Interest rate Derivatives

Size: px
Start display at page:

Download "Interest rate Derivatives"

Transcription

1 Interest rate Derivatives There is a wide variety of interest rate options available. The most widely offered are interest rate caps and floors. Increasingly we also see swaptions offered. This note will deal with the valuation of these interest rate options. However, we have included a quick review of spot and forward rates and a brief discussion of the valuation of options with delayed payments. Both of these things play a major role in the valuation of interest rate derivatives. Spot rates and forward interest rates It is fairly common to think of a single interest rate. However, there are many interest rates and as such, it is necessary to be specific. First, in everything that follows in this note we will be referring to the risk-free rate. In addition, for interest rates it is necessary to specify the time period covered by that rate. Spot rates are interest rates that are used to discount cash received at one point in the future back to today. For example, a sixmonth spot rate, i 6 would be the appropriate rate to discount any risk-free payoff back to today. Hence, the term spot rate is the rate that begins today and ends at some future point in time. We use the term forward rates to refer to interest rates that apply for specific time periods in the future. For example, there are interest rates that apply specifically for the time period beginning six months from now and ending at nine months from now. This would be the forward rate 1 for months 6 through 9, f. 6 9 The relationship between the 9-month spot, 6-month spot rate and the forward rate for months 6 through 9 is as follows: e i 9 i f 9 e See Exhibit 1 for an example of forward and spot rates. We will use these rates as the market for interest rates through out the rest of this note. e 3 1 This forward rate could also be referred to as the 3-month rate 6 months forward. This is a mouth full but it is the most common verbiage used concerning forward rates. For the purpose of this note, we will use the above descriptors to refer to forward rates for specific periods. This note was prepared by Professor Robert M. Conroy. Copyright 2003 by the University of Virginia Darden School Foundation, Charlottesville, VA. All rights reserved. To order copies, send an to dardencases@virginia.edu. No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form or by any means electronic, mechanical, photocopying, recording, or otherwise without the permission of the Darden School Foundation.

2 -2- Options with delayed payment Before we actually deal with interest rate options, we need to address the issue of options with delayed payment. Consider a simple example. Suppose we have a European Call option on a share of stock (no dividends) with a maturity of 9-months and an exercise price of $50. The current share price is $52, and the volatility estimate is.30. The payoff at the maturity of this option depends on the stock price at the end of month 9, S 9, and the payoff would be Payoff ( S X 0) Max( 50,0) Max S 9, 9 and we would value the option using the Black-Scholes model with the following inputs: Call UAV Maturity $6.57 X R f σ $52 9months $ %.30 where the risk-free rate is the 9-month spot rate from Exhibit 1. Now, we change the timing of the payoff on the option. Instead of the payoff being determined and paid at the end of month 9, let us set the terms of the option such that the payoff is determined at the end of month 9 but the actual payment is made at the end of month. If we assume that interest rates are constant, then the value of the payoff received at the end of month determined at the end of month 9 is the present value discounted for the 3 months of delay or ( S X ) 3 3 9f 9f Payoff Max 9 e,0 e. We can pull the discounting factor outside of the Max function and the payoff becomes Payoff e 3 9f Max [( S X ),0] 9. Since the discounting factor is outside of the Max function, we can value that payoff and then discount that option value for the delay. Hence the value of the option is delayed payment is

3 -3- Call e 3 9 f UAV Maturity X R f σ $52 9months $50 e 1.24% f $6.57 e $6.57 $6.541 This is a nice result. It makes it easy to value options with delayed payments. The key is to value the option assuming that payoff is realized and paid at the maturity of the option. Then we account for the delay by discounting that option value for the delay using the forward rate applicable for the delay time period. Options on Bonds In principal we should not be able to value European call options on Bonds. The Black- Scholes model specifically assumes that total volatility over some time period is an increasing function of time 2. Bonds really have a very different price process. Interest rate changes drive changes in Bond prices. While interest rates might get more volatile as the further out in time we go, bond price sensitivity decreases the further out in time that we go. Sensitivity decreases because Duration 3 decreases, as the bond gets closer to a maturity. In fact, if we ignore default risk, bond price risk goes to zero as the bond reaches maturity. The price at that point will be equal to the face value. One solution is to think differently about bond price volatility. If we are willing to assume that at any point in time that bond prices are log normally distributed, then we can assume that there is some total volatility of the bond price at the option maturity time T, σ T. Given this we can estimate a Black-Scholes model volatility, σ bs, as σt σ bs T Let us look at a specific example. Suppose we had a 5-year, 4% coupon bond with semiannual coupon payments. The current cash bond price 4 is per 100. Consider a call option on this bond with an exercise price 5 of $100 and 21 months to maturity. We estimate that the volatility of the bond price 21 months forward is σ T.08. Note that this is an estimate of the price volatility of a bond that has a maturity of not 5 years but 2 This means that the longer the time period the more variable the possible outcomes. 3 Modified duration is a measure of bond price sensitivity. The basic relationship is % Pr ice Duration ( yield ). As duration decreases, the %?price decreases for any given change in yield. 4 The cash price does include accrued interest. The quoted price excludes accrued interest. However, in this case, where it is exactly 6 months to the next dividend the accrued interest is 0 and the cash and quoted prices are the same. 5 In this simple case, the exercise price is the quoted price, which does not include accrued interest. If the exercise price were the cash price, the exercise price would be $100 plus 3 months of accrued interest, $1 ($100x.04x3/$1.00).

4 years. As such, the volatility for the maturity of the option (21 months or 1.75 years) that we would use in the Black-Scholes model is σt.08 σ bs.0605 T 1.75 The last necessary piece is the Underlying Asset Value or UAV. In order to deal with this we appeal to our dividend analogy once again. If I hold the bond, I get the coupon payments. The option holder does not get the coupon payments. Hence, the UAV for the option is the bond price less the present value of the coupon payments or using the rates in Exhibit 1, UAV $ $2 e UAV $ $2 e. i6.5 i1 i $2 e $2e $2e $2e $ Call UAV Maturity $3.41 X rf ( i21 ) σ bs $ months $ %.0605 If the exercise price had been in terms of the cash price ($101$100 + accrued interest 6 ), the option value would have been Call UAV Maturity $2.936 X rf ( i21) σ bs $ months $ %.0605 Bond Price Volatility and Yield volatility While it seems easy to say that we need the bond price volatility, σ T, it is much more difficult to actually estimate it. Since each bond is unique 7 and the maturity of a particular bond decreases over time, we cannot look at a series of bond prices and calculate a volatility of the bond price with a specific maturity. One way around this problem is to use Modified Duration 8, which is bond specific and the volatility of yields, which are not necessarily bond specific. 6 See footnote 4. 7 Each bond is unique in that the coupon rates are usually bond specific as is the maturity. 8 See Darden technical note, Duration and Convexity (UVA -F-38) for a fuller discussion of Modified Duration.

