An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots

Size: px
Start display at page:

Download "An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots"

Transcription

1 MAEC Web of Cofereces 35, ( 2015) DOI: / mateccof/ C Owe by the authors, publshe by EDP Sceces, 2015 A Operatg Precso Aalyss Metho Coserg Multple Error Sources of Seral Robots Cog We a, Qgua Ja a Gag Che Bejg Uversty of Posts a elecommucatos, Bejg, Cha Abstract. I orer to solve the problem of operatg precso aalyss coserg multple error sources of seral robots, a operatg precso aalyss metho combe Mote Carlo algorthm wth pose error moel of robot eeffector s propose. Frstly, the pose error moel of robot e-effector s bult base o the MCPC metho. he, the error sources whch have a ma fluece o the operatg precso of robot e-effector are aalyse etal. At last, the Mote Carlo algorthm s use to aalyse the error probablstc characterstcs of robot e-effector coserg multple error sources, whch ca valate the precso esg of mechacal arms a prove theory bass to strbute the error lmts of error sources reasoably. 1 Itroucto he operatg precso s oe of the mportat cators of evaluatg the usablty of robot, a the level of operatg precso wll rectly fluece the effect of task eecuto. he error sources whch affect the operatg precso of the e-effector are varous, such as maufacture a stall error, jot clearace, fleblty of coectg ro a jot, workg evromet a so o[1]. he operatg precso aalyss of the e effector ca be juge f t meets the requremet of precso a prove theory bass to strbute the error lmts of error sources reasoably. here are abuat researches o the precso of the e-effector both at home a abroa the past years. Jeog Kma[2] use the mprove frst-orer secomomet metho to aalyse the effects of the jot clearace o the precso of e effector. Meg Xaju[3] use geometrc moel to stuy the effects of jot moto error o the precso of e effector. a L[4] establshe the mathematcal moel of the fleble jot, whch s use to calculate the pose error of the robot eeffector. Zhag Zhweg[5] researche the effects of coectg ro eformato o the precso of eeffector uer ther ow gravty a loa. I cocluso, although may scholars ha stue the operatg precso of seral robot, the stues whch coserg multple error sources at the same tme for operatg precso are stll rarely. I ths paper, a operatg precso aalyss metho s propose whch combes Mote Carlo algorthm wth pose error moel of robot e-effector. Secto 2 s about the establshmet of pose error moel; Secto 3 s about the aalyss of error sources; Secto 4 s about the a Correspog author: [email protected] probablty aalyss of operatg precso; the cocluso s Secto 5. 2 Pose Error Moel 2.1 Kematc Moel he most classcal kematc moelg metho s base o D-H metho propose by Deavt a HarteBerg[6]. However, whe ajacet jot aes of mapulator are parallel, t wll occur large posto offset o commo ormal le because of the error of parallelsm. herefore, ths paper, the kematc moel s bult by MCPC metho, whch ca esure the tegrty a cotuty of the moel. It uses four parameters,, y, to escrbe the trasformato relato betwee coectg ro coorates, Where, represet the agle rotatg o as a the agle rotatg o y as whe coorate trasformg to coorate 1, respectvely; represets the traslatoal stace betwee the org of coorate a org of coorate 1 the recto of as; y represets the traslatoal stace betwee the org of coorate a org of coorate 1 the recto of y as. A s parameters,, y,,, z s use to escrbe the trasformato relato betwee termate coorate a tool coorate, Where represets the agle rotatg o z as; z represets the traslatoal stace betwee the org of coorate a org of coorate 1 the recto of z as [7]. he trasform matr betwee termeate coectg ro coorates s: Q Rot(, ) Rot(, y ) ras (, y,0) (1) hs s a Ope Access artcle strbute uer the terms of the Creatve Commos Attrbuto Lcese 4.0, whch permts strbuto, a reproucto ay meum, prove the orgal work s properly cte. Artcle avalable at or

