Best Value for Money in Procurement
|
|
|
- Corey Franklin
- 9 years ago
- Views:
Transcription
1 Working Paper No. 2012/02 Best Value for Money in Procurement Nicola Dimitri 1 February 2012 The author, Professor of Economics, University of Siena (IT) and Research Fellow, Maastricht School of Management (NL)
2 The Maastricht School of Management is a leading provider of management education with worldwide presence. Our mission is to enhance the management capacity of professionals and organizations in and for emerging economies and developing countries with the objective to substantially contribute to the development of these societies. The views expressed in this publication are those of the author(s) and do not reflect the official policy or position of the government of India. Publication does not imply endorsement by the School or its sponsors, of any of the views expressed. 2
3 Best Value for Money in Procurement Nicola Dimitri Professor of Economics, University of Siena (IT) Research Fellow, Maastricht School of Management (NL) Abstract Recent years witnessed a gradual change on how to evaluate successful procurement, in both the private ad the public sector. Indeed from a price-only criterion for measuring success, decisions shifted to a multi-criteria approach where various dimensions of quality, as well as price, are considered. The most common way to express such shift is to say that procurement should deliver best value for money (BVM). That is, to award the contract, both monetary and non-monetary components of an offer are to be considered. Whether in competitive bidding or negotiations BVM is typically formalized by a scoring formula, namely a rule for assigning dimensionless numbers to different elements of an offer, often expressed in different units of measurement. The contract would then be awarded according to the total score obtained by an offer. This paper discusses the notion of BVM and some typical forms of scoring rules, as a way to formalize the procurer s preferences. Acknowledgements. I would like to thank The Maastricht School of Management for support to this research and for having hosted me. I would also like to thank the University of Siena for kindly allowing such collaboration. Useful comments on a previous version of the paper by Wim Naudé are gratefully acknowledged. 3
4 1. Introduction Effective procurement is an increasingly important, and attracting, issue for the private sphere as well as the public sector of an economy. In so far as the former is concerned it plays a crucial, strategic, role both in the upturn and in the downturn of the economic cycle. Indeed while in the upturn, with rising revenues, it allows companies to further increase their profit margins and better exploit the expansionary trend of the economy, in the downturn it can mitigate profit decrease by reducing costs while keeping quality at the desired level. As for the public sector instead, effective procurement can be of fundamental support to pursue fiscal, industrial and innovation policies, by best employing the available financial resources. Given the significant presence of the public sector in many countries, effective procurement could be a fundamental driver for the socio-economic development and growth of a state. Successful procurements can depend upon numerous elements, the most relevant of which compose the offer that potential suppliers submit to the buyer. In particular, in recent years the public sector witnessed a gradual change in emphasis for assessing procurement success, from a price only type-of-criterion, for given quantity and quality, to the so called best value for money (BVM) criterion where the attractiveness of an offer is evaluated considering, jointly, the monetary and non-monetary components of a proposal [1,2]. Though present in many documents and papers, a remarkable example of the shift towards a BVM criterion is the recent 2011 Communication by the European Commission [3], proposing a new Directive for public procurement of Works, Goods and Services. Indeed, at the very beginning of the document the Commission specifies that one of the two main goals of the proposal is to Increase the efficiency of public spending to ensure the best possible procurement outcomes in terms of value for money. With respect to the currently operating 2004 Procurement Directive [1], more oriented towards supporting the development of a unique EU market, the above Communication represents a notable step towards procurement efficiency and BVM. Such gradual shift from a uni-dimensional to a multi-dimensional decision problem, while allowing for a more thorough and complete evaluation of bidders offers, introduced further elements of complexity in procurement design. Indeed, in a 4
5 multi-criterion decision framework, the relative importance of the various components of an offer must be carefully evaluated since otherwise mis-representation of the buyer s preferences could seriously hinder procurements success. But what does pursuing BVM exactly mean, what are its merits and limitations, how can it be translated operationally? The answer to the above questions is composite. Pursuing BVM requires careful procurement design and planning, as well as monitoring, in all the three main procurement phases: that is before a procurement contract is awarded, at the time and after the contract is awarded. Before procurement takes place it is important for the buyer to foresee and design all the crucial subsequent steps. Which awarding criterion is best, if it is preferable to adopt an open or a restricted procedure, whether to negotiate with the potential suppliers or organize a competitive bidding, how to proceed in case of complex projects and, even more so, when procurement seeks for radically new solutions. Moreover, how to introduce the appropriate incentives-penalties schemes to prevent contract breaching and performance failure by the supplier, how to verify the proposed quality level before awarding the contract and how to monitor and enforce it while being delivered. How to allocate risks. How to avoid lock-in with a single supplier. These and other issues jointly contribute to the success of the procurement activities. Because of such multi-dimensional, complex, nature of procurement capturing and making operational the notion of best value for money may not be an easy task. It is worth noticing however that as broad a notion as it can be, excessive emphasis on BVM may be considered reductive for other purposes, in particular for a country development. For all these reasons the paper will focus on discussing the important issue of BVM in procurement, that is how to define the buyer s goal and how to make it operational. The paper is structured as follows. In section 2 we discuss the procurer s goal and ways to formalize it. Based on the buyer s goal Section 3 discusses the procurement outcome and how it depends upon both the buyer s preferences and the supplier s technology, in a life cycle perspective. Section 4 concludes the paper 5
