LTE-Advanced: Future of Mobile Broadband
|
|
|
- Damon Holmes
- 9 years ago
- Views:
Transcription
1 LTE-Advanced: Future of Mobile Broadband Third Generation Partnership Project (3GPP) a group of telecommunication associations working towards the development and maintenance of a Global System for Mobile communication (GSM) including evolved radio access technologies, has started working on Long-Term Evolution advanced (LTE-Advanced) in order to achieve the requirements of next generation technology. The key goals for this evolution are increased data rate, improved spectrum efficiency, improved coverage and reduced latency. The end results of these goals are significantly improving service provisioning and reduction of operator costs for different traffic scenarios. The requirements for LTE-Advanced are agreed and the radio interface techniques are currently under discussion. One of the most important requirements for LTEAdvanced is to support LTE and enhancement in the frequency spectrum. Layered OFDMA radio access is used to attain higher level requirements such as system performance and full backward compatibility. Moreover, key radio access technologies such as fast inter-cell radio resource management, multi-antenna transmissions with more antennas for coverage, and enhanced techniques are employed to achieve a high level of cell-edge spectrum efficiency.
2 About the Authors K. N Shantha Kumar K. N Shantha Kumar, who has a masters degree in VLSI design and embedded system, has over 9 years of experience in design and development of hardware, software and system integration. Madhu Kata Madhu Kata with Masters Degree in VLSI, has over three years of experience in design and development of Linux Device Drivers, development of protocol stacks in Layer1 (L1) and Layer2 (L2) for WCDMA and LTE. Paruchuri Chaitanya Paruchuri Chaitanya with Masters Degree in Electronics, has over two years of experience in design & development of wireless Medical devices and development of LTE Layer1 (L1) layer. Dinesh Mukkollu Dinesh Mukkollu with Masters Degree in Digital Communication, has over two years of experience in development of protocol stacks in Wimax and LTE. 1
3 Table of Contents 1. Third Generation Wireless Systems 3 2. Radio Interface Concepts of LTE 3 3. Evolution of LTE-Advanced 7 4. Advantages and key features of LTE- Advanced Comparision between LTE and LTE-Advanced Conclusion Reference 13 2
4 Third Generation Wireless Systems Third generation (3G) wireless systems partnership project Long Term Evolution (LTE), based on radio access technology is taking momentum and continuing to grow at an accelerated pace. However, it is necessary to further develop the future demands for mobile broadband services through higher data rates, shorter delays, and even greater capacity. In parallel to these activities related to the evolution of current 3G wireless technologies, there is also an increased research effort on future radio access, referred to as fourth-generation (4G) radio access. Such future radio access is anticipated to take the performance and service provisioning of wireless systems a step further, providing data rates up to 100 Mbps with wide-area coverage and up to 1 Gbps with local-area coverage, fulfilling the requirements for Beyond IMT-2000 systems [1][2]. To meet the challenges of major enhancements to LTE-Advanced which will be introduced in release 10, 3GPP has initiated the study item on LTE-A, aiming at achieving additional substantial leaps in terms of service provisioning and cost reduction[3][4]. Mobility LTE-Adv Low Speed Med Speed High Speed AMPSETACS, ITACS 1 G CDMA/GSM/TDMA 2 G CDMA2000 EV-DO/ DV W-CDMA/HSDPA 3 G LTE 3.x G 4 G ~14.4 Kbps ~400 Kbps ~40 Mbps 150 Mbps 500 Mbps Data Rates Figure 1 : Evolution of Radio Access Technologies In this paper, we first address some of the radio interface concepts of Release 8 LTE and then provide the major differences between LTE and LTE-A. Later we will discuss some of the advantages and key features of LTE-advanced. Radio Interface Concepts Of LTE The ability to provide a high bit rate is a key measure for LTE. LTE is designed to meet the requirements of peak data rate up to 150 Mbps in down-link, 75 Mbps at up-link. The characteristics of LTE will be cellular coverage, mobility, scalable bandwidth of 1.3, 3, 5, 10, 15, 20 MHz, FDD (Frequency Division Duplexing) and TDD (Time Division Duplexing). 3
5 Diffracted wave LTE-Advanced: Future of Mobile Broadband The down-link by OFDMA (Orthogonal Frequency Division Multiplexing Access), up-link by SCFDMA (Single Carrier Frequency Division Multiplexing Access), MIMO (Multiple Input Multiple Output), and modulations by 16 QAM, 64 QAM technologies are used by LTE for meeting the data rate requirements mentioned above. A.Down-link OFDMA OFDMA is a multi-user version of a digital modulation scheme called Orthogonal Frequency-Division Multiplexing (OFDM). In OFDM the signal is first split into independent sub-carriers and these closely-spaced orthogonal subcarriers are used to carry the data. The data is divided into several parallel data streams or channels, one for each subcarrier. Each sub-carrier is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase shift keying) at a low symbol rate, maintaining total data rates similar to conventional singlecarrier modulation schemes of the same bandwidth. A general analogy for OFDM can be of many small lamps in a hall rather than a single big lamp. The advantage is that light will be distributed across the hall equally as compared to a single lamp and increase redundancy a defect in one lamp will not affect the light in the hall. The primary advantage of OFDM over single-carrier scheme is its ability to cope with severe channel conditions without complex