5 -5- The basic relationship between bond prices and Modified Duration is % Pr ice ModDur Yield If we modify this slightly we can get the following: Yield % Pr ice ModDur Yield Yield % Pr ice ModDur Yield % Yield If we calculate the standard deviation of the %? of the above 9, we get the bond price volatility as a function of yield volatility. (% Pr ice) ModDur Yield σ (% Yield ) σ. Yield volatilities can be calculated directly from yields. Exhibit 2 lists the yields on US Treasury bonds with maturities of 3 years, 5 years, 7 years and 10 years. Volatility for each of these yields is also shown. Not surprisingly, shorter-term yields are more volatile than long-term yields. Note that the way we calculated the yield volatility is the same as we would have calculated the volatility on stock. As such, we can use this as a Black-Scholes volatility. Let us use the same bond listed above to estimate the price volatility based on the forward and spot rates in Exhibit 1 and the yield volatilities in Exhibit 2. For both the Modified Duration and the Yield, we need to calculate these for a bond 1.75 years from today with a maturity of 3.25 years. We need the duration and the yield for the underlying bond as of the maturity of the option. Exhibit 3 shows the calculation of the bond price, yield to maturity and modified duration for the bond as of today given the forward and spot rates in Exhibit 1. Exhibit 4 shows the forward bond price, forward yield to maturity and forward modified duration for the same bond forward 1.75 years to coincide with the maturity of the option. This is the relevant data for calculating the Black-Scholes bond price volatility. Using the data from Exhibit 4 and the yield volatility of the 3-year maturity 10, we get a volatility of σ (% Pr ice) ModDur Yield σ (% Yield ) This is the volatility estimate that we would use in our Black-Scholes model and given this volatility, σ bs , we would price a European call option on a 4%, 5 year maturity bond with a current value of $ , an exercise price of $100 (quoted price), a maturity of 21 months (1.75 years), and interest rates as shown in Exhibit 1 as, 9 Remember the definition of volatility is that it is the standard deviation of the percentage change in the underlying asset. 10 This is the time closest to the remaining time on the bond at the maturity of the option.

6 -6- UAV $ $2 e UAV $ $2 e. i6.5 i1 i $2 e $2e $2e $2e $ Call UAV Maturity $3.33 X r f ( i21) σ bs $ months $ %.059 Interest Rate Caps and Floors Interest rate caps and floors are very popular vehicles used to modify interest rate risk. Often a firm will issue a floating rate note and at some future date decide to limit its exposure. Interest rate caps and floors are options designed to deal with this. Let s look at a specific example. Interest Rate Caps Today s date is December 31 st, The maturity date of the cap is in 6 months, June 30 th, If the 3-month LIBOR rate on June 30 th is greater than 1.50%, the cap pays the holder 3 months worth of interest on $1,000,000 based on the interest rate differential between the 3-month LIBOR rate on June 30 th, 2004 and 1.50%. If the 3-month LIBOR 6/30 rate on June 30 th is less than 1.50%, the cap expires worthless. An additional feature of this cap is that while the payoff is determined on June 30 th the actual payment is made 3 months later on September 30 th, See table below for summary of payoff structure. Payoff Condition at maturity 6/30/04 Payoff determined 6/30/04 but paid 9/30/04 If 3-month LIBOR 6/30 > 1.50% (3-mon. LIBOR 6/ %) x $1,000,000 x.25 If 3-month LIBOR 6/30 < 1.50% $0 In more traditional option terms the payoff would be Payoff Max 3 6f9 [( LIBOR X ) $1,000,000.25,0] e 6/ 30 Here we have incorporated the three-month delay in the payment. We can value this using the Black-Scholes model. From our discussion on call options with delayed payments, we can value the cap as a straight option and then discount the value by the time of the payment delay. For the straight option part, the key inputs are the UAV and the volatility. In this case, the underlying asset is a 3-month LIBOR LIBOR $ 1,000, We can find the value payment on June 30 th, 2004 equal to [( ) ] T

7 -7- of this payment today, by hedging the LIBOR payment with the sell-side of a Eurodollar futures contract that matures on June 30 th, 2004 and lock in the futures rate. Once the rate is locked in, we can value it by discounting it at the risk-free rate 11. From Exhibit 5, the rate we can lock in is the Eurodollar futures rate for the contract with a maturity of June 2004, F 6/ %. This is the futures rate for the time period June to September and is essentially the same as the forward LIBOR rate for this time period. The value of this today is the present value at the 6-month spot rate, 1.% from Exhibit 1. Note that there is a slight difference between the Eurodollar futures rates shown in Exhibit 5 and the US Treasury forward rates in Exhibit 1. Eurodollar futures are slightly higher. UAV F 6/ 30 e UAV 1.52% e i.5 UAV $250,000 UAV $3, $1,000, $1,000, Volatility is a bit more problematic. Exhibit 6 shows Eurodollar futures rates for different contract maturities over time. For example, the column labeled /03 is the Eurodollar futures contract with a maturity date of December, The first row labeled 60 months is the rate on that contract 60 months (5 years) prior to the maturity date on the contract, December The row labeled months is the rate that was quoted on the December 2003 contract twelve months prior, December Hence, as we go down each column row we have the rate that was quoted for a particular contract maturity date 60 months prior, 57 months prior, etc. If we calculate the volatility 13 of the rates across each row we have the volatility of the 3-month rate x number of months prior. Figure 1 shows the volatility estimates of the 3-month LIBOR rates x number of months prior. Here we see the usual result. Volatilities are humped. Near term futures rates have much more volatility than futures rates much further out in the future. Since the derivation of the Black-Scholes model assumed that the volatility of the underlying asset was constant, this presents a problem for valuing caps using this model. For our example, the underlying 3-month LIBOR rate starts 6 months in the future and this time period in the future decreases as we get closer to the maturity. From Figure 1 11 This is essentially the same approach we used in Valuation to value each of the hedged payments when valuing a swap. As you will see, the only major difference here is that we will use the US Treasury spot rates to discount the hedged payment. The underlying asset of a Eurodollar futures contract is an interbank US$ deposit. They are essentially risk-free but since these deposits do not have a government guarantee, they trade at a slightly higher rate. I have chosen to discount the Futures rate at the US risk-free spot rate. Sometimes you will see the LIBOR spot rate used. Generally, this does not result in a different cap value. 13 Volatility is defined as the standard deviation of the percentage changes or the natural logarithm of the price relatives. Note that since these are quarterly observations we would annualize the quarterly standard deviation by multiplying by the square root of 4.

8 -8- we also see that the volatility of the underlying 3-month LIBOR rate also decreases. In order to deal with this, most practitioners effectively cheat. They use average of the volatilities. Again for our example the volatility for the 3-month LIBOR rate 6 months in the future is about.35 but this decrease to about.31 at maturity. Looking at Figure 1 we might use an average volatility of.331 to account for the decline in volatility over the life of the cap. This seems a bit ad hoc but we do similar things every time we estimate volatility for an option. Now that we have a UAV and volatility, we can value this cap. The UAV is $3,778.75, the exercise price 14 is $3,750, time to maturity is 6 months, the risk-free rate is the 6- month spot rate from Exhibit 1, 1.%, the volatility is.331 and again from Exhibit 1, the forward rate for months 6 through 9 to account for the delayed payment is 1.48%. Call e 3 6 f9 UAV Maturity X r f σ $3, months $3,750 e 1.% f $375. e $375. $ We could have valued the cap using the rates and then multiplied the result by the dollar amounts involved. With rates, the UAV would be UAV F 6/ 30 e i % e % Call e 3 6f9 UAV Maturity X rf σ months.015 e 1.% f e Call $1,000, $ This is the same as the dollar amount approach. Most often you see the cap valued and quoted with rates and then valued based on the dollar amount involved. Floors If interest rate caps are calls then floors are puts. Floors pay the holder the difference between the LIBOR rate and the exercise price when LIBOR is less than the exercise price. These are puts and we value them using put-call parity. 14 X 1.50% $1,000,

