Homogeneous Charge Compression Ignition the future of IC engines?
|
|
|
- Arthur Hoover
- 9 years ago
- Views:
Transcription
1 Homogeneous Charge Compression Ignition the future of IC engines? Prof. Bengt Johansson Lund Institute of Technology at Lund University ABSTRACT The Homogeneous Charge Compression Ignition Engine, HCCI, has the potential to combine the best of the Spark Ignition and Compression Ignition Engines. With high octane number fuel the engine operates with high compression ratio and lean mixtures giving CI engine equivalent fuel consumption or better. Due to premixed charge without rich or stoichiometric zones, the production of soot and NOx can be avoided. This paper presents some results from advanced laser diagnostics showing the fundamental behaviour of the process from a close to homogeneous combustion onset towards a very stratified process at around 20-50% heat released. The need for active combustion control is shown and possible means of control are discussed. Results with multi-cylinder engines using negative valve overlap, variable compression ratio, fast inlet temperature control as well as dual fuel are given. INTRODUCTION The internal combustion engine is the key to the modern society. Without the transportation performed by the millions of vehicles on road and at sea we would not have reached the living standard of today. We have two types of internal combustion engines, the spark ignition, SI, and the compression ignition, CI. Both have their merits. The SI engine is a rather simple product and hence has a lower first cost. This engine type can also be made very clean as the three-way catalyst, TWC, is effective for exhaust aftertreatment. The problem with the SI engine is the poor part load efficiency due to large losses during gas exchange and low combustion and thermodynamical efficiency. The CI engine is much more fuel efficient and hence the natural choice in applications where fuel cost is more important than first cost. The problem with the CI engine is the emissions of nitrogen oxides, NOx, and particulates, PM. Aftertreatment to reduce NOx and particulates is expensive and still not generally available on the market. The obvious ideal combination would be to find an engine type with the high efficiency of the CI engine and the very low emissions of the SI engine with TWC. One such candidate is named Homogeneous Charge Compression Ignition, HCCI. The fuel efficiency of HCCI has been compared to that of normal SI operation by Stockinger et al. [1]. Figure 1 shows that they noted an improvement of fuel efficiency from 15% to 30% at 1.5 bar BMEP. This is an improvement of 100% equivalent to a reduction of fuel consumption with 50%. More recently Yang et al. presented a comparison between HCCI, denoted OKP, and normal SI and direct injected SI concepts, DISI. He found a much higher fuel consumption benefit for HCCI than for DISI concepts. The major benefit of HCCI compared to CI is the low emissions of NOx and PM. The CI engine normally has a trade-off between particulates and NOx. If the engine operates at conditions with higher in-cylinder peak temperature, the oxidization of soot will be good but the thermal production of NO will increase. If on the other hand the engine is operated with lower temperature NO can be suppressed but PM will be high due to bad oxidation. Figure 3 shows this trade-off and also the allowed emissions in EU and US today and in the near future. Clearly the CI engine must use exhaust aftertreatment of NOx and/or PM. In the CI engine, NO is formed in the very hot zones with close to stoichiometric conditions and the soot is formed in the fuel rich spray core. The incylinder average air/fuel ratio is always lean but the combustion process is not. This means that we have a large potential to reduce emissions of NOx and PM by simply mixing fuel and air before combustion. In Figure 3 the normal emission level from an HCCI engine is also displayed. The NOx is normally less than 1/500 of the CI level and no PM is generated by combustion. HCCI FUNDAMENTALS THE HCCI PRINCIPLE HCCI means that the fuel and air should be mixed before combustion starts and that the mixture is autoignited due to the increase in temperature from the compression stroke. Thus HCCI is similar to SI in the sense that both engines use a premixed charge and HCCI is similar to CI as both rely on autoignition for combustion initiation. However, the combustion process is totally different for the three types. Figure 4 shows the difference between (a) SI combustion and (b) HCCI. In the SI engine we have three zones, a burnt zone, an unburned zone and between them a thin reaction zone where the chemistry takes place. This reaction zone propagates through the combustion chamber and thus we have a flame propagation. Even though the reactions are fast in the reaction zone, the combustion process will take some time as the zone must propagate from spark plug (zero mass) to the far liner wall (mass w i ). With the HCCI
