VARIABLE SELECTION IN JOINT MEANS AND VARIANCE MODELS OF THE PARETO DISTRIBUTION

Size: px
Start display at page:

Download "VARIABLE SELECTION IN JOINT MEANS AND VARIANCE MODELS OF THE PARETO DISTRIBUTION"

Transcription

1 Pa. J. Statst. 015 Vol. 31(5) VARIABLE SELECION IN JOIN MEANS AND VARIANCE MODELS OF HE PAREO DISRIBUION Yg Dog 1 Lx Sog 1 Muhammad Am 13 ad Xyog Sh 4 1 School of Mathmatcal Sccs Dala Uvrsty of chology Dala P. R. Cha. Emal: [email protected] Faculty of Scc Dala Natoalts Uvrsty Dala P. R. Cha. Emal: ygd [email protected] 3 Nuclar Isttut for Food ad Agrcultur (NIFA) 446 Pshawar Pasta. Emal: [email protected] 4 roops h Chs Popl s Lbrato Army Baoj P. R. Cha. Emal: [email protected] ABSRAC Parto Dstrbuto s a powrful law of probablty dstrbuto that accords wth cty populatos actuaral gophyscal sctfc ad othrs. Varabl slcto s vtal th modlg of statstcs ad also for Parto dstrbuto. It s a gral udrstadg that most of th xstg varabl slcto mthods ar cofd to ma xplaato varabls oly. I ths ss varous jot ma ad varac modls ar also vstgatd to rdf Parto Dstrbuto Modl. A ufd pald llhood mthod whch ca smultaously slct sgfcat varabls th ma ad varac modls s proposd. h cosstcy ad th oracl proprty of th rgulard stmators s also stablshd wth th hlp of apt mod of slctg tug paramtrs. Ft sampl prformac of th proposd varabl slcto procdur s assssd usg dffrt smulato studs. KEYWORDS Baysa formato crtro (BIC); Jot ma ad varac modls; Oracl proprty; Varabl slcto 1. INRODUCION h Parto Dstrbuto amd aftr th Itala coomst Vlfrdo Parto was proposd frst as a modl for th dstrbuto of cty populatos wth a gv ara. O of ts modr uss s to utl as modl for th dstrbuto of coms. Lomax (1954) mployd t th aalyss of busss falur data whl Balma ad D Haa (1974) prstd that t arss as a lmt dstrbuto of lgrg lftm at grat ag. Bryso (1974) dorsd ts us as a havy tald altratv to th xpotal. O th othr t s also a powrful law of th probablty dstrbuto that cocds wth actuaral gophyscal sctfc ad may othr typs of obsrvabl sgularts. Varabl slcto has th vtal sgfcac statstcal modlg. Usually vstgators troduc a larg umbr of prdctors ordr to rduc possbl modl bass but may cass th umbr of mportat covarats s rlatvly small so t s 015 Pasta Joural of Statstcs 447

2 448 Varabl slcto jot mas ad varac modls rasoabl to assum a spars modl. hrfor t s a d of varabl slcto to dtfy most mportat varabls that provds mor trprtabl modls wth bttr prdcto powr. Most xstg varabl slcto procdurs ar oly lmtd to slct th ma xplaato varabls. Nvrthlss modlg th varac wll b of drct trst ts ow rght to dtfy th sourc of varablty th obsrvatos may stuatos such as dustral qualty mprovmt xprmts ad coomtrc sctor. hus t s as mportat as that of th ma. I prst ra a colossal cosdrato s mad to jot ma ad varac modl. I ths vw Par (1966) proposd to a log lar modl for th varac paramtr ad practcd a two stag procss to stmat th Gaussa modl. Harvy (1976) dlbratd Maxmum Llhood (ML) stmato of th locato ad scal ffcts ad th succdg llhood rato tst udr th gral codtos. At (1987) projctd th ML stmato for a jot ma ad varac modls ad appld t to th commoly ctd Mtab tr data. Outlrs ar commo to b obsrvabl so thr accommodato s of trst rathr tha dlto. aylor ad Vrbyla (004) proposd jot modlg of locato ad scal paramtrs of th t-dstrbuto. Grally dstrbutos from th famly of grald lar modls ar cosdrd by L ad Nldr (1998) Smyth ad Vrbyla (1999) ad by Wag ad Zhag (009) as wll. All ths cocludd to stmat th ma ad dsprso paramtrs of th dstrbuto udr th doubl grald lar modls. Wu ad L (01) cofrrd th varabl slcto for jot ma ad dsprso modls of th vrs Gaussa dstrbuto. Wu t al. (01) dlvrd to th modl of Box-Cox trasformato about th jot ma ad varac ad do th sam o th sw-ormal dstrbuto th yar 013 as wll. Wu t al. (01) sprd us to formulat th slcto of vtal xplaatory varabls whch s th bacbo of jot ma ad varac modls of th Parto dstrbuto. h proposd modl s quppd wth ths rqurmt. h cosstcy ad th oracl proprty of th rgulard stmators wth th hlp of apt mod of slctg tug paramtrs s stablshd. Ft sampl prformac of th proposd varabl slcto procdur s assssd through smulato studs. Som of ths dvlopmts ar vry clos to th rsarch wor by Wu (014). h cotts of ths artcl ar orgad as follows. Frst th jot ma ad varac modls of th Parto Dstrbuto ar proposd Scto ad th dscuss th varabl slcto mthod for ths modls va th pald llhood fucto. Furthrmor som statstcal proprts of our varabl slcto procdur ar prstd. h tratv algorthm to comput th pald maxmum llhood stmators udr th proposd modls s prstd Scto 3. h smulato studs ar dscussd Scto 4 to llustrat th proposd mthodologs.. VARIABLE SELECION IN JOIN MEAN AND VARIANCE MODELS OF HE PAREO DISRIBUION VIA PENALIZED MAXIMUM LIKELIHOOD.1 Jot Ma ad Varac Modls of th Parto Dstrbuto Cosdr th followg jot ma ad varac modls of th Parto dstrbuto:

3 Dog Sog Am ad Sh 449 y ~ Parto a d x d E y 1 Var y 1. d 1 (.1) d whr f y d d y 1 y y y y s a vctor of dpdt rsposs ad rprsts th sampl s. ad X x1 x x ad 1 q Z 1 ar covarats whr x x xp 1. h may cota som or all of th varabls x ad othr varabls whch ar ot cludd paramtrs 1 p x. 1 p s a p 1 vctor of uow s q 1 vctor of uow paramtrs. I ths papr w procdur s proposd to rmov th ucssary xplaatory varabls from jot ma ad varac modls of th Parto dstrbuto.. Pald Maxmum Llhood May tradtoal varabl slcto mthods ca b cosdrd as a pald llhood to balac th modl bass ad stmato varacs (Fa ad L 001). y x 1. from th jot ma ad Suppos that w hav a radom sampl varac modls of th Parto dstrbuto. Lt L( ) dot th log-llhood fucto. h w hav 1 L( ) l ld 1 l y l 1 1l l y x l 1 1

4 450 Varabl slcto jot mas ad varac modls whr whr x x x 1 l x 1 x l y 1 l 1 l x l y 1 x. Smlar to Fa ad L (001) w df th pald llhood fucto as follows p q j Q ( ) L ( ) P P (.) 1j j1 1 P s a pr-spcfd palty fucto (such as LASSO ad SCAD) wth a rgularato paramtr λ whch ca b chos by a data-drv crtro such as crossvaldato (CV) grald cross-valdato (GCV Fa ad L 001; bshra 1996) ad Bays formato crtro (BIC). I ths papr w cosdr thr palty fuctos: last absolut shrag ad slcto oprator (LASSO) smoothly clppd absolut dvato (SCAD) ad CP (Wag t al. 010; Am t al. 015; Dog t al. 014 hr w usd th combato of SCAD wth Rdg). W usd BIC to choos th tug paramtrs ths papr. I ths study lt 1 s 1 p 1 q wth s p q ; w oft us th followg pald llhood fucto: whr s j1 1j Q ( ) L ( ) P j (.3) ( ) l 1 l L x l y

5 Dog Sog Am ad Sh 451 ad x. 1j j ad SCAD). P s a pr-spcfd palty fucto (such as LASSO h pald maxmum llhood stmator of dotd by ˆ maxms th fucto Q( ) (.3) xcpt for a costat trm. Wth approprat palty fuctos maxmg Q( ) wth rspct to lads to crta paramtr stmators vashg from th tal modls so that th corrspodg xplaatory varabls ar automatcally rmovd. Hc through maxmg Q( ) w achv th goal of slctg mportat varabls ad obtag th paramtr stmats smultaously..3 hortcal Proprts W cosdr th cosstcy ad asymptotc ormalty of th pald llhood stmator ths subscto. Frstly w troduc som otatos. Lt 0 dot th tru valu of. Furthrmor lt (1) () s 0 0 wthout loss (1) of gralty t s assumd that 0 cossts of all o-ro compots of 0 ad that () 0 0. I addto w suppos that th tug paramtrs hav b rarragd wth rspct to th lmts of 0. Lt s 1 b th dmso of (1) 0 a ' '' max P b P j j 1js max 0 0j 0j 1js o obta th proprty of cosstcy ad asymptotc ormalty w rqur th followg rgularty codtos o our modl. (A): h covarat vctors 1 x x xp ad q ar fxd ad boudd. 1 1 (B): h tru valu 0 s th tror of th paramtr spac. (C): h y 1 ar dpdt our modl. horm.1 (Cosstcy). 1 Assum a Op ( ) b 0 ad 0. s qual to thr 1 or dpdg o whthr 0 j s a compot of 0 or 0 1. Udr codtos (A)-(C) wth probablty tdg to 1 thr xsts a local maxmr ˆ of th pald llhood fucto Q( ) quato (.3) such that