2 MAEC Web of Cofereces A the trasform matr betwee termate coorate a tool coorate s: Q Rot(, ) Rot(, y ) Rot(, z ) ras (, y, z ) (2) At last, the kematc moel s erve as follows: 2.2 Pose Error Moel (3) s efe as the fferece betwee the real pose of the e-effector a the esre oe: ( 0,1,, 1) (4) Where, represet the esre trasform matr a the real trasform matr betwee coorate a coorate 1, respectvely. he, the pose error matr ca be erve as follows: 0 z y 1 z 0 y ( ) (5) y 0 z Because there are two etra parameters, z to escrbe the trasformato relato betwee termate coorate a tool coorate, the pose error moel ee am at termeate coectg ro coorate a termate coorate, respectvely. For the termeate coectg ro coorates, s maly relate to the lkage parameters,,, y a the jot parameter : y (6) y Q, Q, Q, Q, Q y, he y ca be erve base o Eq. (4), Eq. (5) a Eq. (6): Q Q Q Q Q y (7) y s efe as postoal error a s efe as atttue error, the the pose error vector D ca be gotte as follows: k k k k k k k k D y (8) For the termate coorate, s maly relate to the jot parameter a the lkage parameters,,, y,, z., y z y z (9) Q, Q, Q, Q Q, Q y, he ca be erve y base o Eq. (4), Eq. (5) a Eq. (9): Q Q Q Q Q Q y Q z y z (10) s efe as postoal error a s efe as atttue error, the the pose error vector D ca be gotte as follows: k k k k k k k D k k k k y z (11), are efe as the esre trasform matr a the real trasform matr betwee termate coorate a ertal coorate, respectvely: ( ) he, s gotte as follows: (12) ( U ) U (13) Where, U E 1 4 E 4 s the etty matr, u u u u u u 1 o a p R p U s erve as follows 0 z y 1 z 0 y ( 1) U U 1 (14) 0 y 0 z he pose error vector D e of the e-effector the termate coorate ca be gotte: p.2

3 l 2 ICMCE 2015 ( ) ( p ) u u u u u u y ( o 1) ( p1 o1) u u u z ( a 1) ( p1 a 1) e u ( 1) u y 13 ( 1) 0 o u z 01 3 ( a1) D (15) he Eq. (15) s euce base o Eq. (8) a Eq. (11): 9 10 M1 M2 M3 k M4 M5 k De 11 M6 M7 M8 k 03 ( 1) 03 ( 1) 03 1 (16) y z J E he Eq. (16) shows the mappg relato betwee lkage errors, jot errors a pose error the termate coorate. Furthermore, the pose error moel of the eeffector D e the ertal coorate ca be gotte: D J J (17) e s E I 3 Aalyss of Error Sources I the part 2, the mappg relato betwee lkage errors, jot errors a pose error ca be gotte the ertal coorate. It wll be coucve to the operatg precso aalyss f all the error sources are trasforme to lkage errors a jot errors Error Aalyss of Maufacture a Istall Error he maufacture error maly shows the legth error L of coectg ro, whch causes the lkage errors, y, z. he stall error maly shows the jot aal evato, whch ca be see Fg.1. AO [, y,0] OO OA AO OA AB AB BC k [ k, ky,0] yae, AE,0 / AE, ta AC (18) Where, eotes the fferetal moto of the jot as; k eotes the rotatoal as; eotes the fferetal agle rotatg o k as; the le AB eotes the real jot as. he, the pose error of correspog coorate ca be gotte as follows: D,,0,,,0 k k ky y (19) he lkage errors k ca be euce base o Eq. (15), Eq. (16) a Eq. (19): Y J D (20) 1 k k k O X Z 2 1 k l 1 Fgure 1. he jot aal evato cause by stall error. 3.2 Error Aalyss of Fleblty of Coectg Ro he force of coectg ro s aalyze, whch ca be see Fg.2. Set the legth of coectg ro as l. he left of the coectg ro s fe, a force F ( F,, ) Fy Fz, torque M ( M,, ) My Mz are apple o the rght of the coectg ro. he uform loa q s create by the coectg ro s ow weght. Because of the effect of forces a torque, the rght of the coectg ro wll move from A1 to A2, a the pose error of correspog coorate ca be gotte as follows: D l wy wz z y (21) Where, l represets the teso or compresso eformato; w y represets the beg eflecto the recto of y as; w z represets the beg eflecto the recto of z as; represets the twst; z represets the agle rotatg o z as; y represets the agle rotatg o y as. he lkage errors ca be euce base o Eq. (15), Eq. (16) a Eq. (21): O 1 Y 1 Z 1 X 1 J D (22) q y 1 q z Y 1 M z O 1 Fgure 2. he eformato of coectg ro. 3.3 Error Aalyss of Fleblty of Jot he fleble jot of mapulator s smplfe to a torsoal sprg, where fleble eformato of the jot s proportoal to the torque of jot[8]: M y F y Z 1 M F z X F p.3