9 -9- UAV + Put Call + X e Put Call + X e r T f r T UAV For example, a floor with the same parameters would have a value of f Put Call + X e T Put Floor $ Caps and Caplets r f UAV $ $3,750 e.01.5 $3, In the example above, we dealt with a single option that is termed a caplet. Usually a cap is a series of caplets with the same exercise price but different maturity dates. Suppose that we use the example above but now the cap is a series of 4 caplets that mature on the following dates: Mar. 31 st, 2004 Jun. 30 th, 2004 Sept. 30 th, 2004 Dec. 31 st, 2004 The UAV and other inputs for each caplet would be Maturity Mar. 31 st, 2004 Jun. 30 th, 2004 Sept. 30 th, 2004 Dec. 31 st, 2004 Maturity (T yrs.) Futures rate (F) (Exhibit 5) 1.26% 1.52% 1.74% 1.98% Spot rate ( i T ) (Exhibit 1) 1.00% 1.% 1.24% 1.36% i t T UAV F e % % % % Exercise Price 1.50% 1.50% 1.50% 1.50% Volatility???? R f (spot rate) 1.00% 1.% 1.24% 1.36% Call Value???? Payment delay Delay period 3/04-6/04 6/04-9/04 9/04-/04 /04-3/05 Forward rate delay period (f) 1.24% 1.48% 1.72% 1.96% (Exhibit 1) Caplet Value???? Most of the inputs are readily available and fairly well defined. However, as is usually the case, the volatility estimate is the most problematical. The non constant volatility shown in figure 1 presents a real challenge in valuing caps. There are two approaches that people take. The first is to use an average or spot volatility which matches the

10 -10- maturity of each caplet. The other is to use an average of the average and use the same flat volatility for each of the caplets. Figure 2 shows the individual volatilities, the spot volatilities (average) and the flat volatilities for data in exhibit 6. If we use the spot volatilities from Figure 2 to value the caplets we would get: Maturity Mar. 31 st, 2004 Jun. 30 th, 2004 Sept. 30 th, 2004 Dec. 31 st, 2004 Maturity (T yrs.) Futures rate (F) (Exhibit 5) 1.26% 1.52% 1.74% 1.98% Spot rate ( i T ) (Exhibit 1) 1.00% 1.% 1.24% 1.36% i t T UAV F e % % % % Exercise Price 1.50% 1.50% 1.50% 1.50% Volatility R f (spot rate) 1.00% 1.% 1.24% 1.36% Call Value Payment delay Delay period 3/04-6/04 6/04-9/04 9/04-/04 /04-3/05 Forward rate delay period (f) 1.24% 1.48% 1.72% 1.96% (Exhibit 1) Caplet Value Caplet $ Value (x $250,000) $41.66 $ $ $1, Cap Value (sum of caplets) $2, The value 15 of the cap (4 caplets) is $2, Another alternative would have been to use a flat volatility. In this case, we would use the same volatility for all of the caplets. For example, if we used a flat volatility of.32176, the value of the cap would have been $2, Firms vary in their approach. Some use spot volatilities and others use flat volatilities.

11 -11- Swaption A swap is an exchange of payments. Swaps exist in many forms. You can see a range of swaps from plain-vanilla interest rates swaps, where there is a simple exchange of fixed rate payments for floating rate payments based on a nominal amount, to more complicated swaps, which offer exchange of returns on commodities in exchange for returns on exotic stock indexes. In either case, these contracts have value. Let us examine the valuation of a plain-vanilla interest rate swap 16. Consider a 3-year swap where you receive a fixed rate of 2.328% and pay 3-month LIBOR. Today is December 31, 2003 and the first payment is due March 31 st, This means that the first fixed payment will be F $1,000, / 04 $5, and the floating Rate LIBOR payment made on March 31 st, 2004 will be based on the current 3-month spot LIBOR rate of 1.02% and would be.0102 L 3 / 04 $1,000,000 $2, The June LIBOR payment would be based on the 3-month LIBOR rate, LIBOR 3/04, as of March 31 st, 2004 and the payment would be L 6/ 04 LIBOR 3/ 04 $1,000, The value of the fixed payment is just the present value of the payments discounted 17 at the LIBOR spot rates. The value of the LIBOR payments is determined by assuming that the LIBOR payments are hedged using Eurodollar futures contracts and locking in the Eurodollar futures rate. These hedged payments are discounted using the LIBOR spot rates. Exhibit 7 shows the Eurodollar futures rates from Exhibit 5 and the corresponding LIBOR spot rates derived 18 from those rates. We use the Eurodollar futures to hedge and 16 For a fuller explanation, see Valuation of Plain-Vanilla Interest Rate Swaps (UVA -F-11). 17 In valuing swaps, the convention is to value the swaps using the LIBOR spot rates derived from LIBOR Eurodollar futures contracts. 18 The relationship between LIBOR spot and the Futures rates is as follows: t t 1 1 spott spot t 1 + t ft and solving for the Libor spot rates in Exhibit 7 yields,

12 -- this results in the hedged payments shown in Exhibit 8. These payments are discounted at the LIBOR spot rate and the value of the LIBOR payments is then $67,740. Also included in Exhibit 8 are the fixed payments, and discounting these at the LIBOR spot rates yields a value of $67,740. The values of the LIBOR payments and the Fixed payments are equal. This is usually the result when a swap is first initiated or priced. A swaption gives the holder the right to enter into a swap at a set fixed rate at some future date. For example, consider a swaption that gave the holder the right one year from today to enter into a 3-year swap to pay fixed of 2.328% and receive LIBOR on a notional amount of $1,000,000. It is essentially the same as the swap above except that the start date of the swap is December 31 st, This swaption will have value at maturity if at maturity, December 31 st, 2004, the 3-year swap rate is higher than 2.328%. Suppose that the 3-year swap rate at maturity is 3.00%. The holder of the swaption would realize the value of the swaption by exercising the swaption and paying 2.328% and receiving LIBOR. At the same time, the holder would enter into a new swap agreement to pay LIBOR and receive the fixed rate of 3.00%. This would result in a fixed payment of 0.672% (3.00% %0.672%), every 3 months for the next three years. The key to valuing a swaption is to look at the payoff and realize that this is a series of call options that pay off the difference between the 3-year swap rate on December 31 st, 2004 and the exercise fixed rate. All mature on December 31 st, 2004 but one has a delay of 3 months (pays off March 31 st, 2005), another has a delay of 6 months (pays off June 30 th, 2005), and so on. Hence, the key is to value the basic call option and incorporate the payoff delay in each call. We will use the Black-Scholes model to value the basic call. Our approach will be to do everything in terms of rates. As usual, the inputs are Underlying Asset Value, Exercise Price, Time to Maturity, Risk-free rate, and volatility. The easy inputs are X2.328%, T1 year, and from Exhibit 1, r f 1.36%. The exercise price, time to maturity and riskfree rate are fairly straight forward. The UAV is a bit more difficult. What we need here is the one year forward swap rate. This is the rate quoted today for a 3-year swap that begins one year from today. Exhibit 9 shows the calculation of the one-year forward 3- year swap rate. Based on the current Futures rates and the implied LIBOR spot rates, the rate today that should be quoted is 3.284%. Using the same analogy as we did for the interest rate caps, the UAV for the swaption should be UAV 3.284% e i months % e % swaption. spot t spot t 1 1 t t f t 1 1 t 1 4