6 2. The Procurer s Goal: Best value for money Procurement is an area where theory and practice naturally meet. The interaction is both ways since daily procurement design can benefit from the more robust theoretical findings, while practice can fruitfully feed academic research with new problems, suggestions and intuitions. An important example of such two ways interaction is the fundamental element of any successful procurement that is the appropriate specification of the procurer s goal. Above we introduced what s currently the most wide-spread way to express such goal among institutions and professionals, namely that successful procurement should deliver BVM. Because of its fundamental importance for procurement practice in this section, as well as in the next one, we discuss at length how to specify and formalize the procurer s goal and related issues, such as the possible consequences of its misspecification and the expected outcome of a procurement transaction. 2.1 Setting the Procurer s Goal Though, without further specification, pursuing BVM is a very general statement it does launch a first important message. That is that price is rarely going to be the only criterion for the buyer to select the contractor. Indeed, typically selection should take into account the two main dimensions of a procurement contract, price and quality, where quality is intended here in a very broad sense possibly taking many different forms in different procurements. In fact delivery time, degree of innovativeness, technical characteristics, physical robustness over a life span, color, CV of individuals working for the contractor, time to complete relevant tasks, as well as quantity, risks, are just few examples of qualitative aspects that could be introduced into procurement specifications. Whether a contractor is selected by competitive bidding or through forms of negotiated procedures, BVM can typically be captured by a Scoring Formula that is a formula translating into a single number, normally a dimensionless score, and the quality-price components of a tendered or negotiated offer. 6
7 From the point of view of the buyer this is nothing but a way to formalize his own preferences, over the quality-price space of alternatives, by introducing an objective function and its associated iso-score (indifference) curves. When the procurer does so it is because he or she is willing to trade-off quality for price, allowing potential suppliers with different characteristics to compete. More specifically, the procurer may be indifferent for example between receiving a high-quality, accompanied by a highprice, offer and a low-quality with a low-price proposal. Depending upon the buyer s need, that is his preferences, the scoring formula can take various forms. Below we are going to discuss three main families of such formulae, capturing a large part of possible preferences. However, prior to starting with the discussion we need to introduce some notation. Let =(,.., ) and = (,.., ) be, respectively, the dimensional vector of quality indexes and the dimensional vector of prices. In what follows, without losing much generality, to simplify the exposition both vectors will have a single element, that is they will be scalars. Finally, it is important to point out that not all the relevant qualitative dimensions of procurement can be easily captured in a formula, contracted upon and enforced. For example, an energy service contract specifying that temperature in the relevant rooms must be kept between 20 and 22 degrees Celsius can be formalized in a scoring rule, for instance awarding additional score points if the temperature is kept at 21 degrees and 2 points if kept at 22 degrees. However, in a contract for cleaning services the requirement that rooms must be cleaned may be difficult to formalize in a contract and to enforce. Typically, non-contractible quality of this kind poses specific problems that have to be addressed case-by-case The Additive Scoring Rule (ASR) In procurement practice, a widely adopted type of scoring rule is the following additive formula (,)=()+() (1) where (,) is the total score obtained by a bidder, expressed as a function of the quality-price pair (,) proposed by bidders, with 0 () (,) increasing in 7
8 the quality index and 0 () (,) decreasing in the price. Such properties typically generalize to scoring rules where and are vectors. The quality index and the price typically have different units of measurement and a scoring rule harmonizes the two components of the offer, allowing for their comparison, by expressing both of them as pure numbers. For instance, if the buyer is procuring desktop computers, then the quality index could be given by the screen size as measured in inches, or by other technical characteristics. Clearly, in this case the monetary and non-monetary component of an offer would be expressed by different units of measurement. This would not be a problem if, for any given pair of offers, one pair would always dominate the other, namely it would be preferable over both components. That is, if for any two offers =(,) and =(, ) it is > and < then ranking the proposals is simple and does not require a scoring rule. However, though such ranking based on dominance could be possible there is of course no guarantee that it would always be the case, and this is why scoring rules are introduced. However, it is useful to point out that assigning a score is clearly not the only way for comparing alternative offers and, indeed, what is important for the procurer is to be able to express the two components in the same unit of measurement. For example, when possible for the procurer, harmonization could be performed by expressing both components in euro. Therefore, (,) formalizes the goal of the buyer by translating his preferences into a formula. In particular, formula (1) expresses the idea that in the buyer s preferences the scores of the monetary and quality dimensions substitute each other at the same rate. That is, the buyer is willing to trade a unit of monetary score against a unit of non-monetary score, at any value of the two scores. More formally, the marginal rate of substitution between the two score components () = 1 is constant () and the same, both along a single iso-score curve as well as across different iso-scores. Notice that this does not typically mean that one unit of trades with one unit of the quality index. Moreover, fixing the total score at a certain level (,)=, and assuming the function () to be invertible, the equation 8
9 = ( ()) expresses the iso-score (indifference) curves in the space (,), that is the set of pairs (,) providing the same score to the procurer, namely the same level of satisfaction (welfare) as formalized by the number. As usual, the marginal rate of substitution between and is the slope of the iso-score curves. Suppose for example that in a competitive tendering procedure points are assigned to a price offer according to the following formula ()=80 (1) where is the minimum price received by the procurer, that 0 ()=2 20 and =70. Then the equation = describes the set of pairs (,) providing the buyer with an overall score of =70. Notice that, in this particular example, the exact form and position of an iso-score curve is defined only after the procurer received all the offers, since it depends on the minimum submitted price. When scores are assigned as in(1), and analogous considerations could be made for quality, bidders would not know when they submit their offers which score they will obtain with their price. This is because scores are based on relative, rather than absolute, price levels which would cause strategic uncertainty making the scoring formula more exposed to collusive behavior. If instead, for example, rather than (1) the monetary component of an offer would be assigned the score ()=80 ( ) (1) where 0 is the reserve, maximum, acceptable price for the procurer then, when submitting, bidders would know exactly the score associated to any price level they could offer. For instance, if =200 and =100 then ()=40. When buyers adopt 9