4 MAEC Web of Cofereces C (23) Base o above aalyss, the error sources ca be trasforme to lkage errors or jot errors. Whe the mapulator has a hgh stffess, these varable errors ca be learly ae. he the pose error of the e-effector the ertal coorate ca be gotte through Eq. (17) wth multple error sources affectg the operatg precso of the e-effector. 4 Probablty Aalyss of Operatg Precso he value of error sources has raomess. It s very low probablty that each value of error source has a etreme. If set the etreme of error source as the robot esg cators, t wll crease the cost of maufacture. herefore, the probablty aalyss of operatg precso s eee. I ths paper, the probablty aalyss metho of operatg precso s propose base o Mote Carlo algorthm, a a four lk seral robot s cosere. he 3-D shape of 4-DOF seral robot s show Fg.3. he MCPC Coorates of 4-DOF seral robot s show Fg.4. he MCPC parameters are show ab.1. Lk1 Lk2 Lk3 torsoal rgty of Lk2 s GI p2 4000N m / ra, a the beg rgty of Lk2 s EI Nm / ra ; the qualty of Lk3 s 1.4kg, the torsoal rgty of Lk3 s GI p3 1000N m / ra, a the beg rgty of Lk3 s EI Nm / ra ; the qualty of Lk4 s 3.3kg ; the qualty of the loa s 1kg. he probablty aalyss steps of operatg precso ca be ve to: 1 Obta the probablty strbuto of each error source; 2 Geerate a set of error values of error sources raomly, a trasform them to lkage errors a jot errors. 3 Get the pose error of the e-effector through Eq. (14) usg the varable errors geerate step 2; 4 Perform the steps above N tmes, a the N groups value of pose error ca be gotte. Whe the value of N s bg eough, the probablty strbuto of the pose error of the e-effector ca be gotte. he pose error of robot e-effector s ot oly cocere wth the value of error sources, but also cocere wth the cofgurato of mapulator. Here, the jot agles are , N 2000, the o the probablty aalyss of operatg precso by the steps metoe above. he probablty strbuto of the pose error of the e-effector s show Fg.5 a Fg.6. Lk4 Fgure 3. he 3-D shape of 4-DOF seral robot. Fgure 5. he posto error of the e-effector. Fgure 4. he MCPC Coorates of 4-DOF seral robot. able 1. he MCPC parameters of 4-DOF seral robot. (mm) y (mm) z (mm) \ 0 0 \ \ 0 a1 \ \ a2 0 \ \ a4 0 \ a1a3a5 Where, a0 96, a1 85, a2 1970, a3 96, a4 1770, a5 93 ; the legth error of a 0, a 1, a 3, a 5 s 0.05mm ; the legth error of a2, a 4 s 0.25mm ; the stall error of jot aal s 0.1mm ; the qualty of Lk2 s 1.4kg, the Fgure 6. he atttue error of the e-effector. As show Fg.5 a Fg.6, we ca get the mmum a mamum of the posto error, the mmum a mamum of the atttue error, a the value of the hghest probablty. It ca be use to estmate the operatg precso of the e-effector tutvely, a verfy whether the esg of the mapulator meets the precso requremet. What s more, t ca prove theory bass to strbute the error lmts of error sources reasoably p.4

