 Nov 2005 Initial Release
MoCA 1.1 Specification for Device RF Characteristics
MoCA 1.1 Specification for Device RF Characteristics 20140211 Copyright 2012, 2014 Multimedia Over Coax Alliance. All Rights Reserved. MoCA is a trademark or registered trademark of the Multimedia Over
Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions
Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions PCI Express Bus In Today s Market PCI Express, or PCIe, is a relatively new serial pointto-point bus in PCs. It was introduced as an AGP
Evaluation Board for the AAT1275 Boost Converter with USB Power Switch
Introduction EVALUATION BOARD DATA SHEET The AAT1275 evaluation board provides a platform for test and evaluation of the AAT1275 switching boost converter with USB Power Switch. The evaluation board demonstrates
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices White Paper April 2012 Document: 327216-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier
The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class
USB 3.0 Overview and Physical Layer testing requirements
USB 3.0 Overview and Physical Layer testing requirements Industry update and Testing Challenges Update Jim Choate Agilent Technologies Page 1 Agenda Introduction Agilent Digital Standards USBIF Compliance
Managing Connector and Cable Assembly Performance for USB SuperSpeed
Whitepaper Managing Connector and Cable Assembly Performance for USB SuperSpeed Revision 1.0 February 1, 2013 Abstract USB 3.0 connector and cable assembly performance can have a significant impact on
Serial ATA International Organization
Serial ATA International Organization 20 January 2011 Version: 1.1 Revision 1.4 20 January 2011 Serial ATA Interoperability Program Revision 1.4 Agilent Technologies, Inc. Method of Implementation (MOI)
ChipScope Pro Tutorial
ChipScope Pro Tutorial Using an IBERT Core with ChipScope Pro Analyzer Xilinx is disclosing this user guide, manual, release note, and/or specification (the Documentation ) to you solely for use in the
USB 3.1 Channel Loss Budgets
USB 3.1 Channel Loss Budgets Page 1 1 Introduction 1.1 Background This document describes the loss budgets for USB 3.1 interconnect channels. As the basis for the electrical compliance channels, loss budgets
Design Considerations for DVT and Manufacturing Test of Wireless Devices
WHITEPAPER Design Considerations for DVT and Manufacturing Test of Wireless Devices 2015 LitePoint, A Teradyne Company. All rights reserved. Introduction Wireless devices are being deployed for a wide
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
USB 2.0/3.0 Droop/Drop Test Fixture
Operations Manual USB-IF USB 2.0/3.0 Droop/Drop Test Fixture USB 2.0/3.0 Droop/Drop Test Fixture June 15, 2012 Revision 1.1 PACKAGE CONTENTS The USB-IF 2.0/3.0 Droop/Drop Test Fixture should come with
Oscilloscope Bandwidth Requirements for Emerging Serial Data Interfaces
Oscilloscope Bandwidth Requirements for Emerging Serial Data Interfaces Page 1 What best determines bandwidth requirements? 5 th harmonic? Or spectral content of the signal, which is related to rise time?