6 45 Varabl slcto jot mas ad varac modls ˆ O ( ). 0 1 p whr h w cosdr th asymptotc ormalty of ˆ. Lt '' (1) '' (1) 01 s1 A dag P P ' ' (1) (1) (1) (1) 01 sg 01 s sg s d dag P P (1) 0 j s th j-th compot of matrx of by I ( ). horm. (Oracl proprty). Assum that th palty fucto 0 ' lm f lm f P / 0 ad wh 0 (1) j 1 s ' P satsfs 1 dot th Fshr formato I I covrgs to a ft ad postv dft matrx I 0. Mawhl udr th codtos of horm.1 f 0 ad as th th -cosstt stmator ˆ ˆ (1) ˆ () must satsfy () () (Sparsty) ˆ 0 ; () (Asymptotc ormalty) whr 1 1 (1) ˆ (1) (1) (1) L 0 s 0 1 s1 I I A I A d N I L stads for th covrgc dstrbuto ad I s th s 1 s 1 submatrx of I corrspodg to (1) 0 ad s 1 (1) I s s 1 s 1 dtty matrx. horm.1 Rmar: h horm. stads for th Oracl proprty of th stmator udr th modl of (.1). Proofs of horms.1 ad horm. ar sstally th sam as Fa ad L (001). o sav spac th proofs ar omttd. 3. COMPUAION W mploy a algorthm to obta th llhood stmato jot ma ad varac modls of th Parto dstrbuto ths subscto. W also gv th mthod of how to choos th tug paramtrs.

7 Dog Sog Am ad Sh Computato of th Llhood Estmato Jot Ma ad Varac Modls of th Parto Dstrbuto Frstly w fd that th frst two drvatvs of th log-llhood fucto L( ) ar cotuous. For a gv pot 0 th log-llhood fucto ca b approxmatd by L 0 1 L L( ) L For th gv 0 as P P P P ca also b locally approxmatd by a quadratc fucto ' 1 for hrfor th pald llhood fucto (.3) ca b locally approxmatd by L 0 1 L Q( ) L whr P 0p P P 0q P p 1 01 q 0 dag 01 0 p 01 0q 1 s 1 p 1 q ad s p q. Accordgly th quadratc maxmato problm for Q( ) lads to a soluto tractd by 1 L0 L Scodly udr th modl of Parto dstrbuto th log-llhood fucto L( ) ca b wrtt as L( ) L( ) l l x 1 x 1 whr. hrfor th rsultg fuctos ar l y

8 454 Varabl slcto jot mas ad varac modls L( ) U( ) U1 ( ) U ( ) whr 1 1 x L U1( ) x l x x x y 1 x 1 1 x l l 1 1 x y x L 1 U( ) ad w dot L L L( ) H ( ) whr L L 1 1 x L x l x x x y 1 x x x x x x x x x 1 xx 1 x x x

9 Dog Sog Am ad Sh 455 whr L x x x l 3 1 y x x 1 1 x x x x 1 x x l 1 x x 4x 3 x 1 3 x 1 1 L 1 1 L x l y x 1 1 x 1 l l 1 y x x 1 1 l 1 1 x. 1 l x y x 1 3 x Fally th followg algorthm summars th computato of pald maxmum llhood stmators of th paramtrs modl (.1).