10 a scoring formula such as (1), shape and position of the iso-score curves are uniquely determined in the (,) space. To summarize, when the score assignment depends on all the offers submitted to the procurer then the strategic connotation of the procurement increases since bidders need to form expectations, conjectures, on what their competitors will present in order to figure out what score they could obtain. Finally, the following further point is also worth making. While formulae such as (1) always assign the maximum score reserved to the monetary component, scoring rules such as (1) do so only for particular values of the price, in the example when the submitted price is equal to the reserve price. Often, though not always, in procurement practice (,) [0,100] where () [0,] and () [0,100 ], with [0,100]. In the above example =20, because the maximum score that could be assigned to the price component of the offer is 80, obtained by the bidder who proposes the minimum price =. Given the additive structure of the scoring rule, the form of () and () provide different incentives to the bidders for competing more on the monetary, rather than on the non-monetary, component of the offer and vice versa. In particular both the shape of () and () as well as the value of would affect bidders behavior in this sense. More specifically, setting a high would induce bidders to compete on quality, rather more than on price, presenting good quality proposals if they wish to have reasonable chances to win. Indeed, the value of reflects the importance (weight) assigned by the procurer to quality versus price, according to his own preferences. But also the structure of () and () plays an important part in driving the competition. Indeed, consider again the two previous scoring rules concerning price. and ()=(100 ) 10
11 ( )=(100 ) ( ) They can give rise to very different score assignment. In fact, suppose for example that =200 and that in a competitive tendering it is =100. Then, a bidder offering =180 receives (=180)=(100 ) =(100 ) (100 ) () points according to the first scoring rule and ( =180)= =(100 ) according to the second scoring rule, which is different from (100 ) unless =100. Finally, for completeness, it should be noted that different scoring rules may give rise to different bidding behavior and that proper comparison should also account for strategic reasoning The Multiplicative Scoring Rule (MSR) Alternatively, if in the procurer s preferences price and quality scores would not replace each other at a constant rate, the scoring formula may be given by (,)=()() (2) formalizing the idea that now () and () while still substitutes are also partly complements since, assuming (=0)=0 and (=)=0, both of them would be needed to generate a positive score. That is, the procurer in this case is willing to trade points related to the monetary component with points assigned to quality, however at a rate of substitution between the two score components given by () () = () () which is no longer constant but varies along the iso-score curves. This is when the procurer is more willing to replace monetary savings with quality if the price offer is particularly aggressive (low price), or more willing to forego quality in exchange of further savings if quality is high. Finally notice that the multiplicative rule could be transformed into an additive one by taking logarithms on both sides of (2) The Leontieff Scoring Rule (LSR) 11
12 In case () and () are perfect complements the scoring rule could be (,)= (),() (3) formalizing the idea that the overall score, level of welfare, can increase only if both components of the scoring formula increase. This would capture a procurer interested in a balanced competitive bidding outcome, where savings and quality are both requested. In this sense, one component cannot replace the other and the marginal rate of substitution among the two scores is either zero or infinity. Assuming () invertible, in the (,) space the iso-score curves have kinks at points = (()). Below we shall see that this is where choice is likely to be made by bidders for rather general forms of their profit functions Other types of Scoring Rules For the sake of completeness, though uncommon in procurement practice, in this section we briefly mention two further types of scoring rules. The first one (,)= (),() (4) would further emphasize complete substitutability between () and () inherent in (1) capturing the preferences of a procurer available to swap completely quality with price and vice versa. As we shall further elaborate below, such buyer would induce bidders to fully exploit and focus on their strengths. The other class of scoring rules (,)= () () (5) ; (,)= () () (5) may be seen as reformulations of (2). Indeed, by defining (,)=log(,),()=log(), ()=log(), equations (5) and (5) become, respectively, 12
13 (,)=()() (6); (,)= ()() (6) The two scoring rules capture preferences where, for example, the positive effect of a quality or price offer is magnified (exponentially rather than multiplicatively) by the other component. 2.3 The Formation of Preferences But how is the buyer forming his own preferences, that is according to which criteria do price and quality transform into scores? When the item being procured is available on the market it is natural for the buyer to take its market price as benchmark for structuring his own preferences, then asking potential suppliers to improve upon the market conditions in a negotiated, or competitive tendering, procedure. The procurer may certainly have different qualityprice preferences from the ones prevailing in the market. However, for each quality level that he may be willing to accept the procurer could not prefer to pay more than the market price. He would obviously wish to pay less but, if too much less, he should also be prepared to receive no offer if no potential supplier could cover the costs. To illustrate the point, take again the previous example and suppose that in a competitive tendering the quality level index is fixed by the buyer at =2, with the most efficient supplier having as cost function ()=. Then, if the reserve (maximum) price is set at <4, no supplier could cover his own costs, that is make non negative profits. Therefore, unless the supplier has a way to compensate his losses he may not submit an offer. 3 The Procurement Outcome Once the procurer s goal is defined and formalized by a scoring formula, we have argued how the specific form of () and () provide different incentives for the potential suppliers, whether in a competitive tendering or negotiated procedure, to focus on the monetary component rather than on quality, or vice versa. For this reason, the final outcome of a procurement will not only depend upon the buyer s preferences but also on the potential suppliers cost structure. Below we are going to discuss this point. 13
14 Suppose, for example, that ()= is the cost function of a supplier for delivering quality, with its profit function given by Π(,)= ()= (7) while (,;)=()+()= h >0 (8) Notice that the iso-score curves = are straight lines in the (,) space, with the overall score affecting their intercept but not their slope [5,6,7]. As a consequence, also the rate of substitution between and is the same, within and across different iso-score curves. Then the maximum score (), that is the optimal level of welfare the procurer could enjoy when interacting with this provider, can be obtained by imposing the following zero-profit condition Π(,)= =0 = (9) and plugging (9) into (8). Solving (;)= we obtain that the optimal (for the procurer) quality level would be given by = and the best price (still for the procurer) by =. This would give rise to the maximum, obtainable, score ()= 2 4 = 2 expressed as a quadratic, increasing, function of the quality weight. Consider now a potential supplier with a different cost function, equal to ()=. Hence, the maximum score the procurer could obtain solves the following problem (;)= 14