2 process the entire mass in the cylinder will react at once. The right part of Figure 4 shows HCCI, or as Onishi called it Active Thermo-Atmosphere Combustion, ATAC. We see that the entire mass is active but the reaction rate is low both locally and globally. This means that the combustion process will take some time even if all the charge is active. The total amount of heat released, Q, will be the same for both processes. It could be noted that the combustion process can have the same duration even though HCCI normally has a faster burn rate. Initial tests in Lund on a two stroke engine revealed the fundamental difference between these two types of engines. Figure 5 shows normal flame propagation from two spark plugs at the rated speed of 9000 rpm. We see two well defined flames and a sharp border between burned and unburned zones. Figure 6 shows the same engine when HCCI combustion was triggered by using regular gasoline (RON 95) instead of iso-octane. The engine speed was increased up to rpm and a more distributed chemiluminescense image resulted. REQUIREMENTS FOR HCCI The HCCI combustion process puts two major requirements on the conditions in the cylinder: (a) The temperature after compression stroke should equal the autoignition temperature of the fuel/air mixture. (b) The mixture should be diluted enough to give reasonable burn rate. Figure 7 shows the autoignition temperature for a few fuel as a function of λ. The autoignition temperature has some correlation with the fuels resistance of knock in SI engines and thus the octane number. For iso-octane, the autoignition temperature is roughly 1000K. This means that the temperature in the cylinder should be 1000 K at the end of the compression stroke where the reactions should start. This temperature can be reached in two ways, either the temperature in the cylinder at the start of compression is controlled or the increase in temperature due to compression i.e. compression ratio is controlled. It could be interesting to note that the autoignition temperature is a very weak function of air/fuel ratio. The change in autoignition temperature for iso-octane is only 50K with a factor 2 change in λ. Figure 7 also shows the normal rich and lean limits found with HCCI. With a too rich mixture the reactivity of the charge is too high. This means that the burn rate becomes extremely high with richer mixtures. If an HCCI engine is run too rich the entire charge can be consumed within a fraction of a crank angle. This gives rise to extreme pressure rise rates and hence mechanical stress and noise. With a high autoignition temperature like that of natural gas, it is also possible that formation of NOx can be the load limiting factor. Figure 8 shows the NO formation as a function of maximum temperature. Very low emission levels are measured with ethanol. If the combustion starts at a higher temperature like with natural gas, the temperature after combustion will also be higher for a given amount of heat released. On the lean side, the temperature increase from the combustion is too low to have complete combustion. Partial oxidation of fuel to CO can occur at extremely lean mixtures; λ above 14 has been tested. However, the oxidation of CO to CO2 requires a temperature of K. As a summary, HCCI is governed by three temperatures. We need to reach the autoignition temperature to get things started; the combustion should then increase the temperature to at least 1400 K to have good combustion efficiency but it should not be increased to more that 1800 K to prevent NO formation. HCCI COMBUSTION PROCESS IN DETAIL The above description of HCCI gives just a rough idea about the requirements and conditions of the combustion process. It is also of greatest interest to acquire detailed knowledge of the process. In order to get such information, laser based diagnostics is of crucial importance. Some of the activities in this field from Lund University will thus be presented. INHOMOGENEOUS COMBUSTION The first experiments with laser based diagnostics were performed to analyze the difference in combustion between a perfectly homogeneous fuel/air mixture and one with small gradients. Laser induced fluorescence of fuel tracer or OH was used to mark the combustion process. Figure 9 shows the system setup with a laser generating a vertical laser sheet. Figure 10 shows the fuel distribution for the two cases with an inhomogeneity of approximately 5% in the case of port fuel injection and homogeneity within the detection limit for the case with a mixing tank and fuel injection far upstream. Figure 11 and Figure 12 shows the fuel concentration with half the heat released. We can from these images conclude that the combustion is far from homogeneous. There are islands with much fuel remaining and close to them regions with very little fuel left. Figure 13 shows the same behavior for the concentration of OH. Zones with much OH are close to zones with no OH and the gradients are steep. Each individual cycle was also found to be unique. The four cycles displayed are randomly picked samples. No preferred type of structure could be detected. SINGLE CYCLE INFORMATION A major limitation with the information from Figure 11 to Figure 13 is that only one image can be captured from each cycle. Due to the very large cycle to cycle variation in the process, it is impossible to extract information on possible expansion of zones with intense reactions i.e. flame propagation. To overcome this problem a unique laser system was used. Four individual lasers which can generate eight laser pulses were combined with a framing camera using eight