5 ICMCE Cocluso A operatg precso aalyss metho s propose whch combes Mote Carlo algorthm wth pose error moel of robot e-effector. Frstly, the pose error moel of robot e-effector s bult base o MCPC metho, whch represets the mappg relato betwee lkage errors, jot errors a pose error the termate coorate. he the ma error sources whch fluece the operatg precso of robot e-effector are aalyze etal a trasforme to lkage errors a jot errors. At last, we get the probablty strbuto of the pose error of the e-effector. From the probablty aalyss result of operatg precso we ca verfy whether the esg of the mapulator meets the precso requremet, a prove theory bass to strbute error lmts of error sources reasoably. ACKNOWLEDGMEN hs research s supporte by the Natoal Natural Scece Fouato of Cha ( ) a the Natoal Natural Scece Fouato of Cha ( ) Refereces 1. Jao Guota, Aalyss a sythess of robot pose errors, Post-octor work report of Bejg Uversty of echology. (2002) 2. Jeog Kma, Woo-J Sog, Beom-Soo Kag, Stochastc approach to kematc rela-blty of opeloop mechasm wth mesoal tolerace. Apple Mathematcal Moel-g 34(5): (2009) 3. Meg XaJu, SHI ZhogXu, ZHAN MJg, ZHANG Ce, Aalyss o probablstc characterstcs of moto error lk mechasm. Joural of Mache Desg 20(1): (2003) 4. L a, Research o Fleble Jot Robot a Its Kematc Calbrato a Vbrato Suppresso Reserch. Harb Isttute of echology (2012) 5. Zhag Zhwe, Ga Fagja, Robot Moto Error Base o Lks s Gravty. Mechacal Research & Applcato 01(19): (2006) 6. Ca Zg, Robotcs. Bejg: sghua Uversty Press (2000) 7. Haq Zhuag, Luke K. Wag, Zv S. Roth, Error- Moel-Base Robot Calbrato Usg A Mofue Cpc Moel. Robotcs a Computer-Itegrate Maufacturg 10(4): (1993) 8. Spog M W, Robot yamcs a cotrol. NewYork: Joh wley&sos (1989) p.5

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,

More information

Study on prediction of network security situation based on fuzzy neutral network

Study on prediction of network security situation based on fuzzy neutral network Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork

More information

Vibration and Speedy Transportation

Vibration and Speedy Transportation Research Paper EAEF (3) : 8-5, 9 Path Plag of Tomato Cluster Harvestg Robot for Realzg Low Vbrato ad Speedy Trasportato Naosh KONDO *, Koch TANIHARA *, Tomowo SHIIGI *, Hrosh SHIMIZU *, Mtsutaka KURITA

More information

Construction of a system scanning the movement of human upper limbs

Construction of a system scanning the movement of human upper limbs Scetfc Jourals Martme Uversty of Szczec Zeszyty Naukowe Akadema Morska w Szczece 1, 3(14) z. 1 pp. 75 8 1, 3(14) z. 1 s. 75 8 Costructo of a system scag the movemet of huma upper lmbs Kaml Stateczy West

More information

Defining Perfect Location Privacy Using Anonymization

Defining Perfect Location Privacy Using Anonymization Defg Perfect Locato Prvacy Usg Aoymzato Zarr otazer Electrcal a Computer Egeerg Departmet Uversty of assachusetts Amherst, assachusetts Emal: [email protected] Amr Houmasar College of Iformato a Computer

More information

RUSSIAN ROULETTE AND PARTICLE SPLITTING

RUSSIAN ROULETTE AND PARTICLE SPLITTING RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

An IG-RS-SVM classifier for analyzing reviews of E-commerce product

An IG-RS-SVM classifier for analyzing reviews of E-commerce product Iteratoal Coferece o Iformato Techology ad Maagemet Iovato (ICITMI 205) A IG-RS-SVM classfer for aalyzg revews of E-commerce product Jaju Ye a, Hua Re b ad Hagxa Zhou c * College of Iformato Egeerg, Cha

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

Fault Tree Analysis of Software Reliability Allocation

Fault Tree Analysis of Software Reliability Allocation Fault Tree Aalyss of Software Relablty Allocato Jawe XIANG, Kokch FUTATSUGI School of Iformato Scece, Japa Advaced Isttute of Scece ad Techology - Asahda, Tatsuokuch, Ishkawa, 92-292 Japa ad Yaxag HE Computer