10 456 Varabl slcto jot mas ad varac modls Algorthm: Stp 1. a th ordary maxmum llhood stmators (wthout palty) ˆ MLE ad ˆ MLE. (0) ˆ MLE Stp. Gv th currt valus (0) ˆ MLE of as thr tal valus that s. l l l l l 1 1 H U l l l l l l l Stp 3. Rpat stp utl crta covrgc crtra ar satsfd. updat 3. Slcto of th ug Paramtrs Implmtg th mthods dscrbd abov w d to stmat th thrshold paramtrs. Wag t al. (007) foud that th BIC-typ crtro s cosstt modl slcto ad vrfd that th pald stmator wth th tug paramtr slctd ca dtfy th tru modl cossttly. Followg ths da th BIC s usd to BIC L ˆ d l( ) whr choos th tug paramtrs. h formula of BIC s d s th umbr of oro coffcts of ˆ ad L L ˆ ˆ ˆ ˆ ˆ l 1 1 ˆ ˆ 1 l ˆ 1 l 1 ˆ x y 1 ˆ 1 1 ˆ x whr ˆ ad ˆ ar th pald maxmum llhood stmators. Fa ad L (001) umrcally showd that a 3.7 mms th Baysa rs ad rcommdd ts us practc. hus w st a 3.7. It s xpctd that th choc of 1 j ad should satsfy th tug paramtr for ro coffct s largr tha for o-ro coffct. hus w ca smultaously ubasdly stmat a largr tha that for o-ro coffct ad shr th smallr coffct towards ro. Hc 0 practc w suggst tag ˆ whr ad ˆ ar th 1 j j ˆ tal stmators of j ad j 1 p; 1 q rspctvly by usg upald maxmum llhood stmators of ad. h tug paramtr ca b obtad as ˆλ = arg m BIC( ). ˆ j

11 Dog Sog Am ad Sh SIMULAION SUDY I ths scto w coduct som Mot Carlo smulatos wth jot ma ad varac modls of th Parto dstrbuto to valuat th ft sampl prformac of th proposd mthodologs. W smulat data from modl (.1) y ~ Parto d x d E y 1 Var y 1. d 1 h coffcts ad ca b computd th formula of 0 ( ). o prform ths smulato w ta 0 ( ) 0 ( ). All of th smulato rsults ar basd o 1000 dpdt rpttos. h avrag umbr of th stmatd ro coffcts for paramtrs modl (.1) wth 1000 smulato rus s rportd abl 1. I abl 1 "C ˆ ad C ˆ " gvs th avrag umbr of ro coffcts th colum labld corrctly st to ro ad th colum ˆ ad I ˆ ad " I " gvs th avrag umbr of oro coffcts corrctly st to ro. Furthrmor th colum labld GMSE" gvs th grald ma squar rror of ˆ ad ˆ. Smlar to what L ad Lag (008) Zhao ad Xu (010) had do th prformac of stmators ˆ assssd by usg th grald ma squar rror (GMSE) dfd as GMSE GMSE ˆ ˆ ˆ 0 ˆ ˆ XX 0 ˆ ˆ ˆ ˆ ˆ 0 0 ad ˆ wll b h sampl s th smulatos s 00. As sam as Huag Ma ad Zhag (008) w cosdr two cass whch ar xhbtd th followg two xampls. Exampl 4.1 (Gral) h covarats x ar th multvarat ormal dstrbutos wth ma 0 ad covarac btw th -th ad j -th lmts bg Ad th covarats hav th sam dstrbuto wth j r wth r 0.1 ad r 0.9. x. y s gratd accordg to modl (.1). h rsults of Ma ad Varac Modl ar show abl 1 ad abl rspctvly.

12 458 Varabl slcto jot mas ad varac modls abl 1 h Smulato Rsult for Ma Modl Exampl 4.1 r 0.1 r 0.9 Mthod GMSE ˆ C ˆ I ˆ GMSE ˆ C ˆ I ˆ 00 Lasso SCAD CP abl h Smulato Rsult for Varac Modl Exampl 4.1 r 0.1 r 0.9 Mthod GMSE C I GMSE C I ˆ ˆ 00 Lasso SCAD ˆ CP From th abl 1 ad abl t ca b show that th prformac of SCAD s much bttr tha th Lasso ad CP th two modls wh r 0.1. But wh th corrlato s gt hghr th prformac of th CP s a lttr bttr tha th Lasso ad SCAD wh r 0.9. So w ca fd that th CP ad SCAD ar always bttr tha th Lasso th two modls bcaus th Lasso dos ot hav th oracl proprty. Exampl 4. (Group Structur) h covarats x ( 1 ) ar gratd as follows: x ~ N(01) ( 1 6) x x 4 wh 7 10 whr ar..d. N (00.01). h covarats j ( j 1 ) ar gratd as follows: jt ~ N(01)( t 1 9) jt jt 6 t wh t whr ar..d. N (00.01). y s gratd accordg to modl (.1). h rsults of Ma ad Varac Modl ar show abl 3 ad abl 4 rspctvly. abl 3 h Smulato Rsult for Ma Modl Exampl 4. Mthod GMSE ˆ C ˆ I ˆ 00 Lasso SCAD CP ˆ ˆ ˆ