15 giving rise to the optimal quality level =, which in general differs from. The highest score achievable by the buyer in this case would be ()=2 3 Therefore, given the procurer s preferences the best possible welfare level that he can obtain depends also on the contractor s technology, that is on his cost function. In particular, if < then ()> () and vice versa. The underlying intuition is simple. In going from ()= to ()= the production technology becomes more efficient for very low quality levels, 0<<1 and less efficient for high quality levels >1. Hence, the procurer s maximum score (welfare) could only increase if he assigns sufficiently low importance (low ) to quality. Indeed, if the buyer considers the non-monetary component important (high ) then a relatively less efficient supplier could provide high quality but only at high costs, which would lower the buyer s total score. More in general if ()=, with >1 it immediate to see that the optimal quality would be given by ()=( ) and the best possible score by (())=( 1)( ). By the envelope theorem it is easy to check that (()) <0, for >1, which generalizes the previous considerations. equal to Analogously, suppose now the procurer s preferences would be different and () (,;)=() = 0 0 =0= a scoring rule formalizing a buyer particularly interested in inducing price competition. In fact, unlike the previous example, for such scoring rule the iso-score curves would still be given by straight lines =, always going through the origin where now the score affects the slope, and not the intercept, of the lines. This is why with both 15
16 ()= and ()=, and more in general ()= with >1, the maximum score would be obtainable with a very low price as well as low quality. Notice that the same conclusion may not hold for alternative cost functions. Indeed, if there would also be fixed costs and, for example, ()= + still with >1 and where >0 is the fixed cost, then the score maximizing quality level would solve (+ ) =0 leading to ()=( ), which is positive and sufficiently high as gets close to 1 and, in this case, also the related price would be high. Finally, suppose that (,;)=, then, in the (,) space, iso-score curves have kinks along the function =, obtained by solving the equation =. Thus, if the winning bidder has cost function ()=, the total score is maximized solving the equality = =, from which =() and =() so that the maximum obtainable score is ()= (), typically different from ()= concave in. and unlike the previous examples For completeness, before proceeding, we conclude noticing that if (,;)=, still with ()= the total score has no maximum since it is increasing in and decreasing in. Notice that the same conclusion would hold also with fixed costs ()= +. 16
17 To summarize, though simple the above examples illustrate that the outcome of a procurement transaction would in general depend both upon the buyer s preferences and the potential supplier s technology. Therefore, it is crucial for the procurer to clarify his own preferences and appropriately translate them into a scoring formula, for the bidders to present offers consistent with the buyer s desiderata. If this is not done then the procurer may face the risk of suffering serious welfare losses. Below we illustrate this point. For example, suppose the true procurer s preferences are represented by (,;)=3 but that by mistake he thinks his preferences are given by (,;)=2. Further, suppose the procurer would become aware of this mistake only after the transaction is made. Then, if ()= the highest possible score in the first case would be 4,5 while in the second case 2. Therefore, if the buyer is unaware that he effectively likes quality more than he thinks then, for instance, in a negotiated procedure he might be relatively softer than he could have been when bargaining with the counterpart, potentially suffering a welfare loss that we could quantify with the difference in the maximum score 4,5 2=2,5. How could the loss of points in the score be interpreted in this case? The scoring rule correctly representing the procurer s preferences provides an answer. Indeed, suppose again (,;)=3 is the true scoring rule. Hence, for example, considering the indifference curve related to (,;)=0 it follows that =3, that is each unit of quality is worth on average 3 units of the monetary component of the offer. Therefore the monetary equivalent, for the buyer, to a loss of 2,5 points in the maximum score is precisely 2,5, that is the monetary value of a quality index level of =, =0,83. With a non-linear scoring rule the interpretation of the monetary value of a score may be more articulated. Indeed, suppose now the scoring rule representing true preferences is (,;)= when the procurer thinks it to be (,;)=. If ()= then, unlike the previous example with linear scoring rule, in this case imposing the zero profit condition for the ratios and becomes, respectively, and, with their difference being always positive and increasing as gets small. Fixing 17
18 again the total score level (,;)=, the iso-cost curves are now given by (,;)== so that the marginal rate of substitution, namely the slope of the iso-cost, would vary across different iso-cost curves. As above, suppose that =3 represents the true preferences of the buyer for quality and fix =300; then =. If instead =150 then =, that is the monetary value of a unit of quality index would be constant along the same iso-cost curve but different across alternative iso-cost lines. In particular, the higher the total score the lower the monetary value of a loss in the score. In the previous section we discussed how the market price for a good or service could serve as reference to form the buyer s preferences and structure. However, even if there is a market price available for setting up a scoring rule, the buyer is never completely informed about the production and delivery costs of a firm, which could diverge even meaningfully from the market price, in particular when markets are imperfectly competitive. In this case, as in the previous example, the scoring rule adopted by the buyer could also serve as a mechanism to induce potential suppliers to bid as near as possible to their costs, for each given quality level. But how close to costs could the procurer expect suppliers to bid? Previously we discussed the maximum score (level of welfare) the procurer can obtain. However it is the bidders strategic behavior, in a competitive bidding or negotiation, that will determine the final score. Indeed, consider a competitive tendering with bidders cost function are now given by (;)=, where >0 is a cost parameter characterizing each firm. So, more efficient firms will have lower values of. Further, suppose still that (,;)= and that Π(,;)= is a bidding firm profit function. Then, to gain an understanding on how firms could behave notice first that for any score level = it would be optimal for a participant to submit a quality level solving the following problem = 2 18