equalization filters. For example, attenuation of high frequencies in a long copper wire, narrowband interference, and frequency-selective fading due to multipath. Reflected wave Figure 2 : Multi Path Fading With the help of OFDM, channel equalization is simplified as OFDM may be viewed as using many slowly-modulated narrowband signals rather than one rapidly-modulated wideband signal. With the duration of each symbol being long, it is feasible to insert a guard interval between the OFDM, making it possible to handle time-spreading and eliminate inter-symbol interference (ISI). This mechanism also facilitates the design of single-frequency networks, where several adjacent transmitters send the same signal simultaneously at the same frequency. As the signals from multiple distant transmitters may be combined constructively, rather than interfering as would typically occur in a traditional single-carrier system. 4
6 In an OFDM symbol the cyclic prefix, transmitted during the guard interval, consists of the end of the OFDM symbol as shown in the following figure. The guard interval is used so that the receiver will integrate over an integer number of sinusoid cycles for each of the multipath when it performs OFDM demodulation with the FFT. CP Data 1 CP Data 2 Cyclic Prefix Cyclic Prefix Figure 3: OFDM Symbol with Cyclic Prefix In OFDM, the available bandwidth is divided into a large number of smaller bandwidths using Fast Fourier Transforms (FFTs) that are mathematically orthogonal. Reconstruction of the band is performed by the Inverse Fast Fourier Transform (IFFT). FFTs and IFFTs are well-defined algorithms that can be implemented very efficiently when sized as powers of 2. Typical FFT sizes for OFDM systems are 512, 1024, and For example, a 10-MHz bandwidth allocation may be divided into 1,024 smaller bands, whereas a 5-MHz allocation would be divided into 512 smaller bands. These smaller bands are referred to as subcarriers and are typically on the order of 10 KHz. The multiple access techniques selected for LTE are OFDMA in down-link and SC-FDMA in up-link. In OFDMA, the data is transmitted over a large number of orthogonal narrow band channels. By inserting the cyclic prefix, the received signal, even after undergoing multipath propagation, can be detected by a low complexity single tap equalizer in the UE. OFDMA provides easy bandwidth scalability by configuration of the number of the subcarriers. This allows the base station to dynamically adjust the bandwidth usage according to the system requirements. In addition, because each user consumes only a portion of the total bandwidth, the signal power of each user can also be modulated according to the current system requirements. Quality of service (QoS) is another feature that can be adapted for different users depending on their specific application, such as voice, streaming video, or Internet access. The drawback of OFDMA is the relatively large peak to average power ratio (PAPR), which tends to reduce the efficiency of the radio frequency (RF) power amplifier [10]. Frequency Reference Sub carriers User 1 User 2 User 3 User 4 Figure 4 : OFDMA sub carriers 5
7 Carriers Carriers Time Time User 1 User 2 User 3 User 4 Figure 5 : Bandwidth allocation OFDM Vs OFDMA B. Uplink Single-Carrier FDMA with Dynamic Bandwidth To improve the RF transmission power efficiency in the UE, Single Carrier Frequency Division Multiple Access (SC- FDMA) is used. SC-FDMA has similar performance and essentially the same overall structure as those of an OFDMA system. One prominent advantage of SC-FDMA over OFDMA is that the SC-FDMA signal has lower peak-to-average power ratio (PAPR). In the up-link communications low PAPR greatly benefits the User Equipment (UE) in terms of transmit power efficiency. Guard intervals with cyclic repetition are introduced between blocks of symbols as in OFDM explained earlier. In OFDM, FFT is applied on the receiver side on each block of symbols, and IFFT on the transmitter side. In SC-FDMA, both FFT and IFFT are applied on the transmitter side, and also on the receiver side. However SC-FDMA requires transmissions in consecutive bands, and thus introduces restrictions on the frequency domain packet scheduling for individual users compared to OFDMA. C. Multi-Antenna Solutions Multiple Input Multiple Output (MIMO) is the major feature used to improve the performance of the LTE system, it allows in improving the spectral efficiency and data throughput. MIMO consists of multiple antennas on the receiver and transmitter to utilize the multipath effects. This reduces the interference and leads to high throughputs. Multipath occurs when the different signals arrive at the receiver at various times intervals. MIMO divides a data stream into multiple unique streams, transmits data streams in the same radio channel at the same time. The receiving end uses an algorithm or employs special signal processing to generate one signal that was originally transmitted from the multiple signals [7]. 6
8 Transmitter Receiver Data Streams Data Streams Figure 6: MIMO Block In LTE, the MIMO concepts vary from down-link to up-link to keep the terminal (UE) cost low. The base station either consists of two or four transmitting antennas and two receiving antennas on the terminal (UE) side for the down-link, and UE employs MU-MIMO (Multi User MIMO) for the up-link. With this scheme UE only have one transmit antenna which reduces the cost of the equipment. Interference due to transmission of data in the same channel by multiple mobile terminals is reduced by using mutually orthogonal pilot patterns. 4G UE Base Station Base Station A: DL Direction B: UL Direction 4G UE Evolution of LTE-ADVANCED Figure 7 : MIMO Tx and Rx Schemes LTE (4 X 2 MIMO) LTE-A should be real broadband wireless network that provides peak data rates equal to or greater than those for wired networks, i.e., FTTH (Fiber To The Home), while providing better QoS. The major high-level requirements of LTE- A are reduced network cost (cost per bit), better service provisioning and compatibility with 3GPP systems [8]. LTE-A being an evolution from LTE is backward compatible. Some of the major technology proposals of LTE-A are [8]: A. Asymmetric transmission bandwidth Access such as Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are the two most prevalent duplexing schemes used in fixed broadband wireless networks. FDD uses two distinct radio channels and supports 7