13 Dog Sog Am ad Sh 459 abl 4 h Smulato Rsult for Varac Modl Exampl 4. I Mthod ˆ ˆ ˆ GMSE C 00 Lasso SCAD CP It s obvous that th corrlato s vry hgh ths xampl. So from th abl 3 ad abl 4 th prformac of th CP s a lttl bttr tha th Lasso ad SCAD whl th SCAD s bttr tha Lasso th two modls. h raso s that th Lasso dos ot hav th oracl proprty. 5. CONCLUSION AND DISCUSSION I ths papr a w procdur s proposd whch ca slct ad stmat th sgfcat varabls smultaously jot ma ad varac modls of th Parto dstrbuto. Mawhl th cosstcy ad th oracl proprty of th rgulard stmators s also stablshd wth th approprat mthod of slctg th tug paramtrs. h ft sampl prformac of th proposd modl through smulato studs s assssd. h cocluso volvs th futurstc vws of th proposd modl rsarch flds. It wll b mor bfcal to utl t for ft umbr of paramtrs as ths modl s vald oly for fxd umbr of paramtrs. Now as th owldg s broadg day by day so t s sstal to l w doors of thors to old os. Hc t s dd a d to dvlop som w mthods to obta th varabl slcto th jot ma ad varac modls wth dffrt dstrbuto. REFERENCES 1. At M. (1987). Modllg varac htrogty ormal rgrsso usg GLIM. Appl. Stat Am M. Sog L. horl M.A. ad Wag X. (015). Combd pald quatl rgrsso hgh dmsoal modls. Pa. J. Statst Balma A.A. ad D Haa L. (1974). Rsdual lf tm at grat ag. A. Probab Bryso M.C. (1974). Havy tald dstrbutos: Proprts ad tsts. chomtrcs Dog Y. Sog L. Wag M. ad Xu Y. (014). Combd-pald llhood stmatos wth a dvrgg umbr of paramtrs. Joural of Appld Statstcs Fa J. ad L R. (001). Varabl slcto va ococav pald llhood ad ts oracl proprts. J. Amr. Statst. Assoc Harvy A.C. (1976). Estmatg rgrsso modls wth multplcatv htroscdastcty. Ecoomtrca Huag J. Ma S.C. ad Zhag H. (008). Adaptv Lasso for spars hghdmsoal rgrsso modls. Statst. Sca

14 460 Varabl slcto jot mas ad varac modls 9. L Y. ad Nldr J.A. (1998). Grald lar modls for th aalyss of qualty mprovmt xprmts. Ca. J. Stat L R. ad Lag H. (008). Varabl slcto smparamtrc rgrsso modlg. A. Stat Lomax K.S. (1954). Busss falurs. Aothr xampl of th aalyss of falur data. J. Amr. Statst. Assoc Par R.E. (1966). Estmato wth htroscdastc rror trms. Ecoomtrca Smyth G.K. ad Vrbyla A.P. (1999). Adjustd llhood mthods for modllg dsprso grald lar modls. Evromtrcs aylor J.. ad Vrbyla A.P. (004). Jot modllg of locato ad scal paramtrs of th t dstrbuto. Stat. Modl bshra R.J. (1996). Rgrsso shrag ad slcto va th Lasso. J. Roy. Statst. Soc. B Wag D.R. ad Zhag Z.Z. (009) Varabl slcto jot grald lar modls. Ch. J. Appl. Probab. Stat Wag H. L R. ad sa C.L. (007). O th cosstcy of SCAD tug paramtr slctor. Bomtra Wag X.M. Par. ad Carrr K.C. (010). Varabl slcto va combd palato for hgh-dmsoal data aalyss. Comput. Stat. Data Aal Wu L.C. ad L H.Q. (01). Varabl slcto for jot ma ad dsprso modls of th vrs Gaussa dstrbuto. Mtra Wu L.C. ad Zhag Z.Z ad Xu D.K. (01). Varabl slcto jot ma ad varac modls of Box-Cox trasformato. Joural of Appld Statstcs Wu L.C. ad Zhag Z.Z. ad Xu D.K. (013). Varabl slcto jot locato ad scal modls of th sw-ormal dstrbuto. Joural of Statstcal Computato ad Smulato Wu L.C. (014). Varabl slcto jot locato ad scal modls of th sw-tormal dstrbuto. Commucatos Statstcs - Smulato ad Computato. 43(3) Wu L.C. Zhag Z.Z. a G.L. ad Xu D.K. (014). A robust varabl slcto to t-typ jot grald lar modls va pald t-typ psudo-llhood Commu. Statst. Smul. ad Compu. DOI: / Zhao P.X. ad Xu L.G. (010). Varabl slcto for smparamtrc varyg coffct partally lar rrors--varabls modls. J. Multvarat Aal

Finite Dimensional Vector Spaces.