19 that is = (10) which is increasing with and decreasing in the cost parameter. As previously mentioned, it is also worth reminding that given the form of the scoring rule adopted by the procurer the optimal quality level, for both the score and the profit function, = is independent of the score. This may not be the case with alternative scoring rules. For example, if (,;)= obtained by solving the problem leading to then the optimal quality for the supplier can be = 2 = (10) which depends upon. Therefore, the quality offered would vary with the total score that a bidder wants to achieve. In the above example, the higher the score the lower the quality level submitted because, in doing so, the bidder could decrease the price and raise the score. Consider again (,;)= and assume bidders to be informed about each other s value of. Modeling the competitive bidding as an auction game it is immediate to see that the contest will be won by the most efficient firm, the one with lowest cost parameter =, offering a quality level as in (10) and a price slightly higher than = (2 ) 2 (11) with <, where is the second lowest cost parameter. In this case, the procurer would enjoy an overall score of about 19
20 = 2 Indeed, under our informational assumptions the most efficient firm offering = could win the competition by submitting a monetary component of the offer above the zero profit price, = 2 which provides a total score of >. The strict inequality suggests that there is a margin, for the most efficient bidder, to win at more favorable conditions, that he could exploit by raising appropriately the monetary component of his offer. He could do so by submitting a price slightly above (11), to lower his score and still win enjoying a strictly positive profit. If under the above informational assumptions this outcome sounds plausible it is important to point out that there could be other possibilities. For example, by making sure this would not lead to his winning the contract, the second most efficient bidder may still submit = but offering a price to obtain a score such that < <, below the maximum possible score however above his own zero profit score. In this case, the most efficient firm could obtain a score by offering a price such that < < < and still win, however now enjoying a lower profit. Which outcome would eventually prevail depends upon the degree of competitive pressure that less efficient bidders intend to put on the most efficient one. Clearly, the higher the degree of competition that would develop the higher the total score, and so the larger the benefits for the procurer. That firms know each other costs can be an acceptable assumption when they have been interacting in the same market for some time. Indeed market interaction would, if not completely at least partially, transfer information on each other s delivery abilities and related costs. However, in a number of circumstances it may be implausible to assume that bidders know each other cost structure and, in this case, it becomes more difficult to gain an understanding of plausible outcomes. If bidders 20
21 compete genuinely, that is do not collude, then they would need to outguess competitors costs before deciding their own offer. Such bidders conjectures can typically be formalized as probability distributions over the possible cost values of the competitors. This incomplete information analysis would then become technically and conceptually more involved and give rise to bidding functions, namely profit maximizing equilibrium bids expressed as function of a bidder s own cost parameter. Besides choosing the scoring rule, how can a buyer design the procurement to receive an offer as close as possible to the best possible one, which implies zero profit for the winning bidder? That is, how can the buyer extract as much surplus as possible from the winning bidder? Should the procurer know the bidders cost function then it could appropriately design a competitive tendering procedure to do so. Suppose, to simplify, that quality (quantity) is fixed and specified by the procurement documents. Moreover, suppose the buyer knows that, among the participants, the lowest cost to deliver the contract would be. Then, by organizing a lowest price sealed-bid competitive tendering procedure the procurer could introduce a reserve price =+, with >0 small enough so that the most efficient participant will find it profitable to participate and submit a price offer such that <<+= with which he could win the auction but, at the same time, transfer most of his surplus to the buyer. However, as we discussed earlier, it is often difficult for the procurer to know the bidders cost function, and consequently to gain reliable information on how to determine the reserve price. His may be a problem since if is too low then no bidder may find it profitable to submit a price offer as they may be unable to cover their costs, while if is too high then the winner can obtain the contract at a price which is relatively higher than the lowest one that he could have paid. When possible, is fixed by estimating the average market price for that good, service, in the market. That is, in this case represents the price the buyer pays in case he does not organize a procurement but purchases directly from the market. Indeed, spending more than the average market price would be a very inefficient way to procure. However, under certain conditions it may be more profitable for the buyer to set even below the average market price. This is because if bidders (as well as the buyer) do not know each other costs a lower could induce their price offer to be more 21
22 aggressive, since they would now be certain to compete only against the most efficient opponents, those with sufficiently low costs [8]. 3.1 Life Cycle Perspective In the previous sections we discussed the reserve price and its role, however without entering into further details on how it should be computed. A point of view that is increasingly gaining importance is that costs, as well as benefits, whenever possible should be calculated taking a life cycle perspective. This is, again, particularly emphasised by the recent 2011 Communication of the European Commission. That is, for example, when estimating the costs for the provision of goods-services, the analysis should account for the expected time duration of the relevant goods-services, and in any case the full profile of costs and benefits for the whole time length of the contract. To illustrate the point consider the following example. Suppose an organization needs to change its IT system. To do so it organizes a competitive bidding procedure, receiving two proposals: project A and B. Both projects have an expected life time of years (more in general dates), meaning that within this time horizon they are neither expected to have major technical problems nor technical obsolescence will be a main issue. Further, to simplify the exposition without losing much generality, assume that the two systems have the same overall quality but their costs are as follows. System has an initial cost of () euro and then a yearly maintenance cost of () euro, while system initially costs () and has yearly maintenance cost of (). Which of the two systems is preferable? What sources of cost should be considered? The answer would be easy if one system has both lower initial costs and lower maintenance costs, since being preferable in both components would dominate the competing project. But what if ()> () and ()<()? Should system be selected because of its lower initial cost or should maintenance costs be also considered, and if yes how? The appropriate approach to the issue is to consider both sources of expenditures, in a lifecycle perspective. More specifically, the life-cycle cost of system could be computed as follows ()= ()+ ()= ()+() (1 ) (1 ) and, analogously 22