Embedded Host High Speed Electrical Test Procedure
Embedded Host High Speed Electrical Test Procedure Revision 0.99 January 2014 1 P a g e Table of content 1. Reference... 3 2. Background... 3 3. Test Mode Support... 4 3.1 Setup... 4 3.2 USB High Speed
SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider
DATA SHEET SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider Applications TD-LTE systems Satellite communications 2.4 GHz ISM band Features Low insertion loss: 0.3 db @ 2.5 GHz High isolation:
PL-2303 (Chip Rev H, HX, X) USB to Serial Adapter Windows Driver Installer Manual
PL-2303 (Chip Rev H, HX, X) USB to Serial Adapter Windows Driver Installer Manual For Windows 98/ME/2000/XP/Vista/7 Release Version 1.3 (2/4/2010) Contents Introduction Features & Specifications System
Jitter in PCIe application on embedded boards with PLL Zero delay Clock buffer
Jitter in PCIe application on embedded boards with PLL Zero delay Clock buffer Hermann Ruckerbauer EKH - EyeKnowHow 94469 Deggendorf, Germany [email protected] Agenda 1) PCI-Express Clocking
APN1001: Circuit Models for Plastic Packaged Microwave Diodes
APPLICATION NOTE APN11: Circuit Models for Plastic Packaged Microwave Diodes Abstract This paper reports on the measurement and establishment of circuit models for SOT-23 and SOD-323 packaged diodes. Results
High-Definition Multimedia Interface (HDMI) Source/Sink Impedance Compliance Test Test Solution Overview Using the E5071C ENA Option TDR
High-Definition Multimedia Interface (HDMI) Source/Sink Impedance Compliance Test Using the E5071C ENA Option TDR Keysight Technologies Component Test Division Revision 01.10 2015/03/12 (YS) Reference
Introduction to PCI Express Positioning Information
Introduction to PCI Express Positioning Information Main PCI Express is the latest development in PCI to support adapters and devices. The technology is aimed at multiple market segments, meaning that
CLA Series: Silicon Limiter Diode Bondable Chips
DATA SHEET CLA Series: Silicon Limiter Diode Bondable Chips Applications LNA receiver protection Commercial and defense radar Features Established Skyworks limiter diode process High-power, mid-range,
Selecting the Optimum PCI Express Clock Source
Selecting the Optimum PCI Express Clock Source PCI Express () is a serial point-to-point interconnect standard developed by the Component Interconnect Special Interest Group (PCI-SIG). lthough originally
Texas Instruments. FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA
Texas Instruments FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA 12/05/2014 1 General 1.1 PURPOSE Provide the detailed data for evaluating and verifying the FB-PS-LLC. The FB-PS-LLC is a Full
AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC
Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS 1. Introduction This document provides measurement results and FCC compliance results for the Si4432B when operated from 902 928 MHz. The measurement
GPS 35 USB. installation and quick start guide
GPS 35 USB installation and quick start guide 2001 GARMIN Corporation GARMIN International, Inc. 1200 E 151 st Street, Olathe, Kansas 66062 U.S.A. Tel. 913/397.8200 Fax. 913/397.8282 GARMIN (Europe) Ltd.
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated
PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide
Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge
PUSB3FR4. 1. Product profile. ESD protection for ultra high-speed interfaces. 1.1 General description. 1.2 Features and benefits. 1.
XSON1 Rev. 1 26 January 215 Product data sheet 1. Product profile 1.1 General description The device is designed to protect high-speed interfaces such as SuperSpeed USB 3.1 at 1 Gbps, High-Definition Multimedia
USB-IF Product Order Form
USB-IF Product Order Form Please use the following information to select the test hardware from the USB-IF estore. USB 3.1 (10 GT/s) Type-C Electrical Test Fixture Kit The USB 3.1 USB (10 GT/s) Type-C
AN3353 Application note
Application note IEC 61000-4-2 standard testing Introduction This Application note is addressed to technical engineers and designers to explain how STMicroelectronics protection devices are tested according
PIR-1 Owner s Manual
PIR-1 Owner s Manual PIR-1 Owner s Manual 2010 Universal Remote Control, Inc. The information in this manual is copyright protected. No part of this manual may be copied or reproduced in any form without
SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder
DATA SHEET SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder Applications GSM/WCDMA/EDGE datacards and handsets Mobile high power switching systems Features Broadband frequency range:
Keysight N4877A Clock Data Recovery and Demultiplexer 1:2
Keysight N4877A Clock Data Recovery and Demultiplexer 1:2 Getting Started Getting Started with the Keysight N4877A Clock Data Recovery and Demultiplexer 1:2 You only need a few minutes to get started
ExpressCard USB 3.0 Controller Adapter Card
ECUSB3S2 Instruction Manual ExpressCard USB 3.0 Controller Adapter Card 2-Port ExpressCard SuperSpeed USB 3.0 Controller Adapter Card FCC Compliance Statement This equipment has been tested and found to
SMARTCARD XPRO. Preface. SMART ARM-based Microcontrollers USER GUIDE
SMART ARM-based Microcontrollers SMARTCARD XPRO USER GUIDE Preface Atmel SMARTCARD Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. Atmel SMARTCARD Xplained Pro is designed
Torpedo Design Concept Storage Server for Open Rack Hardware v0.3 ST-draco-chimera-0.3
Torpedo Design Concept Storage Server for Open Rack Hardware v0.3 ST-draco-chimera-0.3 Author: Conor Malone, VP Engineering, Hyve Solutions 1 Scope This document discusses the requirements and specifications
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
CLA4607-085LF: Surface Mount Limiter Diode
DATA SHEET CLA4607-085LF: Surface Mount Limiter Diode Applications Low-loss, high-power limiters Receiver protectors Anode (Pin 1) Anode (Pin 3) Features Low thermal resistance: 55 C/W Typical threshold
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
Signal Integrity: Tips and Tricks
White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary
LAN9514/LAN9514i. USB 2.0 Hub and 10/100 Ethernet Controller PRODUCT FEATURES PRODUCT PREVIEW. Highlights. Target Applications.