3 individual CCD chips. This system was used in an optical Scania engine with transparent liner and a window in the extended piston. The setup can be seen in Figure 14. The measured area was 95x 55 mm thus enabling distinction between local and global effects. Figure 15 shows a sequence of fuel LIF images captured with 0.5 CAD time separations at 1200 rpm. The images are from 20% to 50% heat release. From these and numerous similar mini-movies it was possible to conclude that the combustion changed behavior during the process. In the initial phase a slow but stable decrease in the fuel LIF signal was detected. This was interpreted as a slow and rather homogeneous start of the process. At around 20-30% heat released the fuel LIF image changed. Then even the smallest structures found before were amplified to give an image with more intense gradients. The gradients were found to be amplified even more as the process evolved and at approx. 50% heat release the structures found earlier during the single shot experiments were clear. From 50% heat release and onwards the structures were stable and the fuel signal disappeared not long after that. This single cycle observation of the process leads to a phenomenological description of the HCCI combustion process. THE PHENOMENOLOGICAL MODEL OF HCCI COMBUSTION The HCCI combustion process is assumed to start with a gradual decomposition of the fuel with well distributed reactions. The reactions will become significantly exothermic when a critical temperature is approached. At this critical condition the reaction rate will be very sensitive to the temperature of the charge. Even the smallest variations in temperature will thus influence the reaction rates. As we will have random variation in temperature in the cylinder, some locations will have more favorable conditions. In those locations, sometimes denoted hot spots the reactions thus will start a bit earlier. As the exothermic reactions start the temperature is increased and thus reactions become even faster. We thus have a local positive feedback in temperature. Figure 16 shows an attempt to illustrate this. As the local positive feedback is fast, there will not be sufficient time to distribute all the heat to the surrounding cold bulk. Thus we have a gradual amplification of small inhomogeneities generating the very large structures seen in the experiments. The size of the hot spots was found to be of the same order as the integral length scale of turbulence in the cylinder. In the Scania engine, this was 4-6 mm. Flame propagation? - It could be argued that the hot-spots grow as a function of time and this growth rate could be translated to a reaction zone propagation or in other words flame front. However, after studying numerous individual cycles it was concluded that the concept of flame propagation in HCCI could not be supported. There will be a time lag between combustion starting point at different zones but new hot-spots show up randomly and the structures seen in the images are rather fixed i.e. do not move from image to image. If we would use the term flame speed for a case where two hot spots show up at exactly the same time we would also have a problem as the flame speed then would be infinity. THE NEED FOR CONTROL For better understanding of the combustion process, laser diagnostics is needed and this knowledge can be used to optimize the system. However, the HCCI process is very sensitive to disturbances. It can be sufficient to change the inlet temperature 2 C to move from a very good operating point to a total misfire. This sensitivity makes the HCCI engine require closed loop combustion control, CLCC. Closed loop control requires as always a sensor, control algorithm and control means. The main parameter to control for HCCI is the combustion timing i.e. when in the cycle combustion takes place. Figure 17 shows the rate of heat release for a range of timings. With early phasing the rate of heat release is higher and as it is phased later the burn rate goes down. With combustion before top dead center, TDC, the temperature will be increased both by the chemical reactions and the compression due to piston motion. Thus for a given autoignition temperature, combustion onset before TDC will result