9 two-way radio communication and TDD uses a single frequency to transmit signals in both the downstream and upstream directions. Symmetric transmission results when the data in down-link and in the up-link are transmitted at the same data rate. This is one of the cases in voice transmission which transmits the same amount of data in both directions. However, for internet connections or broadcast data (for example, streaming video), it is likely that more data will be sent from the server to the UE (the down-ink). Based on the current and future traffic demands in cellular networks the required bandwidth in up-link will be narrower than that in down-link. So asymmetric transmission bandwidth will be a better solution for efficient utilization of the bandwidth. LTE Bandwidth Symmentric BW Asymmetric BW LTE DL BW (20 MHz) LTE Advanced Max BW 100 MHz LTE Advanced DL BW (20 MHz) LTE UL BW (20 MHz) LTE Advanced UL BW (10 MHz) Figure 8: Support of Asymmetric Bandwidths for LTE Advanced B. Layered OFDMA In layered structure, the entire system bandwidth comprises multiple basic frequency blocks. The bandwidth of basic frequency block is, MHz. Layered OFDMA radio access scheme in LTE-A will have layered transmission bandwidth, support of layered environments and control signal formats. The support of layered environments helps in achieving high data rate (user throughput), QoS, or widest coverage according to respective radio environments such as macro, micro, indoor, and hotspot cells. The control signal formats are a straightforward extensions of L1/L2 control signal formats of LTE to LTE-A. Independent control channel structure is used for each component carrier. Control channel supports only shared channel belonging to the same component carrier. C. Advanced Multi-cell Transmission/Reception Techniques In a multi-user multi-cell environment employing multi-transmission/reception antenna devices for each cell have multiple first units and a second units in wireless communication. The first units consists of a predetermined antenna and the second unit consists of the following sub units: 8
10 Estimation unit: Estimates channel information on signals from the individual first units and estimates information of noise and interference signals from adjacent cells. Calculation unit: Calculates the sum of transfer rates for each user group having at least one first unit using the information estimated by the estimation unit. Determination unit: Determines one user group by comparing the sum of the transfer rates of each user group calculated by the calculation unit. Feedback unit: Information on the user group determined by the determination unit is fed back to the first units of the corresponding cell. In LTE-A, the advanced multi-cell transmission/reception processes (also called as coordinated multipoint transmission/reception) helps in increasing frequency efficiency and cell edge user throughput. Faster handovers among different inter-cell sites are achieved by employing Inter-Cell Interference (ICI) management (that is, inter-cell interference coordination (ICIC) aiming at inter-cell orthogonalization). D. Enhanced Multi-antenna Transmission Techniques Mobile traffic in wireless communications has been increasing multi folds over the years, which amplifies the requirement of higher-order MIMO channel transmissions and higher peak frequency efficiency than LTE. In LTE-A, the MIMO scheme has to be further improved in the area of spectrum efficiency, average cell through put and cell edge performances. With multipoint transmission/reception, where antennas of multiple cell sites are utilized in such a way that the transmitting/receiving antennas of the serving cell and the neighboring cells can improve quality of the received signal at the UE/eNodeB and reduces the co-channel interferences from neighboring cells. Peak spectrum efficiency is directly proportional to the number of antennas used. In LTE-A the antenna configurations of 8x8 in DL and 4x4 in UL are planned. 4G UE 4G Base Station Fig a: DL Direction Base Station Fig b: UL Direction UE Figure 9 : MIMO Tx & Rx Schemes LTE-A (8 X 4 MIMO) E. Enhanced Techniques to Extend Coverage Area Remote Radio Requirements (RREs) using optical fiber should be used in LTE-A as effective technique to extend cell coverage. Layer 1 relays with non-regenerative transmission, that is, repeaters can also be used for improving coverage in existing cell areas. Layer 2 and Layer 3 relays can achieve wide coverage extension through an increase in Signal to Noise Ratio (SNR). 9