LAN9514/LAN9514i 2.0 Hub and 10/100 PRODUCT FEATURES Data Brief Highlights Four downstream ports, one upstream port Four integrated downstream 2.0 PHYs One integrated upstream 2.0 PHY Integrated 10/100
155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX
Features 155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX 1310nm FP laser and PIN photodetector for 40km transmission Compliant with SFP MSA and SFF-8472 with simplex
Experiment 7: Familiarization with the Network Analyzer
Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).
Liquid Carbon Balanced Transportable Headphone Amplifier. Cavalli audio. Copyright 2015-2016 Cavalli Audio, LLC All Rights Reserved
Liquid Carbon Balanced Transportable Headphone Amplifier Cavalli audio All Rights Reserved Page 2 of 15 Congratulations! You re now the proud owner of the Cavalli Audio Liquid Carbon Balanced Transportable
Wireless Subwoofer TI Design Tests
Wireless Subwoofer TI Design Tests This system design was tested for THD+N vs. frequency at 5 watts and 30 watts and THD+N vs. power at 00. Both the direct analog input and the wireless systems were tested.
Calibration Guide. Agilent Technologies ESG Vector Signal Generator
Calibration Guide Agilent Technologies ESG Vector Signal Generator This guide applies to signal generator models and associated serial number prefixes listed below. Depending on your firmware revision,
TECHNICAL TBR 12 BASIS for December 1993 REGULATION
TECHNICAL TBR 12 BASIS for December 1993 REGULATION Source: ETSI TC-BT Reference: DTBR/BT-02036 ICS: 33.040.40 Key words: ONP, leased lines, D2048U Business Telecommunications (BT); Open Network Provision
Keysight Technologies Characterizing and Verifying Compliance of 100Gb Ethernet Components and Systems. Application Brief
Keysight Technologies Characterizing and Verifying Compliance of 100Gb Ethernet Components and Systems Application Brief Overview The expansion in Ethernet data bandwidth from 10Gb/s through 40G to 100G
ZL40221 Precision 2:6 LVDS Fanout Buffer with Glitchfree Input Reference Switching and On-Chip Input Termination Data Sheet
Features Inputs/Outputs Accepts two differential or single-ended inputs LVPECL, LVDS, CML, HCSL, LVCMOS Glitch-free switching of references On-chip input termination and biasing for AC coupled inputs Six
USB2.0 Technical Manual
TDK EMC Technology Practice Section USB2.0 Technical Manual TDK Corporation Magnetics Business Group Mitsuharu Mizutani 1 Introduction USB2.0 was released in April of 2000 and it has become the standard
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
PCI Express: The Evolution to 8.0 GT/s. Navraj Nandra, Director of Marketing Mixed-Signal and Analog IP, Synopsys
PCI Express: The Evolution to 8.0 GT/s Navraj Nandra, Director of Marketing Mixed-Signal and Analog IP, Synopsys PCIe Enterprise Computing Market Transition From Gen2 to Gen3 Total PCIe instances. 2009
PCI Express USB 3.0 Controller Adapter Card
PEXUSB3S2 Instruction Manual PCI Express USB 3.0 Controller Adapter Card 2-Port PCI Express SuperSpeed USB 3.0 Controller Adapter Card FCC Compliance Statement This equipment has been tested and found
TECHNICAL TBR 14 BASIS for April 1994 REGULATION
TECHNICAL TBR 14 BASIS for April 1994 REGULATION Source: ETSI TC-BTC Reference: DTBR/BTC-02038 ICS: 33.040.40 Key words: ONP, leased line Business TeleCommunications (BTC); 64 kbit/s digital unrestricted