Finite Dimensional Vector Spaces. Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar

More information

11 Multiple Linear Regression

11 Multiple Linear Regression 11 Multpl Lar Rgrsso Multpl lar rgrsso (MLR) s a mthod usd to modl th lar rlatoshp btw a dpdt varabl ad o or mor dpdt varabls. Th dpdt varabl s somtms also calld th prdctad, ad th dpdt varabls th prdctors.

More information

REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, 93-106, 2011

REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, 93-106, 2011 REVISA IVESIGACIÓ OPERACIOAL VOL., 3, O., 93-6, A IEGRAED IVEORY POLICY WIH DEERIORAIO FOR A SIGLE VEDOR AD MULIPLE BUYERS I SUPPLY CHAI WHE DEMAD IS QUADRAIC ta H. Shah,Ajay S. Gor ad Chta Jhavr Dpartmt

More information

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach Yuaya L,2, Gal Cook 3 ad Olvr Wrford 3 Rvr ad Harbor Dpartmt, Najg Hydraulc Rsarch Isttut, Najg, 224, 2 Ky Laboratory of

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL ENGINEERING FOR RURAL DEVELOPMENT Jlgava, 3.-4.5.3. DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL Ilmars Dukuls, Avars Brkavs Latva Uvrsty of

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,

More information

Initial inventory levels for a book publishing firm

Initial inventory levels for a book publishing firm Mőhlytaulmáy Vállalatgazdaságta Itézt 93 Budapst, Fıvám tér 8. (+36 ) 482-5566, Fax: 482-5567 www.u-crvus.hu/vallgazd Ital vtry lvls fr a b publshg frm Imr Dbs Ágs Wmmr 23. sz. Mőhlytaulmáy HU ISSN 786-33

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE DYAMIC PROGRAMMIG APPROACH TO TESTIG RESOURCE ALLOCATIO PROBLEM FOR MODULAR SOFTWARE P.K. Kpur P.C. Jh A.K. Brdh Astrct Tstg phs of softwr gs wth modul tstg. Durg ths prod moduls r tstd dpdtly to rmov

More information

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method Itratoal Joural of Busss ad Maagmt Dcmbr, 28 Evaluatg Drct Marktg Practcs O th Itrt va th Fuzzy Cogtv Mappg Mthod Slcuk Burak Hasloglu (Corrspodg author) Dpartmt of Marktg, Faculty of Ecoomc ad Admstratv

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 35 36 37 38 39 40 4 42 43 44 REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE WagFag

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Adverse Selection and Moral Hazard in a Model With 2 States of the World Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

QUANTITATIVE METHODS CLASSES WEEK SEVEN

QUANTITATIVE METHODS CLASSES WEEK SEVEN QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS MPRA Muich Prsoal RPEc Archiv TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS Mahbub Parvz Daffodil Itratioal Uivrsy 6. Dcmbr 26 Oli at

More information

Section 3: Logistic Regression

Section 3: Logistic Regression Scton 3: Logstc Rgrsson As our motvaton for logstc rgrsson, w wll consdr th Challngr dsastr, th sx of turtls, collg math placmnt, crdt card scorng, and markt sgmntaton. Th Challngr Dsastr On January 28,

More information

Settlement Prediction by Spatial-temporal Random Process

Settlement Prediction by Spatial-temporal Random Process Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha

More information

Learning & Development

Learning & Development Larg & Dvlopmt Offrg ad Proc Updat Octobr 29th, 2012 Roara Torra, L&D Global Soluto Archtct Copyrght 2012 E. I. du Pot d Nmour ad Compay. All rght rrvd. Th DuPot Oval Logo, DuPot, Th mracl of cc ad all

More information

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers 1 Control of Prcvd Qualty of Srvc n ultmda Rtrval Srvcs: Prdcton-basd mchansm vs. compnsaton buffrs Aurlo La Cort, Alfo Lombardo, Srgo Palazzo, Govann Schmbra Isttuto d Informatca Tlcomuncazon, Unvrsty

More information

Modern Portfolio Theory (MPT) Statistics

Modern Portfolio Theory (MPT) Statistics Modrn Portfolo Thory (MPT) Statstcs Mornngstar Mthodology Papr Novmr 30, 007 007 Mornngstar, Inc. All rghts rsrvd. Th nformaton n ths documnt s th proprty of Mornngstar, Inc. Rproducton or transcrpton

More information

Authenticated Encryption. Jeremy, Paul, Ken, and Mike

Authenticated Encryption. Jeremy, Paul, Ken, and Mike uthntcatd Encrypton Jrmy Paul Kn and M Objctvs Examn thr mthods of authntcatd ncrypton and dtrmn th bst soluton consdrng prformanc and scurty Basc Componnts Mssag uthntcaton Cod + Symmtrc Encrypton Both