11 Optical Fiber LTE-Advanced: Future of Mobile Broadband Direct Connection to BS 4G Base Station Indirect Connection to BS UE RRE 4G UE Figure 10 : RRE using optical fibers F. Support of Larger Bandwidth in LTE-Advanced Peak data rates up to 1Gbps are expected from bandwidths of 100MHz. OFDM adds additional sub-carrier to increase bandwidth. The available bandwidth may not be continuous as a result of fragmented spectrum. To ensure backward compatibility to the current LTE, the control channels such as synchronization, broadcast, or PDCCH/PUCCH might be needed for every 20 MHz. LTE (20 MHz) 100 MHz Figure 11: Support of larger Bandwidths The above described technology proposals of LTE-A will help us to: Lower the total cost of network ownership Easily deploy the network Increase user throughput for fully multi-media feature services Achieve spectrum flexibility support scalable bandwidth and spectrum aggregation Achieve backward compatibility and inter-working with LTE with 3GPP legacy systems Enable extended multi-antenna deployments and denser infrastructure in a cost-efficient way 10
12 Advantages and Key Features Of LTE- Advanced A. Advantages Some advantages that are applicable to the 4th Generation mobile communications are also applicable to LTE-A. With average download speeds of 400 Kbps to 700 Kbps, the network offers enough bandwidth to enable cell phone users to surf and download data from the Internet. LTE-A should significantly lower the bit-cost for the end-users and the total cost of ownership for the operators. At the same time, LTE-A should meet new emerging challenges such as energy-efficient Radio Access Network (RAN) design, increase the flexibilities of network deployments, and off load networks from localized user communications. Regardless of the actual technology, the forthcoming technology will also be able to allow the complete interoperability among heterogeneous networks and associated technologies, thus providing clear advantages in terms of: Coverage: The user gets best QoS and widespread network coverage as there is network availability at any given time. Bandwidth: Sharing the resources among the various networks will reduce the problems of spectrum limitations of the third generation. B. Key Features 1. Friendliness and Personalization: User friendliness exemplifies and minimizes the interaction between applications and the user. Thanks to a well designed transparency that allows the person and the machine to interact naturally (for example, the integration of new speech interface is a great step to achieve this goal). 2. Heterogeneous Services: Services that are heterogeneous in nature (for example, different types of services such as audio, video etc.) such as quality and accessibility may not be the same due to the heterogeneity of the network. For instance, a user in proximity of the shopping mall but out of the coverage of a WLAN can still receive pop-up advertisements using the multi-hop ad hoc network setup in his surrounding. Therefore the dynamics of the network environment can change the number of users, terminals, topology, etc. 11
13 Comparision between LTE and LTE-advanced Comparison of performance requirements of LTE with some of the current agreements of LTE Advanced [8] are: Table 1: Difference between LTE and LTE-A Technology LTE LTE--A Peak data rate Down Link ( DL) Peak data rate Up Link (UL) Transmission bandwidth DL Transmission bandwidth UL Mobility Coverage Scalable Band Widths Capacity 150 Mbps 75 Mbps 20MHz 20MHz Optimized for low speeds(<15 km/hr) High Performance At speeds up to 120 km/hr Maintain Links at speeds up to 350 km/hr Full performance up to 5 km 1.3,3, 5, 10, and 20 MHz 200 active users per cell in 5 MHz. 1 Gbps 500 Mbps 100 MHz 40 MHz (requirements as defined by ITU) Same as that in LTE a) Same as LTE requirement b) Should be optimized or deployment in local areas/micro cell environments. Up to MHz 3 times higher than that in LTE 12
14 Conclusion LTE-A helps in integrating the existing networks, new networks, services and terminals to suit the escalating user demands. The technical features of LTE-A may be summarized with the word integration. LTE-Advanced will be standardized in the 3GPP specification Release 10 (Release 10 LTE-A) and will be designed to meet the 4G requirements as defined by ITU. LTE-A as a system needs to take many features into considerations due to optimizations at each level which involves lots of complexity and challenging implementation. Numerous changes on the physical layer can be expected to support larger bandwidths with more flexible allocations and to make use of further enhanced antenna technologies. Coordinated base stations, scheduling, MIMO, interference management and suppression will also require changes on the network architecture. References [1] S. Parkvall et al. Evolving 3G Mobile Systems Broadband and Broadcast Services in WCDMA, IEEE Communications Magazine, February [2] 3GPP, RP , Proposed Study Item on Evolved UTRA and UTRAN, [3] D. Astely et al., A Future-Radio-Access Framework, Journal on Selected Areas in Communications, Special Issue on 4G Wireless Systems, to appear [4] E. Mino Diaz, et al., The WINNER project: Research for new Radio Interfaces for better Mobile Services, IEICE Transactions, Japan, Vol. E87-A, No. 10, October 2004 [5] X. Yu, G. Chen, M. Chen, and X. Gao, Toward Beyond 3G: The FuTURE Project in China, IEEE Communications Magazine, pp 70-75, January 2005 [6] 3GPP, TR , Evolved Universal Terrestrial Radio Access (E-UTRA); Long Term Evolution (LTE) physical layer; General description, [7] H. Ekström et al., Technical Solutions for the 3G Long-term Evolution, IEEE Communications Magazine, March [8] 3GPP, TR , Requirements for further advancements for E-UTRA (LTE-Advanced), [9] Progress on LTE Advanced - the new 4G standard Eiko Seidel, Chief Technical Officer Nomor Research GmbH, Munich, Germany. [10] IEEE Communications Magazine. April