in faster reactions. With the conditions changed to give combustion onset close to TDC, the temperature will not be increased by piston motion, the only temperature driver would be the chemical reactions. This gives a more sensitive system and the later the combustion phasing the more sensitive the system is. This is the underlying problem with HCCI combustion control. We want a late combustion phasing to reduce burn rate and hence pressure rise rate and peak pressure but on the other hand we can not accept too much variations in the combustion process. How late we can go depends on the quality of the control system. With a fast and accurate control system we can go later and hence reduce the noise and mechanical loads of the engine. COMBUSTION SENSOR The most accurate and reliable signal for combustion is the in-cylinder pressure. With the standard heat release equation it is very easy to extract the combustion onset etc. The most usable parameter for combustion phasing is the crank angle of 50% of the heat released. Figure 18 shows the procedure to extract this 50% heat released point denoted CA50. The cylinder pressure is a very stable and robust signal but the cost of such sensors is still too high for production engines. One alternative could be an ion current measurement system. The ion current can be measured by applying a voltage on the electrodes of a normal spark plug. The technique has been used by SAAB Automobile in production since 1993 for the detection of knock and misfire in SI engines, but the application on HCCI is not straight forward. The signal
4 intensity is very sensitive to the temperature in the cylinder and thus lean burn HCCI give low signal. Figure 19 shows a typical ion current measurement system and Figure 20 shows the typical signal obtained in HCCI mode. The best representation of combustion phasing was found by extracting the crank angle at which 50% of the maximum amplitude was detected. This gave good correlation to the crank angle of 50% heat released, CA50 as shown in Figure 21. Two individual operating points are shown, one with a relatively early timing and hence less cycle to cycle variations and one with late timing. For both cases, a small phase difference was detected between the crank angle at 50% of maximum ion signal and CA50 but this can easily be compensated by the controller. CONTROL MEANS - The HCCI combustion control can be considered as a balance in temperature. With low temperature at TDC the combustion will be late and with high temperature at TDC the combustion will start early. To control temperature, three major parameters can be used. Inlet temperature and compression ratio will directly change the TDC temperature. The third parameter is the amount of residual gas retained in the cylinder from the previous cycle. A fourth possible way of controlling the process is to change the required autoignition temperature by adjusting the fuel quality. Figure 22 shows possible combinations of inlet temperature, compression ratio and fuel octane number for combustion onset at TDC for a 1.6 liter single cylinder Volvo Truck engine. The figure shows that a higher octane fuel needs higher inlet temperature or higher compression ratio to reach autoignition at TDC. Figure 23 shows similar combinations but here the two fuels are regular gasoline and diesel oil instead of the primary reference fuels n- heptane and iso-octane. A very popular concept for achieving HCCI in SI engines at part load is the use of negative valve overlap. With this concept the exhaust valves close early and thus hot burnt gas is trapped in the cylinder. After a short compression and expansion the inlet valve is opened late. This type of process often denoted Controlled Autoignition, CAI, gives good performance but in a limited operating range. Figure 24 shows the operating range of a 6-cylinder 3 litre Volvo Cars engine. A better way of controlling the process is by applying variable compression ratio or fast inlet air temperature control. With this concept it is possible to run at idle at all engine speeds between 600 and 5000 rpm. Maximum load is the same as for CAI but it can be maintained also for higher engine speeds. Figure 26 shows the operating range for a SAAB 1.6 liter 5- cylinder variable compression engine using fast thermal management as shown in Figure 25. It should be noted that the BMEP is presented in contrast to the IMEP for CAI in Figure 24. A possible way of HCCI combustion control can also be the use of dual fuels. Using two fuel tanks could cause some problems with costumer acceptance but it is possible to generate two fuels from one using a reformer. Experiments with dual fuel in Lund have shown that it is a very powerful control means. Figure 27 shows the operating range possible with a Scania 12-liter 6-cylinder truck engine running on a mixture of ethanol and n-heptane. CONTROLLER - In order to achieve the high loads reported for the SAAB and Scania