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks SRK oaz Poltcha Pozaa Ittut Mcha Stooa ul. Potroo 3, 6-965 Poza EGIEERIG COMPUAIO BY ARIFICIA EURA EWORKS Eplag ural tor ural tor ar copod o pl lt opratg paralll. h lt ar prd b bologcal rvou t. A atur,

More information

Load and Resistance Factor Design (LRFD)

Load and Resistance Factor Design (LRFD) 53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

More information

Traffic Flow Analysis (2)

Traffic Flow Analysis (2) Traffic Flow Analysis () Statistical Proprtis. Flow rat distributions. Hadway distributions. Spd distributions by Dr. Gang-Ln Chang, Profssor Dirctor of Traffic safty and Oprations Lab. Univrsity of Maryland,

More information

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY VOUME 2, 2 NFUENCE OF DEBT FNANCNG ON THE EFFECTVENE OF THE NVETMENT PROJECT WTHN THE MODGANMER THEORY Pr Brusov, Taaa Flaova, Naal Orhova, Pavl Brusov, Nasa Brusova Fac Uvrsy ur h Govrm of h Russa Frao,

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

Exponential Generating Functions

Exponential Generating Functions Epotl Grtg Fuctos COS 3 Dscrt Mthmtcs Epotl Grtg Fuctos (,,, ) : squc of rl umbrs Epotl Grtg fucto of ths squc s th powr srs ( )! 3 Ordry Grtg Fuctos (,,, ) : squc of rl umbrs Ordry Grtg Fucto of ths squc

More information

NEURAL DATA ENVELOPMENT ANALYSIS: A SIMULATION

NEURAL DATA ENVELOPMENT ANALYSIS: A SIMULATION Itratoal Joural f Idustral grg v... 4-4 4 NURAL ATA NVLPMNT ANALYSIS: A SIMULATIN Luz Bod Nto Marcos Prra stllta Ls la Goçalvs Goms João Carlos Corra Batsta Soars d Mllo 3 Fabao S. lvra. d g. ltrôca Tlcomucaçõs

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion 2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS IFORTIO D OUITIO TEHOLOGIES D SERVIES, VOL. 9, O., RH 2 7 ERLG FORUL D ITS USE I THE LL ETERS Er HROY., Tbor ISUTH., atj KVKY. Dpartmnt of Tlcommuncatons, Faculty of Elctrcal Engnrng and Informaton Tchnology,

More information

West Virginia. Instructions. Income/Business Franchise Tax for S Corps & Partnerships (Pass-Through Entities) Guyandotte River, Mingo County

West Virginia. Instructions. Income/Business Franchise Tax for S Corps & Partnerships (Pass-Through Entities) Guyandotte River, Mingo County 2014 Wst Vrga Icom/Busss Frachs Tax for S Corps & Partrshps (Pass-Through Etts) Istructos Guyadott Rvr, Mgo Couty Nw for 2014 Tax Rats For tax yars bgg o or aftr Jauary 1, 2014, th Busss Frachs rat s th

More information

Online school frequency and time service of high precision clock based on the generalized regression model of GPS

Online school frequency and time service of high precision clock based on the generalized regression model of GPS COMPUER MODELLING & NEW ECHNOLOGIES 2014 18(12C) 710-714 Oli school frqucy ad tim srvic of high prcisio cloc basd o th gralizd rgrssio modl of GPS Abstract Jiazhu Zhg, Yhmi Gao Najig Forstry Uivrsity,

More information

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies rasactios of JWRI, ol.38 (9), No. rasactios of JWRI, ol.38 (9), No. Numrical ad Exprimtal Study o Nuggt Formatio i Rsistac Spot Wldig for High Strgth Stl Shts i Automobil Bodis MA Nishu* ad MURAKAWA Hidkazu**

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal

More information

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS Maagm Sysms Produco Egrg No 3 7 pp 3 8 PARICULAR RELIABILIY CHARACERISICS O WO ELEMEN PARALLEL ECHNICAL MECHARONIC SYSEMS Zbgw MAUSZAK Marm Uvrsy o Szczc Absrac: h papr characrzs h basc dsrbuos o alur

More information

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

More information

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison ISyE 512 Chapter 7 Cotrol Charts for Attrbutes Istructor: Prof. Kabo Lu Departmet of Idustral ad Systems Egeerg UW-Madso Emal: [email protected] Offce: Room 3017 (Mechacal Egeerg Buldg) 1 Lst of Topcs Chapter

More information

81-1-ISD Economic Considerations of Heat Transfer on Sheet Metal Duct

81-1-ISD Economic Considerations of Heat Transfer on Sheet Metal Duct Air Handling Systms Enginring & chnical Bulltin 81-1-ISD Economic Considrations of Hat ransfr on Sht Mtal Duct Othr bulltins hav dmonstratd th nd to add insulation to cooling/hating ducts in ordr to achiv