23 ()= ()+ ()= ()+() ( ) () where 0<= <1 is the discount factor and 0 the discount rate. It is immediate to verify that project would be less expensive, and so preferable, if (1 ) (1 ) > () () () () suggesting that, for given initial costs and discount factor, there always exist large enough values of () such that the inequality is satisfied. That is, even if project would have lower initial costs its maintenance costs could more than counterbalance them favoring the adoption of project. Similarly, for given initial and maintenance costs, project can be preferable for a long enough time horizon provided that the difference () () is sufficiently larger than () (). Finally the two extreme values of =0, formalizing full impatience, and = 1, complete patience by the procurer are easier to deal with. Indeed, the former case would be a decision based only on initial costs, while the latter implies that preference of over is when () () <() () that is when the differential between maintenance costs is higher than the average difference between the initial costs. Hence, in this case, there would always exist a large enough such that the inequality is satisfied. An additional cost component that may require consideration when taking a life cycle perspective are the switching, migration, costs from a current system to a future one. Estimating such costs is not a simple task since, notably when the expected time duration of a system is long enough, it may be very difficult to foresee which system could replace it in the future and how much it could cost to do so. However, in the previous example, the initial degree of compatibility and openness with other standards of system versus system could already be an indicator of such source of cost. 23
24 Indeed, suppose now that switching to a different system may occur at any date >0, that () and () are the switching costs, 0<<1 and 0<<1 the probability of switching to a new system, respectively, for system and system, at any single date. Assuming the event of switching at time is independent of switching at +1, for any, then the life cycle costs of system are now given by ()= ()+ (1 ) [ ()+ (()+())] and analogously for system. Because of the higher number of parameters involved the decision now can be more articulated. In particular, everything else being the same, if for a project the probability and the cost of switching are sufficiently high then the alternative proposal may be favored. 4. Conclusions The paper provides a broad discussion of the notion of best value for money in the context of procurement. The idea is typically made operational by introducing monetary and non-monetary components in a procurement offer. This introduces heterogeneous variables, with different units of measurement, which are then made comparable by associating dimensionless scores to each element of an offer. Proposals are then ranked on the basis of such scoring rules, which formalize the procurer s preferences over alternative monetary and non-monetary profiles of a proposal. The work consider some main classes of preferences for the buyer, arguing that the final outcome of a procurement transaction, whether a competitive or negotiated procedure, depends both upon the buyer s preferences and the winning supplier s cost structure. Finally, following a recent European Communication proposal for a new Public Procurement Directive we underline how monetary evaluations should incorporate a life cycle perspective, in other words consider the flow of relevant sums throughout the contract duration. 24
25 References 1 DIRECTIVE 2004/18/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 March 2004 on the coordination of procedures for the award of public works contracts, public supply contracts and public service contracts 2 Public Governance Committee, (2008) PPP: in pursuit of risk sharing and value for money. OECD. 3 COMMUNICATION COM (2011) 896 Final. Proposal for a Directive of the European Parliament and of the Council on/ Public Procurement. 4 McDonald O., Government procurement, development and World Bank conditionalities G-24 Policy Brief No Che Y. (1993) "Design Competition through Multi-Dimensional Auctions." RAND Journal of Economics, 24, Branco F., (1997) "The Design of Multidimensional Auctions." RAND Journal of Economics, 28, Asker J., Cantillon E., (2008), Properties of Scoring Auctions, Rand Journal of Economics, 39, Krishna V., (2009), Auction Theory (2 nd Ed.), Academic Press. 25
ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
Chapter 7 Monopoly, Oligopoly and Strategy
Chapter 7 Monopoly, Oligopoly and Strategy After reading Chapter 7, MONOPOLY, OLIGOPOLY AND STRATEGY, you should be able to: Define the characteristics of Monopoly and Oligopoly, and explain why the are
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
Multi-variable Calculus and Optimization
Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Chapter 7. Sealed-bid Auctions
Chapter 7 Sealed-bid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)
Microeconomics Topic 3: Understand how various factors shift supply or demand and understand the consequences for equilibrium price and quantity.
Microeconomics Topic 3: Understand how various factors shift supply or demand and understand the consequences for equilibrium price and quantity. Reference: Gregory Mankiw s rinciples of Microeconomics,
A Detailed Price Discrimination Example
A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
Supplement Unit 1. Demand, Supply, and Adjustments to Dynamic Change
1 Supplement Unit 1. Demand, Supply, and Adjustments to Dynamic Change Introduction This supplemental highlights how markets work and their impact on the allocation of resources. This feature will investigate
Hybrid Auctions Revisited
Hybrid Auctions Revisited Dan Levin and Lixin Ye, Abstract We examine hybrid auctions with affiliated private values and risk-averse bidders, and show that the optimal hybrid auction trades off the benefit
ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY 100-3 90-99 21 80-89 14 70-79 4 0-69 11
The distribution of grades was as follows. ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY Range Numbers 100-3 90-99 21 80-89 14 70-79 4 0-69 11 Question 1: 30 points Games
Sample Midterm Solutions
Sample Midterm Solutions Instructions: Please answer both questions. You should show your working and calculations for each applicable problem. Correct answers without working will get you relatively few
The Basics of Game Theory
Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #7 The Basics of Game Theory Friday - November 5, 2004 OUTLINE OF TODAY S RECITATION 1. Game theory definitions:
Elasticity. I. What is Elasticity?
Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in
Games of Incomplete Information
Games of Incomplete Information Jonathan Levin February 00 Introduction We now start to explore models of incomplete information. Informally, a game of incomplete information is a game where the players
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Chapter 25: Exchange in Insurance Markets
Chapter 25: Exchange in Insurance Markets 25.1: Introduction In this chapter we use the techniques that we have been developing in the previous 2 chapters to discuss the trade of risk. Insurance markets
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
The Stewardship Role of Accounting
The Stewardship Role of Accounting by Richard A. Young 1. Introduction One important role of accounting is in the valuation of an asset or firm. When markets are perfect one can value assets at their market
Examples on Monopoly and Third Degree Price Discrimination
1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
Economics of Insurance
Economics of Insurance In this last lecture, we cover most topics of Economics of Information within a single application. Through this, you will see how the differential informational assumptions allow
ECON 600 Lecture 5: Market Structure - Monopoly. Monopoly: a firm that is the only seller of a good or service with no close substitutes.