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

A particle swarm optimization to vehicle routing problem with fuzzy demands

A particle swarm optimization to vehicle routing problem with fuzzy demands A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg, Ye-me Qa A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg 1,Ye-me Qa 1 School of computer ad formato

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011 Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory

More information

Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks

Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks 0 7th Iteratoal ICST Coferece o Commucatos ad Networkg Cha (CHINACOM) Load Balacg Algorthm based Vrtual Mache Dyamc Mgrato Scheme for Dataceter Applcato wth Optcal Networks Xyu Zhag, Yogl Zhao, X Su, Ruyg

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines (ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005

More information

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

Load and Resistance Factor Design (LRFD)

Load and Resistance Factor Design (LRFD) 53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad

More information

Software Reliability Index Reasonable Allocation Based on UML

Software Reliability Index Reasonable Allocation Based on UML Sotware Relablty Idex Reasoable Allocato Based o UML esheg Hu, M.Zhao, Jaeg Yag, Guorog Ja Sotware Relablty Idex Reasoable Allocato Based o UML 1 esheg Hu, 2 M.Zhao, 3 Jaeg Yag, 4 Guorog Ja 1, Frst Author

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm

IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

A particle Swarm Optimization-based Framework for Agile Software Effort Estimation

A particle Swarm Optimization-based Framework for Agile Software Effort Estimation The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah

More information

AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM ON CLOUD SERVICE PROVIDER BASED ON GENETIC

AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM ON CLOUD SERVICE PROVIDER BASED ON GENETIC Joural of Theoretcal ad Appled Iformato Techology 0 th Aprl 204. Vol. 62 No. 2005-204 JATIT & LLS. All rghts reserved. ISSN: 992-8645 www.jatt.org E-ISSN: 87-395 AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]

More information

AP Statistics 2006 Free-Response Questions Form B

AP Statistics 2006 Free-Response Questions Form B AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

Analysis of one-dimensional consolidation of soft soils with non-darcian flow caused by non-newtonian liquid

Analysis of one-dimensional consolidation of soft soils with non-darcian flow caused by non-newtonian liquid Joural of Rock Mechacs ad Geotechcal Egeerg., 4 (3): 5 57 Aalyss of oe-dmesoal cosoldato of soft sols wth o-darca flow caused by o-newtoa lqud Kaghe Xe, Chuaxu L, *, Xgwag Lu 3, Yul Wag Isttute of Geotechcal

More information

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis IEMS Vol. 4, No., pp. 0-08, Jue 005. A Comparatve Study o Medcal Data Classcato Methods Based o Decso Tree ad System Recostructo Aalyss Tzug-I Tag Departmet o Iormato & Electroc Commerce Kaa Uversty, Tawa

More information

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment , pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College

More information

Software Aging Prediction based on Extreme Learning Machine

Software Aging Prediction based on Extreme Learning Machine TELKOMNIKA, Vol.11, No.11, November 2013, pp. 6547~6555 e-issn: 2087-278X 6547 Software Agg Predcto based o Extreme Learg Mache Xaozh Du 1, Hum Lu* 2, Gag Lu 2 1 School of Software Egeerg, X a Jaotog Uversty,

More information

How To Balance Load On A Weght-Based Metadata Server Cluster

How To Balance Load On A Weght-Based Metadata Server Cluster WLBS: A Weght-based Metadata Server Cluster Load Balacg Strategy J-L Zhag, We Qa, Xag-Hua Xu *, Ja Wa, Yu-Yu Y, Yog-Ja Re School of Computer Scece ad Techology Hagzhou Daz Uversty, Cha * Correspodg author:[email protected]

More information

Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm

Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm JOURNAL OF NETWORKS, VOL. 8, NO. 9, SEPTEMBER 2013 2143 Web Servce Composto Optmzato Based o Improved Artfcal Bee Coloy Algorthm Ju He The key laboratory, The Academy of Equpmet, Beg, Cha Emal: [email protected]