13 -13- The other difficult input is volatility. Figure 3 shows the 1-year, 3-year and 5-year interest rate swap rates for the last 5 years. There has been a great deal of volatility. This is reflected in the volatilities calculated from this data. The 1-yr swap rate volatility is.277, the 3-year swap rate volatility is.350 and the 5-year is.298. Since the underlying asset is a 3-year swap rate 19, we can use the.350. With this, we can value the basic call as follows: Call UAV Maturity X rf σ % months 3.00% %.35 The $ value of the basic call option would be $1, Now if the payment differentials were all paid at the maturity of the option, December 2004, the value of the swaption would be just times the basic call option value. However, while the payment differential is determined on December 2004, each of the twelve payments is made at some future date. Hence, the value of the swaption is actually the value of a series of these basic call options each with a different delayed payment. The underlying swap involves payments. The first begins March 2005, and each payment has a different delay. Exhibit 10 shows the series of swap payment dates and the delay relative to December Each payment date contributes an amount equal to the basic call value discounted for the delay. For example, the September 2005 payment date is the basic call value of $1, discounted back for 9 months to December The discount rate is based on the forward rates 20 from December 04 to March 05, March 05 to June 05 and June 05 to September 05. If we do this for each payment, the value of the swaption is $16, Summary In this note we have discussed the valuation of options on bonds, interest rates and swaps. In each case, there are certain adaptations that are required but the basic process remains the same. 19 The underlying asset is actually the one-year forward 3-year swap rate. From our discussion of interest rate caps, we know that the volatility of the spot rate, like the 3-year swap rate, can be different than the volatility of the 3-year swap rate one year forward. For our purposes here, we will ignore this distinction. 20 The forward rates are the risk-free continuously compounded rates from Exhibit 1.

14 -14- Forward End of month Exhibit 1. Forward Rates and Spot Rates (US Treasury) (continuous compounded) Spot Rates From To Forward rate Time (months) time (years) as of the end of Spot rate Dec-03 Mar % Mar % Mar-04 Jun % Jun-04 1.% Jun-04 Sep % Sep % Sep-04 Dec % 1.00 Dec % Dec-04 Mar % Mar % Mar-05 Jun % Jun % Jun-05 Sep % Sep % Sep-05 Dec % Dec % Dec-05 Mar % Mar % Mar-06 Jun % Jun % Jun-06 Sep % Sep % Sep-06 Dec % Dec % Dec-06 Mar % Mar % Mar-07 Jun-07 4.% Jun % Jun-07 Sep % Sep % Sep-07 Dec % Dec % Dec-07 Mar % Mar % Mar-08 Jun % Jun % Jun-08 Sep % Sep % Sep-08 Dec % Dec % Dec-08 Mar % Mar % Mar-09 Jun % Jun % Jun-09 Sep % Sep % Sep-09 Dec % Dec % Dec-09 Mar % Mar % Mar-10 Jun % Jun % Jun-10 Sep % Sep-10 4.% Sep-10 Dec % Dec %

15 -15- Exhibit 2. Yield Volatilities US Treasury Constant Maturity 3-year 5-year 7-year 10-year Yield (%) %? Yield (%) %? Yield (%) %? Yield (%) %? Jan Feb (0.0929) 4.78 (0.0421) 5.01 (0.0291) 5.1 (0.0039) Mar (0.0240) 4.67 (0.0230) 4.88 (0.0259) 4.87 (0.0451) Apr (0.0246) 4.66 (0.0021) May Jun (0.0022) Jul (0.0045) 4.88 (0.01) 5.21 (0.0057) 5.37 (0.0037) Aug (0.0850) 4.62 (0.0533) 4.9 (0.0595) 5.11 (0.0484) Sep (0.0440) 4.46 (0.0346) 4.72 (0.0367) 4.85 (0.0509) Oct (0.1867) 3.9 (0.56) 4.33 (0.0826) 4.55 (0.0619) Nov (0.0849) 3.66 (0.0615) 4.01 (0.0739) 4.24 (0.0681) Dec Jan Feb (0.0023) 4.78 (0.04) 5.02 (0.0099) Mar (0.0080) Apr May (0.1189) 4.49 (0.0892) 4.86 (0.0813) 5.08 (0.0662) Jun (0.0159) 4.36 (0.0290) 4.75 (0.0226) 5.06 (0.0039) Jul (0.0995) 4.08 (0.0642) 4.54 (0.0442) 4.85 (0.0415) Aug (0.2239) 3.46 (0.1520) 4.04 (0.1101) 4.47 (0.0784) Sep (0.0385) 3.22 (0.0694) 3.78 (0.0644) 4.14 (0.0738) Oct (0.1560) 2.75 (0.1460) 3.34 (0.1164) 3.72 (0.1014) Nov Dec Jan (0.2072) 2.78 (0.1601) 3.36 (0.1362) 3.83 (0.0924) Feb Mar (0.90) 2.66 (0.79) 3.21 (0.1034) 3.68 (0.0823) Apr May Jun (0.1658) 2.37 (0.1596) 2.94 (0.76) 3.43 (0.1160) Jul Aug Sep (0.0025) Oct (0.2311) 2.84 (0.1792) 3.4 (0.1500) 3.96 (0.1101) Nov Dec Monthly Yield Volatities Annual Yield Volatities

16 -16- Exhibit 3 Price, y-t-m and Modified Duration for 5 year 4% coupon bond time beg. time end Forward rate time (years) as of the end of Spot rate Bond PV* PV** Cash Flow Cash Flow CC y-t-m Duration Dec-03 Mar % 0.25 Mar % Mar-04 Jun % 0.50 Jun-04 1.% Jun-04 Sep % 0.75 Sep % Sep-04 Dec % 1.00 Dec % Dec-04 Mar % 1.25 Mar % Mar-05 Jun % 1.50 Jun % Jun-05 Sep % 1.75 Sep % Sep-05 Dec % 2.00 Dec % Dec-05 Mar % 2.25 Mar % Mar-06 Jun % 2.50 Jun % Jun-06 Sep % 2.75 Sep % Sep-06 Dec % 3.00 Dec % Dec-06 Mar % 3.25 Mar % Mar-07 Jun-07 4.% 3.50 Jun % Jun-07 Sep % 3.75 Sep % Sep-07 Dec % 4.00 Dec % Dec-07 Mar % 4.25 Mar % Mar-08 Jun % 4.50 Jun % Jun-08 Sep % 4.75 Sep % Sep-08 Dec % 5.00 Dec % *This present value (PV) is based on continuous compounding (CC). **This present value is based on a semi-annual y-t-m. Bond Price Y-T-M 3.228% Modified Duration (Yrs) 4.45