I. The Definition of Monopoly ECON 600 Lecture 5: Market Structure - Monopoly Monopoly: a firm that is the only seller of a good or service with no close substitutes. This definition is abstract, just
Trade and Resources: The Heckscher-Ohlin Model. Professor Ralph Ossa 33501 International Commercial Policy
Trade and Resources: The Heckscher-Ohlin Model Professor Ralph Ossa 33501 International Commercial Policy Introduction Remember that countries trade either because they are different from one another or
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Next Tuesday: Amit Gandhi guest lecture on empirical work on auctions Next Wednesday: first problem set due
Econ 805 Advanced Micro Theory I Dan Quint Fall 2007 Lecture 6 Sept 25 2007 Next Tuesday: Amit Gandhi guest lecture on empirical work on auctions Next Wednesday: first problem set due Today: the price-discriminating
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Chapter 6 Competitive Markets
Chapter 6 Competitive Markets After reading Chapter 6, COMPETITIVE MARKETS, you should be able to: List and explain the characteristics of Perfect Competition and Monopolistic Competition Explain why a
Market Structure: Perfect Competition and Monopoly
WSG8 7/7/03 4:34 PM Page 113 8 Market Structure: Perfect Competition and Monopoly OVERVIEW One of the most important decisions made by a manager is how to price the firm s product. If the firm is a profit
Oligopoly and Strategic Pricing
R.E.Marks 1998 Oligopoly 1 R.E.Marks 1998 Oligopoly Oligopoly and Strategic Pricing In this section we consider how firms compete when there are few sellers an oligopolistic market (from the Greek). Small
The Free Market Approach. The Health Care Market. Sellers of Health Care. The Free Market Approach. Real Income
The Health Care Market Who are the buyers and sellers? Everyone is a potential buyer (consumer) of health care At any moment a buyer would be anybody who is ill or wanted preventive treatment such as a
Chapter 9. Auctions. 9.1 Types of Auctions
From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/
Asymmetric Information
Chapter 12 Asymmetric Information CHAPTER SUMMARY In situations of asymmetric information, the allocation of resources will not be economically efficient. The asymmetry can be resolved directly through
Managerial Economics
Managerial Economics Unit 8: Auctions Rudolf Winter-Ebmer Johannes Kepler University Linz Winter Term 2012 Managerial Economics: Unit 8 - Auctions 1 / 40 Objectives Explain how managers can apply game
c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.
Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions
The Public Contracts Regulations 2015 Guidance on Awarding Contracts
The Public Contracts Regulations 2015 Guidance on Awarding Contracts 1 P a g e Crown Commercial Service, Customer Service Desk: 0345 410 2222 www.gov.uk/ccs follow us on Twitter connect with us on LinkedIn
ANSWERS TO END-OF-CHAPTER QUESTIONS
ANSWERS TO END-OF-CHAPTER QUESTIONS 23-1 Briefly indicate the basic characteristics of pure competition, pure monopoly, monopolistic competition, and oligopoly. Under which of these market classifications
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
Understanding Equilibrium in the IS/LM Model
Understanding Equilibrium in the IS/LM Model 1995 version Prof. Humberto Barreto 1 Introduction: This brief work is designed to provide additional ammunition for the student in the ongoing war against
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
ACTUARIAL NOTATION. i k 1 i k. , (ii) i k 1 d k
ACTUARIAL NOTATION 1) v s, t discount function - this is a function that takes an amount payable at time t and re-expresses it in terms of its implied value at time s. Why would its implied value be different?
6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games
6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games Asu Ozdaglar MIT February 4, 2009 1 Introduction Outline Decisions, utility maximization Strategic form games Best responses
8 Multi-contract tendering procedures and
8 Multi-contract tendering procedures and package bidding in procurement Nicola Dimitri, Riccardo Pacini, Marco Pagnozzi and Giancarlo Spagnolo 8.1. Introduction 193 In practical procurement, the most
Lecture 28 Economics 181 International Trade
Lecture 28 Economics 181 International Trade I. Introduction to Strategic Trade Policy If much of world trade is in differentiated products (ie manufactures) characterized by increasing returns to scale,
NPV Versus IRR. W.L. Silber -1000 0 0 +300 +600 +900. We know that if the cost of capital is 18 percent we reject the project because the NPV
NPV Versus IRR W.L. Silber I. Our favorite project A has the following cash flows: -1 + +6 +9 1 2 We know that if the cost of capital is 18 percent we reject the project because the net present value is
USES OF CONSUMER PRICE INDICES
USES OF CONSUMER PRICE INDICES 2 2.1 The consumer price index (CPI) is treated as a key indicator of economic performance in most countries. The purpose of this chapter is to explain why CPIs are compiled
Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
Profit Maximization. 2. product homogeneity
Perfectly Competitive Markets It is essentially a market in which there is enough competition that it doesn t make sense to identify your rivals. There are so many competitors that you cannot single out
2. Information Economics
2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many
Capital Structure. Itay Goldstein. Wharton School, University of Pennsylvania
Capital Structure Itay Goldstein Wharton School, University of Pennsylvania 1 Debt and Equity There are two main types of financing: debt and equity. Consider a two-period world with dates 0 and 1. At
Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).
Chapter 4 Put-Call Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.
Developing a Public-Private Partnership Framework: Policies and PPP Units
Note 4 May 2012 Developing a Public-Private Partnership Framework: Policies and PPP Units This note is the fourth in a series of notes on developing a comprehensive policy, legal, and institution framework
CHAPTER 4 Consumer Choice
CHAPTER 4 Consumer Choice CHAPTER OUTLINE 4.1 Preferences Properties of Consumer Preferences Preference Maps 4.2 Utility Utility Function Ordinal Preference Utility and Indifference Curves Utility and
MONOPOLIES HOW ARE MONOPOLIES ACHIEVED?