15 About TCS Engineering and Industrial Services Engineering and Industrial Services (EIS) is a strategic business unit of TCS that offers a wide spectrum of engineering services and solutions, covering new product development, product lifecycle management, plant solutions and geospatial technology solutions. These services & solutions cater to different industry verticals such as Aerospace & Defense, Automotive, Hi Tech, Telecom, Energy & Utilities, Government, Industrial Machinery and Medical Devices. About Tata Consultancy Services (TCS) Tata Consultancy Services is an IT services, business solutions and outsourcing organization that delivers real results to global businesses, ensuring a level of certainty no other firm can match. TCS offers a consulting-led, integrated portfolio of IT and ITenabled services delivered through its unique Global Network Delivery ModelTM, recognized as the benchmark of excellence in software development. A part of the Tata Group, India's largest industrial conglomerate, TCS has over 143,000 of the world's best trained IT consultants in 42 countries. The company generated consolidated revenues of US $6 billion for fiscal year ended 31 March 2009 and is listed on the National Stock Exchange and Bombay Stock Exchange in India. [email protected] Subscribe to TCS White Papers TCS.com RSS: Feedburner: All content / information present here is the exclusive property of Tata Consultancy Services Limited (TCS). The content / Information contained here is correct at the time of publishing. No material from here may be copied, modified, reproduced, republished, uploaded, transmitted, posted or distributed in any form without prior written permission from TCS. Unauthorized use of the content / information appearing here may violate copyright, trademark and other applicable laws, and could result in criminal or civil penalties. Copyright 2009 Tata Consultancy Services Limited TCS Design Services M 0909 For more information, visit us at
Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam
Cooperative Techniques in LTE- Advanced Networks Md Shamsul Alam Person-to-person communications Rich voice Video telephony, video conferencing SMS/MMS Content delivery Mobile TV High quality video streaming
Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE HSDPA. Shared Channel Transmission
HSDPA Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE Enhanced Support for Downlink Packet Data Higher Capacity Higher Peak data rates Lower round trip delay Part
Evolution of the Air Interface From 2G Through 4G and Beyond
Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations
The future of mobile networking. David Kessens <[email protected]>
The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking
NSN White paper February 2014. Nokia Solutions and Networks Smart Scheduler
NSN White paper February 2014 Nokia Solutions and Networks Smart Scheduler CONTENTS 1. Introduction 3 2. Smart Scheduler Features and Benefits 4 3. Smart Scheduler wit Explicit Multi-Cell Coordination
18-759: Wireless Networks Lecture 18: Cellular. Overview
18-759: Wireless Networks Lecture 18: Cellular Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2010 http://www.cs.cmu.edu/~prs/wirelesss10/ Peter
Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced)
3GPP IMT-Advanced Evaluation Workshop Beijing, China, 17-18 December, 2009 Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced) Takehiro
Seminario AGCOM LTE per il mobile broadband: tecnologia, regolamentazione, ecosistema e mercato Roma, 24 Febbraio 2012. PARTE II: Tecnologia LTE
Security Level: Seminario AGCOM LTE per il mobile broadband: tecnologia, regolamentazione, ecosistema e mercato Roma, 24 Febbraio 2012 PARTE II: Tecnologia LTE www.huawei.com Fabio Moresi Country Marketing
Inter-Cell Interference Coordination (ICIC) Technology
Inter-Cell Interference Coordination (ICIC) Technology Dai Kimura Hiroyuki Seki Long Term Evolution (LTE) is a promising standard for next-generation cellular systems targeted to have a peak downlink bit
HSPA+ and LTE Test Challenges for Multiformat UE Developers
HSPA+ and LTE Test Challenges for Multiformat UE Developers Presented by: Jodi Zellmer, Agilent Technologies Agenda Introduction FDD Technology Evolution Technology Overview Market Overview The Future
SC-FDMA for 3GPP LTE uplink. Hong-Jik Kim, Ph. D.
SC-FDMA for 3GPP LTE uplink, Ph D Wireless Broadband The New Category Mobil ile Local Area Fixe ed Cellular Cordless POTS UMTS / WCDM A HSDPA 3GPP LTE Wireless Broadband 1xEV-DO WiMAX 80216e 80220 80211
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
A Performance Study of Wireless Broadband Access (WiMAX)
A Performance Study of Wireless Broadband Access (WiMAX) Maan A. S. Al-Adwany Department of Computer & Information Engineering, College of Electronics Engineering University of Mosul Mosul, Iraq [email protected]
HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011
HSPA, LTE and beyond The online multimedia world made possible by mobile broadband has changed people s perceptions of data speeds and network service quality. Regardless of where they are, consumers no
A Novel LTE-Advanced Carrier Aggregation with Higher Throughput
A Novel LTE-Advanced Carrier Aggregation with Higher Throughput A. Z. Yonis 1 and M. F. L. Abdullah 2 1 Department of Communication Engineering, 1 College of Electronic Engineering, University of Mosul,
Throughput for TDD and FDD 4 G LTE Systems
Throughput for TDD and FDD 4 G LTE Systems Sonia Rathi, Nisha Malik, Nidhi Chahal, Sukhvinder Malik Abstract Long Term Evolution (LTE) has been designed to support only packet-switched services. It aims
LTE UE RF measurements An introduction and overview
An introduction and overview February 2010 Andreas Roessler [email protected] Technology Manager North America Rohde & Schwarz, Germany Guenter Pfeifer [email protected]
Evolution in Mobile Radio Networks
Evolution in Mobile Radio Networks Multiple Antenna Systems & Flexible Networks InfoWare 2013, July 24, 2013 1 Nokia Siemens Networks 2013 The thirst for mobile data will continue to grow exponentially
LTE-Advanced UE Capabilities - 450 Mbps and Beyond!