Dispersion penalty test 1550 Serial
Dispersion penalty test 1550 Serial Peter Öhlen & Krister Fröjdh Optillion Irvine, January 2001 Dispersion penalty test, 1550 serial Page 1 SMF Transmission at 1550 nm Different from multi-mode transmission
An Overview of the Electrical Validation of 10BASE-T, 100BASE-TX, and 1000BASE-T Devices
An Overview of the Electrical Validation of 10BASE-T, 100BASE-TX, and 1000BASE-T Devices Application Note The number of devices that come with a built-in network interface card has risen steadily and will
Technical Innovation. Salland delivers fully Integrated Solutions for High Volume Testing of Ultra-fast SerDes Applications
Technical Innovation Salland delivers fully Integrated Solutions for High Volume Testing of Ultra-fast SerDes Applications Increasing Speeds Present New Challenges The fundamental technology at the heart
MASTR III RF Package, VHF
Maintenance Manual LBI-38754J MASTR III RF Package, VHF TABLE OF CONTENTS TRANSMIT SYNTHESIZER.......... LBI-38640 RECEIVE SYNTHESIZER........... LBI-38641 RECEIVE RF MODULE............. LBI-38642 IF MODULE...................
21152 PCI-to-PCI Bridge
Product Features Brief Datasheet Intel s second-generation 21152 PCI-to-PCI Bridge is fully compliant with PCI Local Bus Specification, Revision 2.1. The 21152 is pin-to-pin compatible with Intel s 21052,
HEF4021B. 1. General description. 2. Features and benefits. 3. Ordering information. 8-bit static shift register
Rev. 10 21 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an (parallel-to-serial converter) with a synchronous serial data input (DS), a clock
TECHNICAL NOTE 7-1. ARCNET Cable Length vs. Number of Nodes for the HYC9088 in Coaxial Bus Topology By: Daniel Kilcourse May 1991.
TECHNICAL NOTE 7-1 ARCNET Cable Length vs. Number of Nodes for the HYC9088 in Coaxial Bus Topology By: Daniel Kilcourse May 1991 Page 1 80 Arkay Drive Hauppauge, NY 11788 (631) 435-6000 FAX (631) 273-3123
Jitter Transfer Functions in Minutes
Jitter Transfer Functions in Minutes In this paper, we use the SV1C Personalized SerDes Tester to rapidly develop and execute PLL Jitter transfer function measurements. We leverage the integrated nature
Lab 1: The Digital Oscilloscope
PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix
AD9741/3/5/6/7 Evaluation Board Quick Start Guide
AD9741/3/5/6/7 Evaluation Board Quick Start Guide One Technology Way P.O. Box 9106 Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Getting Started with the AD9741/3/5/6/7
1000BASE-T and 10/100/1000BASE-T Copper SFP Transceiver
1000BASE-T and 10/100/1000BASE-T Copper SFP Transceiver Features Up to 1.25Gb/s bi-directional data links Hot-pluggable SFP footprint TX Disable and RX Los/without Los function Fully metallic enclosure
IEEE 802.11 b/g/n WiFi Module. Product Specifications
IEEE 802.11 b/g/n WiFi Module Product Specifications Model: GWF-3M05 Version: 1.6 2011-11-2 Information in this document is subject to change without prior notice. Page 1 of 9 1. Introduction GWF-3M05
R&S ZNC Vector Network Analyzer Specifications
ZNC3_dat-sw_en_5214-5610-22_v0300_cover.indd 1 Data Sheet 03.00 Test & Measurement R&S ZNC Vector Network Analyzer Specifications 04.09.2012 13:39:47 CONTENTS Definitions... 3 Measurement range... 4 Measurement
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
USB-IF Product Order Form