17 -17- time beg. time end Exhibit 4 Forward Price, Forward y-t-m and Forward Modified Duration for 5 year 4% coupon bond Bond PV PV Forward rate time (years) as of the end of Spot rate Cash Flow Dec-03 Mar % 0.25 Mar % Mar-04 Jun % 0.50 Jun-04 1.% 2 Jun-04 Sep % 0.75 Sep % Sep-04 Dec % 1.00 Dec % 2 Dec-04 Mar % 1.25 Mar % Mar-05 Jun % 1.50 Jun % 2 Jun-05 Sep % 1.75 Sep % Time forward spot Cash Flow CC y-t-m Duration Sep-05 Dec % 2.00 Dec % % Dec-05 Mar % 2.25 Mar % % Mar-06 Jun % 2.50 Jun % % Jun-06 Sep % 2.75 Sep % % Sep-06 Dec % 3.00 Dec % % Dec-06 Mar % 3.25 Mar % % Mar-07 Jun-07 4.% 3.50 Jun % % Jun-07 Sep % 3.75 Sep % % Sep-07 Dec % 4.00 Dec % % Dec-07 Mar % 4.25 Mar % % Mar-08 Jun % 4.50 Jun % % Jun-08 Sep % 4.75 Sep % % Sep-08 Dec % 5.00 Dec % % Forward Bond Price Forward Y-T-M 4.13% Forward Modified Duration (Yrs) 2.99

18 -18- Exhibit 5. Eurodollar Futures Maturity Futures rate Mar % Jun % Sep % Dec % Mar % Jun % Sep % Dec % Mar % Jun % Sep % Dec % Mar % Jun % Sep % Dec % Mar-08 5.% Jun % Sep % Dec %

19 -19- Exhibit 6. 3-month Eurodollar Futures Rates Months Maturity date of Eurodollar Futures contract (mon/year) Forward /03 09/03 06/03 03/03 /02 09/02 06/02 03/02 /01 09/01 06/01 03/01 /00 09/00 06/00 03/00 /99 09/99 06/99 03/ Spot

20 -20- Forward End of month Exhibit 7. Eurodollar Futures Rates and LIBOR Spot Rates (Quarterly compounded) Spot Rates From To Forward rate Time (months) time (years) as of the end of Spot rate Mar % Mar-04 Jun % Jun % Jun-04 Sep % Sep % Sep-04 Dec % 1.00 Dec % Dec-04 Mar % Mar % Mar-05 Jun % Jun % Jun-05 Sep % Sep % Sep-05 Dec % Dec % Dec-05 Mar % Mar % Mar-06 Jun % Jun % Jun-06 Sep % Sep % Sep-06 Dec % Dec % Dec-06 Mar % Mar % Mar-07 Jun % Jun % Jun-07 Sep % Sep % Sep-07 Dec % Dec % Dec-07 Mar % Mar % Mar-08 Jun-08 5.% Jun % Jun-08 Sep % Sep % Sep-08 Dec % Dec %

21 -21- Exhibit 8. Swap Valuation Fixed Rate 2.328% time beg. as of the end of PV Hedged LIBOR ('000's) Fixed Payments ('000's) PV Fixed Payment ('000's) time end Future rate time (Q) Spot rate Hedged LIBOR payments ('000's) Mar-04 1 Mar % $ 2.55 $ 2.54 $ 5.82 $ 5.81 Mar-04 Jun % 2 Jun % 3.15 $ 3.13 $ 5.82 $ 5.79 Jun-04 Sep % 3 Sep % Sep-04 Dec % 4 Dec % Dec-04 Mar % 5 Mar % Mar-05 Jun % 6 Jun % Jun-05 Sep % 7 Sep % Sep-05 Dec % 8 Dec % Dec-05 Mar % 9 Mar % Mar-06 Jun % 10 Jun % Jun-06 Sep % 11 Sep % Sep-06 Dec % Dec % Dec-06 Mar % 13 Mar % Mar-07 Jun % 14 Jun % Jun-07 Sep % 15 Sep % Sep-07 Dec % 16 Dec % Dec-07 Mar % 17 Mar % Mar-08 Jun-08 5.% 18 Jun % Jun-08 Sep % 19 Sep % Sep-08 Dec % 20 Dec % Total Present Value as of Dec. 31, 2003 ('000's) $ $ 67.74

22 -22- Exhibit 9. Forward Swap Rate Forward Swap rate 3.284% Hedged LIBOR payments ('000's) Forward Spot Rate discount to /2004 PV Hedged LIBOR ('000's) Fixed Payments ('000's) PV Fixed Payment ('000's) time beg. time end Future rate time (Q) as of the end of Spot rate Mar-04 1 Mar % Mar-04 Jun % 2 Jun % Jun-04 Sep % 3 Sep % Sep-04 Dec % 4 Dec % Dec-04 Mar % 5 Mar % % Mar-05 Jun % 6 Jun % % Jun-05 Sep % 7 Sep % % Sep-05 Dec % 8 Dec % % Dec-05 Mar % 9 Mar % % Mar-06 Jun % 10 Jun % % Jun-06 Sep % 11 Sep % % Sep-06 Dec % Dec % % Dec-06 Mar % 13 Mar % % Mar-07 Jun % 14 Jun % % Jun-07 Sep % 15 Sep % % Sep-07 Dec % 16 Dec % % Dec-07 Mar % 17 Mar % Mar-08 Jun-08 5.% 18 Jun % Jun-08 Sep % 19 Sep % Sep-08 Dec % 20 Dec % Total Present Value as of Dec. 31, 2004 ('000's) $ $ 94.09

23 -23- Exhibit 10 Valuation of Swaption Time period Forward Rates for time period Exhibit 1 Swap Payment Date Delay Discount Factor for Delay* Basic Option Value Option Value with Delay Dec 04 - Mar % Mar-05 Dec. 04-Mar $1, $ 1, Mar 05 - Jun % Jun-05 Dec. 04-Jun , , Jun 05 - Sep % Sep-05 Dec. 04-Sep , , Sep 05 - Dec % Dec-05 Dec. 04-Dec , , Dec 05 - Mar % Mar-06 Dec. 04-Mar , , Mar 06 - Jun % Jun-06 Dec. 04-Jun , , Jun 06 - Sep % Sep-06 Dec. 04-Sep , , Sep 06 - Dec % Dec-06 Dec. 04-Dec , , Dec 06 - Mar % Mar-07 Dec. 04-Mar , , Mar 07 - Jun 07 4.% Jun-07 Dec. 04-Jun , , Jun 07 - Sep % Sep-07 Dec. 04-Sep , , Sep 07 - Dec % Dec-07 Dec. 04-Dec , , Swaption Value $ 16, * DF * DF Dec04 Jun05 Dec04 Sep05 e e e e e

24 -24- Figure1. Annualized Volatility 3-month Eurodollar Futures Rates volatility Months prior

25 -25- Figure 2. Cap Volatilities volatility 0.2 volatility Spot Flat months forward

26 -26- Figure 3. Interest Swap Rates Jan Dec rate (%) yr. 3 yr. 5 yr Jan-98 Apr-98 Jul-98 Oct-98 Jan-99 Apr-99 Jul-99 Oct-99 Jan-00 Apr-00 Jul-00 Oct-00 Jan-01 Apr-01 date Jul-01 Oct-01 Jan-02 Apr-02 Jul-02 Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04

VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS

VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS Graduate School of Business Administration University of Virginia VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS Interest-rate swaps have grown tremendously over the last 10 years. With this development,

More information

Finance 350: Problem Set 6 Alternative Solutions

Finance 350: Problem Set 6 Alternative Solutions Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas

More information

550.444 Introduction to Financial Derivatives

550.444 Introduction to Financial Derivatives 550.444 Introduction to Financial Derivatives Week of October 7, 2013 Interest Rate Futures Where we are Last week: Forward & Futures Prices/Value (Chapter 5, OFOD) This week: Interest Rate Futures (Chapter

More information

Introduction to swaps

Introduction to swaps Introduction to swaps Steven C. Mann M.J. Neeley School of Business Texas Christian University incorporating ideas from Teaching interest rate and currency swaps" by Keith C. Brown (Texas-Austin) and Donald

More information

Interest Rate Futures. Chapter 6

Interest Rate Futures. Chapter 6 Interest Rate Futures Chapter 6 1 Day Count Convention The day count convention defines: The period of time to which the interest rate applies. The period of time used to calculate accrued interest (relevant

More information

Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk

Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,

More information

Options on Stock Indices, Currencies and Futures

Options on Stock Indices, Currencies and Futures Options on Stock Indices, Currencies and utures It turns out that options on stock indices, currencies and utures all have something in common. In each o these cases the holder o the option does not get

More information

24. Pricing Fixed Income Derivatives. through Black s Formula. MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture:

24. Pricing Fixed Income Derivatives. through Black s Formula. MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: 24. Pricing Fixed Income Derivatives through Black s Formula MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: John C. Hull, Options, Futures & other Derivatives (Fourth Edition),

More information

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

More information

International Master Economics and Finance

International Master Economics and Finance International Master Economics and Finance Mario Bellia bellia@unive.it Pricing Derivatives using Bloomberg Professional Service 03/2013 IRS Summary FRA Plain vanilla swap Amortizing swap Cap, Floor, Digital

More information

BINOMIAL OPTION PRICING

BINOMIAL OPTION PRICING Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing

More information

Equity-index-linked swaps

Equity-index-linked swaps Equity-index-linked swaps Equivalent to portfolios of forward contracts calling for the exchange of cash flows based on two different investment rates: a variable debt rate (e.g. 3-month LIBOR) and the

More information

2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13

2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13 Problem 1.11. A cattle farmer expects to have 12, pounds of live cattle to sell in three months. The livecattle futures contract on the Chicago Mercantile Exchange is for the delivery of 4, pounds of cattle.

More information

Interest Rate and Credit Risk Derivatives

Interest Rate and Credit Risk Derivatives Interest Rate and Credit Risk Derivatives Interest Rate and Credit Risk Derivatives Peter Ritchken Kenneth Walter Haber Professor of Finance Weatherhead School of Management Case Western Reserve University

More information

In terms of expected returns, MSFT should invest in the U.K.

In terms of expected returns, MSFT should invest in the U.K. Rauli Susmel Dept. of Finance Univ. of Houston FINA 4360 International Financial Management 12/4/02 Chapter 21 Short-term Investing MNCs have many choices for investing Home return(usd) = deposit interest

More information

The TED spread trade: illustration of the analytics using Bloomberg

The TED spread trade: illustration of the analytics using Bloomberg The TED spread trade: illustration of the analytics using Bloomberg Aaron Nematnejad January 2003 1 The views, thoughts and opinions expressed in this article represent those of the author in his individual

More information

Chapter 5 Financial Forwards and Futures

Chapter 5 Financial Forwards and Futures Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment

More information

Hedging with Futures and Options: Supplementary Material. Global Financial Management

Hedging with Futures and Options: Supplementary Material. Global Financial Management Hedging with Futures and Options: Supplementary Material Global Financial Management Fuqua School of Business Duke University 1 Hedging Stock Market Risk: S&P500 Futures Contract A futures contract on

More information

VALUATION OF FIXED INCOME SECURITIES. Presented By Sade Odunaiya Partner, Risk Management Alliance Consulting

VALUATION OF FIXED INCOME SECURITIES. Presented By Sade Odunaiya Partner, Risk Management Alliance Consulting VALUATION OF FIXED INCOME SECURITIES Presented By Sade Odunaiya Partner, Risk Management Alliance Consulting OUTLINE Introduction Valuation Principles Day Count Conventions Duration Covexity Exercises

More information

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS* COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun

More information

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS* COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun

More information

Options (1) Class 19 Financial Management, 15.414

Options (1) Class 19 Financial Management, 15.414 Options (1) Class 19 Financial Management, 15.414 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 2, 21 Sally Jameson 2 Types of questions Your company,

More information

Eurodollar Futures, and Forwards

Eurodollar Futures, and Forwards 5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging

More information

Fixed-Income Securities. Assignment

Fixed-Income Securities. Assignment FIN 472 Professor Robert B.H. Hauswald Fixed-Income Securities Kogod School of Business, AU Assignment Please be reminded that you are expected to use contemporary computer software to solve the following

More information

Variance swaps and CBOE S&P 500 variance futures

Variance swaps and CBOE S&P 500 variance futures Variance swaps and CBOE S&P 500 variance futures by Lewis Biscamp and Tim Weithers, Chicago Trading Company, LLC Over the past several years, equity-index volatility products have emerged as an asset class

More information

Option Premium = Intrinsic. Speculative Value. Value

Option Premium = Intrinsic. Speculative Value. Value Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in

More information

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015 AT&T Global Network Client for Windows Product Support Matrix January 29, 2015 Product Support Matrix Following is the Product Support Matrix for the AT&T Global Network Client. See the AT&T Global Network

More information

Introduction to Options. Derivatives

Introduction to Options. Derivatives Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

More information

FIN 472 Fixed-Income Securities Forward Rates

FIN 472 Fixed-Income Securities Forward Rates FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward

More information

Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8

Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8 Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138 Exhibit 8 Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 2 of 138 Domain Name: CELLULARVERISON.COM Updated Date: 12-dec-2007

More information

ASSET LIABILITY MANAGEMENT Significance and Basic Methods. Dr Philip Symes. Philip Symes, 2006

ASSET LIABILITY MANAGEMENT Significance and Basic Methods. Dr Philip Symes. Philip Symes, 2006 1 ASSET LIABILITY MANAGEMENT Significance and Basic Methods Dr Philip Symes Introduction 2 Asset liability management (ALM) is the management of financial assets by a company to make returns. ALM is necessary

More information

2. Determine the appropriate discount rate based on the risk of the security

2. Determine the appropriate discount rate based on the risk of the security Fixed Income Instruments III Intro to the Valuation of Debt Securities LOS 64.a Explain the steps in the bond valuation process 1. Estimate the cash flows coupons and return of principal 2. Determine the

More information

Bond Pricing Fundamentals

Bond Pricing Fundamentals Bond Pricing Fundamentals Valuation What determines the price of a bond? Contract features: coupon, face value (FV), maturity Risk-free interest rates in the economy (US treasury yield curve) Credit risk

More information

Derivatives Interest Rate Futures. Professor André Farber Solvay Brussels School of Economics and Management Université Libre de Bruxelles

Derivatives Interest Rate Futures. Professor André Farber Solvay Brussels School of Economics and Management Université Libre de Bruxelles Derivatives Interest Rate Futures Professor André Farber Solvay Brussels School of Economics and Management Université Libre de Bruxelles Interest Rate Derivatives Forward rate agreement (FRA): OTC contract