More information

Loss Distribution Generation in Credit Portfolio Modeling

Loss Distribution Generation in Credit Portfolio Modeling Loss Dstrbuto Geerato Credt Portfolo Modelg Igor Jouravlev, MMF, Walde Uversty, USA Ruth A. Maurer, Ph.D., Professor Emertus of Mathematcal ad Computer Sceces, Colorado School of Mes, USA Key words: Loss

More information

TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION

TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION Cosm TOMOZEI 1 Assstat-Lecturer, PhD C. Vasle Alecsadr Uversty of Bacău, Romaa Departmet of Mathematcs

More information

Real-Time Scheduling Analysis

Real-Time Scheduling Analysis DOT/FAA/AR-05/7 Real-Tme Scheulg Aalyss Offce of Avato Research a Developmet Washgto, D.C. 059 November 005 Fal Report Ths ocumet s avalable to the U.S. publc through the Natoal Techcal Iformato Servce

More information

Optimizing Software Effort Estimation Models Using Firefly Algorithm

Optimizing Software Effort Estimation Models Using Firefly Algorithm Joural of Software Egeerg ad Applcatos, 205, 8, 33-42 Publshed Ole March 205 ScRes. http://www.scrp.org/joural/jsea http://dx.do.org/0.4236/jsea.205.8304 Optmzg Software Effort Estmato Models Usg Frefly

More information

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion 2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

A Hierarchical Latent Variable Model for Data Visualization

A Hierarchical Latent Variable Model for Data Visualization IEEE ASACIOS O PAE AAYSIS AD MACHIE IEIGECE, VO. 0, O. 3, MACH 998 8 A Herarchcal atet Varable Moel for Data Vsualzato Chrstopher M. Bshop a Mchael E. ppg Abstract Vsualzato has prove to be a powerful

More information

How To Make A Supply Chain System Work

How To Make A Supply Chain System Work Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa

More information

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat

More information

Bayesian Network Representation

Bayesian Network Representation Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory

More information

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo. ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

More information

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Robust Realtime Face Recognition And Tracking System

Robust Realtime Face Recognition And Tracking System JCS& Vol. 9 No. October 9 Robust Realtme Face Recogto Ad rackg System Ka Che,Le Ju Zhao East Cha Uversty of Scece ad echology Emal:[email protected] Abstract here s some very mportat meag the study of realtme

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

A Parallel Transmission Remote Backup System

A Parallel Transmission Remote Backup System 2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

AnySee: Peer-to-Peer Live Streaming

AnySee: Peer-to-Peer Live Streaming ysee: Peer-to-Peer Lve Streamg School of Computer Scece ad Techology Huazhog Uversty of Scece ad Techology Wuha, 40074, Cha {xflao, hj, dfdeg }@hust.edu.c Xaofe Lao, Ha J, *Yuhao Lu, *Loel M. N, ad afu

More information

VIDEO REPLICA PLACEMENT STRATEGY FOR STORAGE CLOUD-BASED CDN

VIDEO REPLICA PLACEMENT STRATEGY FOR STORAGE CLOUD-BASED CDN Joural of Theoretcal ad Appled Iformato Techology 31 st Jauary 214. Vol. 59 No.3 25-214 JATIT & S. All rghts reserved. ISSN: 1992-8645 www.att.org E-ISSN: 1817-3195 VIDEO REPICA PACEMENT STRATEGY FOR STORAGE

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Impact of Interference on the GPRS Multislot Link Level Performance

Impact of Interference on the GPRS Multislot Link Level Performance Impact of Iterferece o the GPRS Multslot Lk Level Performace Javer Gozalvez ad Joh Dulop Uversty of Strathclyde - Departmet of Electroc ad Electrcal Egeerg - George St - Glasgow G-XW- Scotlad Ph.: + 8

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center

Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center 200 IEEE 3rd Iteratoal Coferece o Cloud Computg Dyamc Provsog Modelg for Vrtualzed Mult-ter Applcatos Cloud Data Ceter Jg B 3 Zhlag Zhu 2 Ruxog Ta 3 Qgbo Wag 3 School of Iformato Scece ad Egeerg College

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information