USB-IF Product Order Form Please use the following information to select the test hardware from the USB-IF estore. Low-speed Functional Compliance Test Device The LS Functional Compliance Test Device is
IP4294CZ10-TBR. ESD protection for ultra high-speed interfaces
XSON1 Rev. 4 1 November 213 Product data sheet 1. Product profile 1.1 General description The device is designed to protect high-speed interfaces such as SuperSpeed USB, High-Definition Multimedia Interface
Agilent Technologies N5393B PCI Express 2.0 (Gen2) Electrical Performance Validation and Compliance Software for Infiniium Oscilloscopes
Agilent Technologies N5393B PCI Express 2.0 (Gen2) Electrical Performance Validation and Compliance Software for Infiniium Oscilloscopes Data Sheet Table of Contents Features......................... 3
2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX
2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX Features Support 2.488Gbps data links 1490nm DFB laser and PIN photodetector for 20km transmission 2xBi-directional transceivers
8-channel analog multiplexer/demultiplexer
Rev. 12 25 March 2016 Product data sheet 1. General description The is an with three address inputs (S1 to S3), an active LOW enable input (E), eight independent inputs/outputs (Y0 to Y7) and a common
Temperature & Humidity SMS Alert Controller
Temperature & Humidity SMS Alert Controller Version 7 [Windows XP/Vista/7] GSMS THR / GSMS THP Revision 110507 [Version 2.2.14A] ~ 1 ~ SMS Alarm Messenger Version 7 [Windows XP/Vista/7] SMS Pro series
Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor
Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor Abstract This paper provides information about the NEWCARD connector and board design
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision
CPU. PCIe. Link. PCIe. Refclk. PCIe Refclk. PCIe. PCIe Endpoint. PCIe. Refclk. Figure 1. PCIe Architecture Components
AN562 PCI EXPRESS 3.1 JITTER REQUIREMENTS 1. Introduction PCI Express () is a serial point-to-point interconnect standard developed by the Peripheral Component Interconnect Special Interest Group (PCI-SIG).
Equalization for High-Speed Serial Interfaces in Xilinx 7 Series FPGA Transceivers
White Paper: 7 Series FPGAs WP419 (v1.0) March 27, 2012 Equalization for High-Speed Serial Interfaces in Xilinx 7 Series FPGA Transceivers By: Harry Fu The appetite for data is exploding, and the industry
AN952: PCIe Jitter Estimation Using an Oscilloscope
AN952: PCIe Jitter Estimation Using an Oscilloscope Jitter of the reference clock has a direct impact on the efficiency of the data transfer between two PCIe devices. The data recovery process is able
SC Series: MIS Chip Capacitors
DATA SHEET SC Series: MIS Chip Capacitors Applications Systems requiring DC blocking or RF bypassing Fixed capacitance tuning element in filters, oscillators, and matching networks Features Readily available
PicoScope 6000A/B Series
PicoScope 6000A/B Series PC Oscilloscopes User's Guide -1 PicoScope 6000A/B Series User's Guide I Contents 1 Welcome...1 2 Introduction...2 1 Using this guide 2 Safety symbols 3 Safety warnings 4 FCC
2 To 1 Serial (RS-232) AUTO SWITCH. AS-251S User Manual
2 To 1 Serial (RS-232) AUTO SWITCH AS-251S User Manual Read this manual thoroughly and follow the installation procedures carefully to prevent any damage to the AS-251S and/or the devices it connects to.