More information

CHAPTER 11 CURRENCY AND INTEREST RATE FUTURES

CHAPTER 11 CURRENCY AND INTEREST RATE FUTURES Answers to end-of-chapter exercises ARBITRAGE IN THE CURRENCY FUTURES MARKET 1. Consider the following: Spot Rate: $ 0.65/DM German 1-yr interest rate: 9% US 1-yr interest rate: 5% CHAPTER 11 CURRENCY

More information

Money Market and Debt Instruments

Money Market and Debt Instruments Prof. Alex Shapiro Lecture Notes 3 Money Market and Debt Instruments I. Readings and Suggested Practice Problems II. Bid and Ask III. Money Market IV. Long Term Credit Markets V. Additional Readings Buzz

More information

1.2 Structured notes

1.2 Structured notes 1.2 Structured notes Structured notes are financial products that appear to be fixed income instruments, but contain embedded options and do not necessarily reflect the risk of the issuing credit. Used

More information

Duration and convexity

Duration and convexity Duration and convexity Prepared by Pamela Peterson Drake, Ph.D., CFA Contents 1. Overview... 1 A. Calculating the yield on a bond... 4 B. The yield curve... 6 C. Option-like features... 8 D. Bond ratings...

More information

YIELD CURVE GENERATION

YIELD CURVE GENERATION 1 YIELD CURVE GENERATION Dr Philip Symes Agenda 2 I. INTRODUCTION II. YIELD CURVES III. TYPES OF YIELD CURVES IV. USES OF YIELD CURVES V. YIELD TO MATURITY VI. BOND PRICING & VALUATION Introduction 3 A

More information

CHAPTER 8 INTEREST RATES AND BOND VALUATION

CHAPTER 8 INTEREST RATES AND BOND VALUATION CHAPTER 8 INTEREST RATES AND BOND VALUATION Solutions to Questions and Problems 1. The price of a pure discount (zero coupon) bond is the present value of the par value. Remember, even though there are

More information

FNCE 301, Financial Management H Guy Williams, 2006

FNCE 301, Financial Management H Guy Williams, 2006 REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including

More information

Investments 320 Dr. Ahmed Y. Dashti Chapter 3 Interactive Qustions

Investments 320 Dr. Ahmed Y. Dashti Chapter 3 Interactive Qustions Investments 320 Dr. Ahmed Y. Dashti Chapter 3 Interactive Qustions 3-1. A primary asset is an initial offering sold by a business, or government, to raise funds. A) True B) False 3-2. Money market instruments

More information

Options Markets: Introduction

Options Markets: Introduction Options Markets: Introduction Chapter 20 Option Contracts call option = contract that gives the holder the right to purchase an asset at a specified price, on or before a certain date put option = contract

More information

CFA Level -2 Derivatives - I

CFA Level -2 Derivatives - I CFA Level -2 Derivatives - I EduPristine www.edupristine.com Agenda Forwards Markets and Contracts Future Markets and Contracts Option Markets and Contracts 1 Forwards Markets and Contracts 2 Pricing and

More information

Analysis One Code Desc. Transaction Amount. Fiscal Period

Analysis One Code Desc. Transaction Amount. Fiscal Period Analysis One Code Desc Transaction Amount Fiscal Period 57.63 Oct-12 12.13 Oct-12-38.90 Oct-12-773.00 Oct-12-800.00 Oct-12-187.00 Oct-12-82.00 Oct-12-82.00 Oct-12-110.00 Oct-12-1115.25 Oct-12-71.00 Oct-12-41.00

More information

Fixed Income Portfolio Management. Interest rate sensitivity, duration, and convexity

Fixed Income Portfolio Management. Interest rate sensitivity, duration, and convexity Fixed Income ortfolio Management Interest rate sensitivity, duration, and convexity assive bond portfolio management Active bond portfolio management Interest rate swaps 1 Interest rate sensitivity, duration,

More information

Swaps: complex structures

Swaps: complex structures Swaps: complex structures Complex swap structures refer to non-standard swaps whose coupons, notional, accrual and calendar used for coupon determination and payments are tailored made to serve client

More information

Bond Price Arithmetic

Bond Price Arithmetic 1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously

More information

CHAPTER 22: FUTURES MARKETS

CHAPTER 22: FUTURES MARKETS CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support

More information

Interest Rate Swaps. Key Concepts and Buzzwords. Readings Tuckman, Chapter 18. Swaps Swap Spreads Credit Risk of Swaps Uses of Swaps

Interest Rate Swaps. Key Concepts and Buzzwords. Readings Tuckman, Chapter 18. Swaps Swap Spreads Credit Risk of Swaps Uses of Swaps Interest Rate Swaps Key Concepts and Buzzwords Swaps Swap Spreads Credit Risk of Swaps Uses of Swaps Readings Tuckman, Chapter 18. Counterparty, Notional amount, Plain vanilla swap, Swap rate Interest

More information

CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS

CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS 1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries

More information

Chapter 11. Bond Pricing - 1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.

Chapter 11. Bond Pricing - 1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions. Bond Pricing - 1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is

More information

Lecture 5: Put - Call Parity

Lecture 5: Put - Call Parity Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible

More information

Options: Valuation and (No) Arbitrage

Options: Valuation and (No) Arbitrage Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

More information

2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold

2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes

More information

Lecture 12. Options Strategies

Lecture 12. Options Strategies Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same

More information

OPTION VALUATION. Topics in Corporate Finance P A R T 8. ON JULY 7, 2008, the closing stock prices for LEARNING OBJECTIVES

OPTION VALUATION. Topics in Corporate Finance P A R T 8. ON JULY 7, 2008, the closing stock prices for LEARNING OBJECTIVES LEARNING OBJECTIVES After studying this chapter, you should understand: LO1 The relationship between stock prices, call prices, and put prices using put call parity. LO2 The famous Black Scholes option

More information

Pricing and Strategy for Muni BMA Swaps

Pricing and Strategy for Muni BMA Swaps J.P. Morgan Management Municipal Strategy Note BMA Basis Swaps: Can be used to trade the relative value of Libor against short maturity tax exempt bonds. Imply future tax rates and can be used to take

More information

CHAPTER 20 Understanding Options

CHAPTER 20 Understanding Options CHAPTER 20 Understanding Options Answers to Practice Questions 1. a. The put places a floor on value of investment, i.e., less risky than buying stock. The risk reduction comes at the cost of the option

More information

Option pricing. Vinod Kothari

Option pricing. Vinod Kothari Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

More information

Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

More information

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options. Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

More information

Interest Rate and Currency Swaps

Interest Rate and Currency Swaps Interest Rate and Currency Swaps Eiteman et al., Chapter 14 Winter 2004 Bond Basics Consider the following: Zero-Coupon Zero-Coupon One-Year Implied Maturity Bond Yield Bond Price Forward Rate t r 0 (0,t)

More information

Options on Futures on US Treasuries and S&P 500

Options on Futures on US Treasuries and S&P 500 Options on Futures on US Treasuries and S&P 500 Robert Almgren June 11, 2015 Options contracts on the S&P 500 equity index futures, and on the 10-year US Treasury note, are among the most active products