LTE-Advanced UE Capabilities - 450 Mbps and Beyond! Eiko Seidel, Chief Technical Officer NoMoR Research GmbH, Munich, Germany March, 2014 Summary LTE networks get more mature and new terminals of different
An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA 2000 1x EVDO and LTE Systems
ICWMC 211 : The Seventh International Conference on Wireless and Mobile Communications An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA 2 1x EVDO and LTE Systems Xinsheng
Whitepaper. 802.11n The Next Generation in Wireless Technology
Whitepaper 802.11n The Next Generation in Wireless Technology Introduction Wireless technology continues to evolve and add value with its inherent characteristics. First came 802.11, then a & b, followed
LTE-Advanced Carrier Aggregation Optimization
Nokia Networks LTE-Advanced Carrier Aggregation Optimization Nokia Networks white paper LTE-Advanced Carrier Aggregation Optimization Contents Introduction 3 Carrier Aggregation in live networks 4 Multi-band
WiMAX and the IEEE 802.16m Air Interface Standard - April 2010
WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 Introduction The IEEE 802.16e-2005 amendment to the IEEE Std 802.16-2004 Air Interface Standard which added Scalable-Orthogonal Frequency
Comparing WiMAX and HSPA+ White Paper
Comparing WiMAX and HSPA+ White Paper Introduction HSPA+ or HSPA Evolved is the next step in the 3GPP evolution. With 3GPP Rel-7 and Rel-8, several new features are added to this 3G WCDMA technology,
The Advantages of SOFDMA for WiMAX
The Advantages of SOFDMA for WiMAX Vladimir Bykovnikov Intel Corporation Abstract SOFDMA has several advantages when used in NLOS wireless networks. The paper outlines these advantages and shows the evolutionary
Technical and economical assessment of selected LTE-A schemes.
Technical and economical assessment of selected LTE-A schemes. Heinz Droste,, Darmstadt Project Field Intelligent Wireless Technologies & Networks 1 Mobile Networks enabler for connected life & work. Textbox
Telesystem Innovations. LTE in a Nutshell: The Physical Layer WHITE PAPER
Telesystem Innovations LTE in a Nutshell: The Physical Layer WHITE PAPER OVERVIEW The design of the LTE physical layer (PHY) is heavily influenced by the requirements for high peak transmission rate (100
Trends in LTE/WiMAX Systems
Trends in LTE/WiMAX Systems Tamio Saito Yoshinori Tanaka Tsuguo Kato (Manuscript received April 2, 2009) In Japan, the total number of mobile-phone and personal handy-phone system (PHS) users reached 111
CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY
CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY 4.1. INTRODUCTION In recent years, the rapid growth of wireless communication technology has improved the transmission data rate and communication distance.
SURVEY OF LTE AND LTE ADVANCED SYSTEM
IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 5, May 2014, 1-6 Impact Journals SURVEY OF LTE AND LTE ADVANCED
mm-band MIMO in 5G Mobile
mm-band MIMO in 5G Mobile Arogyaswami Paulraj Stanford University IEEE 5G Summit Santa Clara University November 16, 2015 Service Vision and Performance Universal Connectivity Low Power Low Latency Immersive
Wireless Technologies for the 450 MHz band
Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed
www.zte.com.cn VDSL2 A feasible Solution for Last Mile
www.zte.com.cn VDSL2 A feasible Solution for Last Mile Version Date Author Approved By Remarks V1.00 009-08-8 MichaelSong Not open to the Third Party 009 ZTE Corporation. All rights reserved. ZTE CONFIDENTIAL:
LTE, WLAN, BLUETOOTHB
LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed
LTE: an introduction. LTE offers a superior user experience and simplified technology
LTE: an introduction LTE offers a superior user experience and simplified technology Executive summary Mobile broadband is a reality today and is growing fast, as members of the internet generation grow
LTE Performance and Analysis using Atoll Simulation
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 68-72 LTE Performance and Analysis using Atoll Simulation
Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight
TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency
LTE and WiMax Technology and Performance Comparison
LTE and WiMax Technology and Performance Comparison Dr.-Ing. Carsten Ball Nokia Siemens Networks Radio Access, GERAN &OFDM Systems: RRM and Simulations EW2007 Panel Tuesday, 3rd April, 2007 1 Nokia Siemens
Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses
Report ITU-R M.2292-0 (12/2013) Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses M Series Mobile, radiodetermination, amateur and related satellite services
Carrier Aggregation: Fundamentals and Deployments
Carrier Aggregation: Fundamentals and Deployments Presented by: Manuel Blanco Agilent Technologies Agenda LTE-Advanced Carrier Aggregation Design and test challenges 2 Industry background 263 LTE networks
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 2, Issue 11, November 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Automated
4G LTE/LTE-Advanced for Mobile Broadband
4G LTE/LTE-Advanced for Mobile Broadband Erik Dahlman, Stefan Parkvall, and Johan Sköld ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO
LTE Uplink Transmission Scheme
Rafal Surgiewicz Warsaw Univ. of Technology Electronics and Information Technology [email protected] LTE Uplink Transmission Scheme Niklas Ström Chalmers Univ. of Technology Dept. of Computer
Planning for 802.11ac Adoption with Ekahau Site Survey 6.0
Planning for 802.11ac Adoption with Ekahau Site Survey 6.0 1 P a g e w w w. e k a h a u. c o m / e s s Introduction to 802.11ac The emerging next generation Wi-Fi standard IEEE 802.11ac aims to break the
3GPP Wireless Standard
3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation
Interference in LTE Small Cells:
Interference in LTE Small Cells: Status, Solutions, Perspectives. Forum on small cells, 2012, December. IEEE Globecom 2012 Presenter: Dr Guillaume de la Roche Mindspeed France 1 Mindspeed: Short history
MIMO Antenna Systems in WinProp
MIMO Antenna Systems in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen [email protected] Issue Date Changes V1.0 Nov. 2010 First version of document V2.0 Feb. 2011
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
Use Current Success to Develop Future Business
>THIS IS THE WAY Use Current Success to Develop Future Business Malur Narayan / Nitin Khanna February 2005 >THIS IS Wireless Broadband Opportunities & Segments Mobile Broadband Access Enterprise Broadband
AirHarmony 4000. Outdoor LTE-Advanced Mini-Macro Base Station
AirHarmony 4000 Outdoor LTE-Advanced Mini-Macro Base Station Multi-Function, Compact and Versatile Redefining the economics of LTE-Advanced Heterogeneous Deployment a leading LTE Small and Compact RAN
A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation Radio PHE, Faculté des Sciences, Rabat, Morocco
Progress In Electromagnetics Research C, Vol. 12, 15 25, 2010 A PROPOSAL SOLUTION FOR INTERFERENCE INTER-OPERATORS A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation
COMPARISON BASED ON VARIOUS PERFORMANCE PARAMETERS BETWEEN WIMAX AND LTE USING NS2
COMPARISON BASED ON VARIOUS PERFORMANCE PARAMETERS BETWEEN WIMAX AND LTE USING NS2 Prof. Tilottama Dhake 1, Pratik Gala 2, Keval Jain 3, Bhavesh Mayekar 4, Priyal Shah 5 Abstract: In telecommunications,
3GPP Technologies: Load Balancing Algorithm and InterNetworking
2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology 3GPP Technologies: Load Balancing Algorithm and InterNetworking Belal Abuhaija Faculty of Computers
LTE BACKHAUL REQUIREMENTS: A REALITY CHECK
By: Peter Croy, Sr. Network Architect, Aviat Networks INTRODUCTION LTE mobile broadband technology is now being launched across the world with more than 140 service providers committed to implement it
Introduction to Clean-Slate Cellular IoT radio access solution. Robert Young (Neul) David Zhang (Huawei)
Introduction to Clean-Slate Cellular IoT radio access solution Robert Young (Neul) David Zhang (Huawei) Page 11 Introduction and motivation There is a huge opportunity for Mobile Network Operators to exploit
LTE Perspective. Ericsson Inc. Sridhar vadlamudi LTE HEAD, India
LTE Perspective Ericsson Inc. Sridhar vadlamudi LTE HEAD, India Topics Mobile Broadband growth Why LTE? Trials/Commercial deployments Public Ericsson AB 2010 2010-05-31 Page 2 A wider vision: Everything
WHITE PAPER. Realistic LTE Performance From Peak Rate to Subscriber Experience
WHITE PAPER Realistic LTE Performance From Peak Rate to Subscriber Experience Realistic LTE Performance From Peak Rate to Subscriber Experience Introduction Peak data rates are often perceived as actual
Multihopping for OFDM based Wireless Networks
Multihopping for OFDM based Wireless Networks Jeroen Theeuwes, Frank H.P. Fitzek, Carl Wijting Center for TeleInFrastruktur (CTiF), Aalborg University Neils Jernes Vej 12, 9220 Aalborg Øst, Denmark phone:
LTE and Network Evolution
ITU-T Workshop on Bridging the Standardization Gap and Interactive Training Session (Nadi, Fiji, 4 6 July 2011 ) LTE and Network Evolution JO, Sungho Deputy Senior Manager, SKTelecom Nadi, Fiji, 4 6 July
LTE Fanny Mlinarsky President octoscope, Inc.
21-Jan-11 4G Broadband what you need to know about LTE Fanny Mlinarsky President octoscope, Inc. 7-Oct-11 2 Dr. Hyung G. Myung Dr. Hyung G. Myung is currently with Qualcomm working on IP Strategy. He previously
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss
ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari
Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise
Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
Wireless Cellular Networks: 3G
Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless
Wireless LANs vs. Wireless WANs
White Paper Wireless LANs vs. Wireless WANs White Paper 2130273 Revision 1.0 Date 2002 November 18 Subject Supported Products Comparing Wireless LANs and Wireless WANs Wireless data cards and modules,
Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets
Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets White paper Table of contents 1. Overview... 3 2. 1800 MHz spectrum... 3 3. Traffic Migration... 5 4. Deploying LTE-GSM
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
2G/3G Mobile Communication Systems
2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management
What is going on in Mobile Broadband Networks?