Monopoly 18 The public, policy-makers, and economists are concerned with the power that monopoly industries have. In this chapter I discuss how monopolies behave and the case against monopolies. The case
c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?
Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
tariff versus quota Equivalence and its breakdown
Q000013 Bhagwati (1965) first demonstrated that if perfect competition prevails in all markets, a tariff and import quota are equivalent in the sense that an explicit tariff reproduces an import level
ECON 40050 Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted.
1 ECON 40050 Game Theory Exam 1 - Answer Key Instructions: 1) You may use a pen or pencil, a hand-held nonprogrammable calculator, and a ruler. No other materials may be at or near your desk. Books, coats,
PART A: For each worker, determine that worker's marginal product of labor.
ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART
1. Briefly explain what an indifference curve is and how it can be graphically derived.
Chapter 2: Consumer Choice Short Answer Questions 1. Briefly explain what an indifference curve is and how it can be graphically derived. Answer: An indifference curve shows the set of consumption bundles
Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras
Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture - 41 Value of Information In this lecture, we look at the Value
ECON 443 Labor Market Analysis Final Exam (07/20/2005)
ECON 443 Labor Market Analysis Final Exam (07/20/2005) I. Multiple-Choice Questions (80%) 1. A compensating wage differential is A) an extra wage that will make all workers willing to accept undesirable
AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction
AN ANALYSIS OF A WAR-LIKE CARD GAME BORIS ALEXEEV AND JACOB TSIMERMAN Abstract. In his book Mathematical Mind-Benders, Peter Winkler poses the following open problem, originally due to the first author:
Ch. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma
2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
Chapter 21: The Discounted Utility Model
Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal
Module 49 Consumer and Producer Surplus
What you will learn in this Module: The meaning of consumer surplus and its relationship to the demand curve The meaning of producer surplus and its relationship to the supply curve Module 49 Consumer
1 Error in Euler s Method
1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of
A public good is often defined to be a good that is both nonrivalrous and nonexcludable in consumption.
Theory of Public Goods A public good is often defined to be a good that is both nonrivalrous and nonexcludable in consumption. The nonrivalrous property holds when use of a unit of the good by one consumer
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Note on growth and growth accounting
CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis
Constructing a TpB Questionnaire: Conceptual and Methodological Considerations
Constructing a TpB Questionnaire: Conceptual and Methodological Considerations September, 2002 (Revised January, 2006) Icek Ajzen Brief Description of the Theory of Planned Behavior According to the theory
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Chapter 4 Online Appendix: The Mathematics of Utility Functions
Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that
Keynesian Macroeconomic Theory
2 Keynesian Macroeconomic Theory 2.1. The Keynesian Consumption Function 2.2. The Complete Keynesian Model 2.3. The Keynesian-Cross Model 2.4. The IS-LM Model 2.5. The Keynesian AD-AS Model 2.6. Conclusion
Lecture Notes on Elasticity of Substitution
Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before
A LEVEL ECONOMICS. ECON1/Unit 1 Markets and Market Failure Mark scheme. 2140 June 2014. Version 0.1 Final
A LEVEL ECONOMICS ECON1/Unit 1 Markets and Market Failure Mark scheme 2140 June 2014 Version 0.1 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
REVIEW OF MICROECONOMICS
ECO 352 Spring 2010 Precepts Weeks 1, 2 Feb. 1, 8 REVIEW OF MICROECONOMICS Concepts to be reviewed Budget constraint: graphical and algebraic representation Preferences, indifference curves. Utility function
Understanding Currency
Understanding Currency Overlay July 2010 PREPARED BY Gregory J. Leonberger, FSA Director of Research Abstract As portfolios have expanded to include international investments, investors must be aware of
Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
Web Appendix for Reference-Dependent Consumption Plans by Botond Kőszegi and Matthew Rabin
Web Appendix for Reference-Dependent Consumption Plans by Botond Kőszegi and Matthew Rabin Appendix A: Modeling Rational Reference-Dependent Behavior Throughout the paper, we have used the PPE solution
Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility.
Lecture 6: Income and Substitution E ects c 2009 Je rey A. Miron Outline 1. Introduction 2. The Substitution E ect 3. The Income E ect 4. The Sign of the Substitution E ect 5. The Total Change in Demand
Duration and Bond Price Volatility: Some Further Results
JOURNAL OF ECONOMICS AND FINANCE EDUCATION Volume 4 Summer 2005 Number 1 Duration and Bond Price Volatility: Some Further Results Hassan Shirvani 1 and Barry Wilbratte 2 Abstract This paper evaluates the
Building Capital Projects in Tough Times John Lynch, State of Washington
Building Capital Projects in Tough Times John Lynch, State of Washington Published as a joint effort of the National Association of State Facilities Administrators (NASFA) and the Associated General Contractors
About the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
This means there are two equilibrium solutions 0 and K. dx = rx(1 x). x(1 x) dt = r
Verhulst Model For Population Growth The first model (t) = r is not that realistic as it either led to a population eplosion or to etinction. This simple model was improved on by building into this differential
Demand, Supply, and Market Equilibrium
3 Demand, Supply, and Market Equilibrium The price of vanilla is bouncing. A kilogram (2.2 pounds) of vanilla beans sold for $50 in 2000, but by 2003 the price had risen to $500 per kilogram. The price
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
MEASURING A NATION S INCOME
10 MEASURING A NATION S INCOME WHAT S NEW IN THE FIFTH EDITION: There is more clarification on the GDP deflator. The Case Study on Who Wins at the Olympics? is now an FYI box. LEARNING OBJECTIVES: By the