More information

Creating Forward-Starting Swaps with DSFs

Creating Forward-Starting Swaps with DSFs INTEREST RATES Creating -Starting Swaps with s JULY 23, 2013 John W. Labuszewski Managing Director Research & Product Development 312-466-7469 jlab@cmegroup.com CME Group introduced its Deliverable Swap

More information

Chapter 15 OPTIONS ON MONEY MARKET FUTURES

Chapter 15 OPTIONS ON MONEY MARKET FUTURES Page 218 The information in this chapter was last updated in 1993. Since the money market evolves very rapidly, recent developments may have superseded some of the content of this chapter. Chapter 15 OPTIONS

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall

More information

Option Valuation. Chapter 21

Option Valuation. Chapter 21 Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

More information

Trading the Yield Curve. Copyright 1999-2006 Investment Analytics

Trading the Yield Curve. Copyright 1999-2006 Investment Analytics Trading the Yield Curve Copyright 1999-2006 Investment Analytics 1 Trading the Yield Curve Repos Riding the Curve Yield Spread Trades Coupon Rolls Yield Curve Steepeners & Flatteners Butterfly Trading

More information

CHAPTER 21: OPTION VALUATION

CHAPTER 21: OPTION VALUATION CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given

More information

Discussion of Discounting in Oil and Gas Property Appraisal

Discussion of Discounting in Oil and Gas Property Appraisal Discussion of Discounting in Oil and Gas Property Appraisal Because investors prefer immediate cash returns over future cash returns, investors pay less for future cashflows; i.e., they "discount" them.

More information

Learning Curve September 2005. Understanding the Z-Spread Moorad Choudhry*

Learning Curve September 2005. Understanding the Z-Spread Moorad Choudhry* Learning Curve September 2005 Understanding the Z-Spread Moorad Choudhry* A key measure of relative value of a corporate bond is its swap spread. This is the basis point spread over the interest-rate swap

More information

CHAPTER 21: OPTION VALUATION

CHAPTER 21: OPTION VALUATION CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the put-call parity theorem as follows: P = C S + PV(X) + PV(Dividends)

More information

SLVO Silver Shares Covered Call ETN

SLVO Silver Shares Covered Call ETN Filed pursuant to Rule 433 Registration Statement No. 333-180300-03 April 15, 2014 SLVO Silver Shares Covered Call ETN Credit Suisse AG, Investor Solutions April 2014 Executive Summary Credit Suisse Silver

More information

CHAPTER 12 RISK, COST OF CAPITAL, AND CAPITAL BUDGETING

CHAPTER 12 RISK, COST OF CAPITAL, AND CAPITAL BUDGETING CHAPTER 12 RISK, COST OF CAPITAL, AND CAPITAL BUDGETING Answers to Concepts Review and Critical Thinking Questions 1. No. The cost of capital depends on the risk of the project, not the source of the money.

More information

CHAPTER 22 Options and Corporate Finance

CHAPTER 22 Options and Corporate Finance CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset

More information

LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs.

LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs. LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs. 1. The minimum rate of return that an investor must receive in order to invest in a project is most likely

More information

Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017

Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017 From -JAN- To -JUN- -JAN- VIRP Page Period Period Period -JAN- 8 -JAN- 8 9 -JAN- 8 8 -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -FEB- : days

More information

Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS 8-1 a. An option is a contract which gives its holder the right to buy or sell an asset at some predetermined

More information

Comparing share-price performance of a stock

Comparing share-price performance of a stock Comparing share-price performance of a stock A How-to write-up by Pamela Peterson Drake Analysis of relative stock performance is challenging because stocks trade at different prices, indices are calculated

More information

Sensex Realized Volatility Index

Sensex Realized Volatility Index Sensex Realized Volatility Index Introduction: Volatility modelling has traditionally relied on complex econometric procedures in order to accommodate the inherent latent character of volatility. Realized

More information

Distinguishing duration from convexity

Distinguishing duration from convexity Distinguishing duration from convexity Vanguard research May 010 Executive summary. For equity investors, the perception of risk is generally straightforward: Market risk the possibility that prices may

More information

Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the

More information

How To Sell A Callable Bond

How To Sell A Callable Bond 1.1 Callable bonds A callable bond is a fixed rate bond where the issuer has the right but not the obligation to repay the face value of the security at a pre-agreed value prior to the final original maturity

More information

Introduction, Forwards and Futures

Introduction, Forwards and Futures Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

VALUE 11.125%. $100,000 2003 (=MATURITY

VALUE 11.125%. $100,000 2003 (=MATURITY NOTES H IX. How to Read Financial Bond Pages Understanding of the previously discussed interest rate measures will permit you to make sense out of the tables found in the financial sections of newspapers

More information

Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator

Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator University of Stavanger (UiS) Stavanger Masters Program Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator The number in brackets is the weight for each problem. The weights

More information

Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

More information

Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:

More information

Chapter 10 Capital Markets and the Pricing of Risk

Chapter 10 Capital Markets and the Pricing of Risk Chapter 10 Capital Markets and the Pricing of Risk 10-1. The figure below shows the one-year return distribution for RCS stock. Calculate a. The expected return. b. The standard deviation of the return.

More information

Treasury Bond Futures

Treasury Bond Futures Treasury Bond Futures Concepts and Buzzwords Basic Futures Contract Futures vs. Forward Delivery Options Reading Veronesi, Chapters 6 and 11 Tuckman, Chapter 14 Underlying asset, marking-to-market, convergence

More information

Basel Committee on Banking Supervision

Basel Committee on Banking Supervision Basel Committee on Banking Supervision Basel III: The standardised approach for measuring counterparty credit risk exposures: Frequently asked questions August 2015 This publication is available on the

More information

Chapter 21 Valuing Options

Chapter 21 Valuing Options Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher

More information

Alliance Consulting BOND YIELDS & DURATION ANALYSIS. Bond Yields & Duration Analysis Page 1

Alliance Consulting BOND YIELDS & DURATION ANALYSIS. Bond Yields & Duration Analysis Page 1 BOND YIELDS & DURATION ANALYSIS Bond Yields & Duration Analysis Page 1 COMPUTING BOND YIELDS Sources of returns on bond investments The returns from investment in bonds come from the following: 1. Periodic

More information

Introduction to Eris Exchange Interest Rate Swap Futures

Introduction to Eris Exchange Interest Rate Swap Futures Introduction to Eris Exchange Interest Rate Swap Futures Overview Eris Exchange interest rate swap futures ( Eris contracts ) have been designed to replicate the net cash flows associated with plain-vanilla,

More information

ideas from RisCura s research team

ideas from RisCura s research team ideas from RisCura s research team thinknotes april 2004 A Closer Look at Risk-adjusted Performance Measures When analysing risk, we look at the factors that may cause retirement funds to fail in meeting

More information

LOCKING IN TREASURY RATES WITH TREASURY LOCKS

LOCKING IN TREASURY RATES WITH TREASURY LOCKS LOCKING IN TREASURY RATES WITH TREASURY LOCKS Interest-rate sensitive financial decisions often involve a waiting period before they can be implemen-ted. This delay exposes institutions to the risk that

More information

Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton

More information

ANALYSIS OF FIXED INCOME SECURITIES

ANALYSIS OF FIXED INCOME SECURITIES ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its

More information