More information

Basic statistics formulas

Basic statistics formulas Wth complmet of tattcmetor.com, the te for ole tattc help Set De Morga Law Bac tattc formula Meaure of Locato Sample mea (AUB) c A c B c Commutatvty & (A B) c A c U B c A U B B U A ad A B B A Aocatvty

More information

Term Structure of Interest Rates: The Theories

Term Structure of Interest Rates: The Theories Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor

More information

Lecture 20: Emitter Follower and Differential Amplifiers

Lecture 20: Emitter Follower and Differential Amplifiers Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK MARKETS 1

A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK MARKETS 1 Ivestmet Maagemet ad Facal Iovatos, Volume 4, Issue 3, 007 57 A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK

More information

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND 8 th Intrnatonal Confrnc of Modlng and Smulaton - MOSIM - May -2, 2 - Hammamt - Tunsa Evaluaton and optmzaton of nnovatv producton systms of goods and srvcs ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS

More information

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13) con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc

More information

Loss Distribution Generation in Credit Portfolio Modeling

Loss Distribution Generation in Credit Portfolio Modeling Loss Dstrbuto Geerato Credt Portfolo Modelg Igor Jouravlev, MMF, Walde Uversty, USA Ruth A. Maurer, Ph.D., Professor Emertus of Mathematcal ad Computer Sceces, Colorado School of Mes, USA Key words: Loss

More information

Modelling Exogenous Variability in Cloud Deployments

Modelling Exogenous Variability in Cloud Deployments Modllng Exognous Varablty n Cloud Dploymnts Gulano Casal 1 Mrco Trbaston 2 [email protected] [email protected] 1 : Impral Collg London, London, Untd Kngdom 2 : Ludwg-Maxmlans-Unvrstät, Munch, Grmany

More information

Performance Evaluation

Performance Evaluation Prformanc Evaluation ( ) Contnts lists availabl at ScincDirct Prformanc Evaluation journal hompag: www.lsvir.com/locat/pva Modling Bay-lik rputation systms: Analysis, charactrization and insuranc mchanism

More information

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]

More information

A Probabilistic Approach to Latent Cluster Analysis

A Probabilistic Approach to Latent Cluster Analysis Procdngs of th Twnty-Thrd Intrnatonal Jont Confrnc on Artfcal Intllgnc A Probablstc Approach to Latnt Clstr Analyss Zhpng X R Dong, Zhnghng Dng, Zhnyng H, Wdong Yang School of Comptr Scnc Fdan Unrsty,

More information

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power Prim numbrs W giv spcial nams to numbrs dpnding on how many factors thy hav. A prim numbr has xactly two factors: itslf and 1. A composit numbr has mor than two factors. 1 is a spcial numbr nithr prim

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Experimental Education.

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Experimental Education. The Statstcal Iterpretato of Degrees of Freedom Author(s): Wllam J. Mooa Source: The Joural of Expermetal Educato, Vol. 21, No. 3 (Mar., 1953), pp. 259264 Publshed by: Taylor & Fracs, Ltd. Stable URL:

More information

Mininum Vertex Cover in Generalized Random Graphs with Power Law Degree Distribution

Mininum Vertex Cover in Generalized Random Graphs with Power Law Degree Distribution Mnnum Vrtx Covr n Gnralzd Random Graphs wth Powr Law Dgr Dstrbuton André L Vgnatt a, Murlo V G da Slva b a DINF Fdral Unvrsty of Paraná Curtba, Brazl b DAINF Fdral Unvrsty of Tchnology - Paraná Curtba,

More information

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information

STOCHASTIC approximation algorithms have several

STOCHASTIC approximation algorithms have several IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 60, NO 10, OCTOBER 2014 6609 Trackg a Markov-Modulated Statoary Degree Dstrbuto of a Dyamc Radom Graph Mazyar Hamd, Vkram Krshamurthy, Fellow, IEEE, ad George

More information

An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots

An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots MAEC Web of Cofereces 35, 02013 ( 2015) DOI: 10.1051/ mateccof/ 2015 3502013 C Owe by the authors, publshe by EDP Sceces, 2015 A Operatg Precso Aalyss Metho Coserg Multple Error Sources of Seral Robots

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

Statistical Intrusion Detector with Instance-Based Learning

Statistical Intrusion Detector with Instance-Based Learning Iformatca 5 (00) xxx yyy Statstcal Itruso Detector wth Istace-Based Learg Iva Verdo, Boja Nova Faulteta za eletroteho raualštvo Uverza v Marboru Smetaova 7, 000 Marbor, Sloveja [email protected] eywords:

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information