Nokia Networks What is going on in Mobile Broadband Networks? Smartphone Traffic Analysis and Solutions White Paper Nokia Networks white paper What is going on in Mobile Broadband Networks? Contents Executive
SC-FDMA and LTE Uplink Physical Layer Design
Seminar Ausgewählte Kapitel der Nachrichtentechnik, WS 29/21 LTE: Der Mobilfunk der Zukunft SC-FDMA and LTE Uplink Physical Layer Design Burcu Hanta 2. December 29 Abstract The Long Term Evolution (LTE)
1G to 4G. Overview. Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre
1G to 4G Overview Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre Mobile Networks differentiated from each other by the word Generation 1G, 2G, 2.5G, 2.75G, 3G milestones
LTE Evolution for Cellular IoT Ericsson & NSN
LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering
Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction...
Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... 7 Fixed-WiMAX based on the IEEE 802.16-2004... 8 Mobile
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
Cloud RAN. ericsson White paper Uen 284 23-3271 September 2015
ericsson White paper Uen 284 23-3271 September 2015 Cloud RAN the benefits of virtualization, centralization and coordination Mobile networks are evolving quickly in terms of coverage, capacity and new
CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014
CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC4700 Telecommunications Engineering Winter 2014 Term Exam 13 February 2014 Duration: 75 minutes Instructions: 1. Closed-book exam
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
Mobile Broadband driven by Convergence of IP and LTE technologies
Mobile Broadband driven by Convergence of IP and LTE technologies Arpit Joshipura VP, GF Strategy & Market Development Ericsson Silicon Valley Ali Khayrallah Director of Research Ericsson North America
GSM Network and Services
GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice
Should Pakistan Leapfrog the Developed World in Broadband? By: Syed Ismail Shah Iqra University Islamabad Campus E-mail: [email protected].
Should Pakistan Leapfrog the Developed World in Broadband? By: Syed Ismail Shah Iqra University Islamabad Campus E-mail: [email protected] Should Pakistan Leapfrog the Developed World in Broadband?
Measuring ACLR Performance in LTE Transmitters. Application Note
Measuring ACLR Performance in LTE Transmitters Application Note Introduction As wireless service providers push for more bandwidth to deliver IP services to more users, LTE has emerged as a next-generation
App coverage. ericsson White paper Uen 284 23-3212 Rev B August 2015
ericsson White paper Uen 284 23-3212 Rev B August 2015 App coverage effectively relating network performance to user experience Mobile broadband networks, smart devices and apps bring significant benefits
Wireless Broadband Access
Wireless Broadband Access (Brought to you by RMRoberts.com) Mobile wireless broadband is a term used to describe wireless connections based on mobile phone technology. Broadband is an electronics term
Downlink resource allocation algorithm: Quality of Service
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise
Initial field performance measurements of LTE
The next major step in mobile radio communications 22 Initial field performance measurements of LTE Researchers have measured the performance of LTE in the field using different drive routes and radio
Wireless Broadband Network Design Best Practices
Wireless Broadband Network Design Best Practices Myths and Truths Leonhard Korowajczuk [email protected] 10/16/2013 Copyright CelPlan Technologies Inc. 1 CelPlan Technologies Provides Planning, Design
The WiMAX 802.16e Advantage
The WiMAX 802.16e Advantage An analysis of WiFi 802.11 a/b/g/n and WiMAX 802.16e technologies for license-exempt, outdoor broadband wireless applications. White Paper 2 Objective WiMAX and WiFi are technologies
Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container
Mobile Communications Chapter 6: Broadcast Systems Unidirectional distribution systems DAB DVB architecture Container High-speed Internet Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC
Analysis of Immunity by RF Wireless Communication Signals
64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology
Upcoming Enhancements to LTE: R9 R10 R11!
Upcoming Enhancements to LTE: R9 R10 R11! Jayant Kulkarni Award Solutions [email protected] Award Solutions Dallas-based wireless training and consulting company Privately held company founded
Lecture 1. Introduction to Wireless Communications 1
896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular
NEW WORLD TELECOMMUNICATIONS LIMITED. 2 nd Trial Test Report on 3.5GHz Broadband Wireless Access Technology
NEW WORLD TELECOMMUNICATIONS LIMITED 2 nd Trial Test Report on 3.5GHz Broadband Wireless Access Technology Issue Number: 01 Issue Date: 20 April 2006 New World Telecommunications Ltd Page 1 of 9 Issue
Heterogeneous LTE Networks and Inter-Cell Interference Coordination
Heterogeneous LTE Networks and Inter-Cell Interference Coordination Volker Pauli, Juan Diego Naranjo, Eiko Seidel Nomor Research GmbH, Munich, Germany December, 2010 Summary Initial deployments of LTE
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
3GPP Long-Term Evolution / System Architecture Evolution Overview
3GPP Long-Term Evolution / System Architecture Evolution Overview September 2006 Ulrich Barth Outline 2 3G-LTE Introduction Motivation Workplan Requirements LTE air-interface LTE Architecture SAE Architecture