multi cylinder engines, it is absolutely necessary to use closed loop control with a well tuned controller. To make the controller usable over the entire speed and load range, the gain of the controller must be changed in accordance with the change of gain of the process. Figure 28 shows the combustion phasing, CA50, as a function of octane number for the Scania dual fuel engine at different operating conditions. With early combustion timing and conditions requiring low octane number, the slope of the curves are low. This means that a large change of octane number is needed to change the combustion timing one crank angle. Thus we should have a large gain of the controller in these operating conditions. If we then look at conditions with high octane number and late combustion phasing, the required change in octane number to change phasing a crank angle is much less. With this higher gain of the process we must reduce the gain of the controller; otherwise the system will become unstable. Tuning the gain of the controller to compensate for changes in the process can be done by using gain scheduling. With this it is possible achieve close to optimal performance for all operating conditions. In fact it is even possible to operate an HCCI engine at unstable operating points with the closed loop combustion control active. Figure 29 shows one such case. TABLES AND FIGURES Figure 1: The fuel efficiency of HCCI and SI engine configurations. Open diamond =SI at λ=1, Rc=18.7, Open triangle = HCCI lean burn, Filled diamond= HCCI with EGR and Filled circle= SI at λ=1 and Rc=9.5:1 [1]
5 Figure 2: Net indicated specific fuel consumption of four different combustion types [2] Figure 5: SI flame propagation in 2-Stroke engine at 9000 rpm [4]. 0,01 P M * USA ,00 0 0,05 NOx 0,5 Figure 3: The NOx-PM trade-off for a standard diesel engine, the future emission regulations and the emissions of HCCI (Green) Figure 4: The difference between SI and HCCI combustion process. Q= total amount of heat, q=heat per mass unit, w=mass [3] Figure 6: HCCI combustion in 2-Stroke engine at rpm. Ignition Temperature [K] Natural gas Iso octane Ethanol Methanol λ
6 Figure 7: Ignition temperature for a few fuels as a function of dilution (λ λ). Figure 11: Fuel distribution at approx. 50% heat released with port fuel injection [6]. Figure 8: NOx as a function maximum temperature evaluated from the pressure-trace [5]. Figure 9: First laser system [6]. Figure 12: Fuel distribution at approx. 50% heat released with mixing tank [6]. Figure 10: Fuel distribution with port fuel injection (left) and far upstream (right) just before combustion starts. Four individual cycles are shown. [6] Figure 13: OH signal at approximately 50% heat released. To the left with port fuel injection and to the right with mixing tank [6].
7 Figure 17: Rate of heat release with a change in inlet temperature and thus combustion phasing [9]. Figure 14: Optical system for high speed fuel LIF [7]. Visualized area Figure 15: Fuel concentration from 2 CAD ATDC with 0.5 CAD step [7]. Ignition at T (t=1) Temp T (x,t=0) T (x,t=1) Wall Reactions at T(t=1), releasing significant heat Critical ignition temperature Ignition at T (t=0) Figure 18: Cylinder pressure trace and corresponding heat release [10]. Arbitrary distance x Figure 16: Temperature at three instants of time [8]. Figure 19: Ion current measurement system [11].
8 temperature to give combustion onset at TDC [12] Ion current [µa] Crank Angle [CAD] Figure 20: Ion current signal with a change in combustion timing. The average of 300 cycles is shown [11]. Figure 23: Combinations of percentage gasoline, compression ratio and inlet temperature to give combustion onset at TDC [12]. CA50 Figure 21: Crank angle for 50% of maximum ion signal vs. crank angle at 50% heat released for two individual operating points [11]. Figure 24: Operating range of Controlled Autoignition type of HCCI in a 6-cylinder Volvo Car engine [13]. Air in Exhaust heat recovery Catalyst Figure 22: Combinations of fuel octane number, compression ratio and inlet Exhaust out
9 Figure 25: Fast Thermal Management, FTM [14]. Figure 26: Operating range with compression ratio and inlet temperature control. Minimum load is 0 bar (idle) at all engine speeds [15]. BMEP (bar) Engine Speed (rpm) Figure 27: Operating range with dual fuel control [16]. Figure 28: Combustion phasing vs. octane number for a range of operating conditions [16]. Figure 29: Operation at stable and unstable conditions after closed loop combustion control is switched off [10]. CONCLUSION The Homogeneous Charge Compression Ignition, HCCI, combustion process is an interesting alternative to the conventional Spark Ignition and Compression Ignition processes. The potential benefit of HCCI is high with simultaneous ultra low emissions of NOx and PM and low fuel consumption. Thus it can combine the best features of the SI (with TWC) and CI engines. To better understand the process, laser based techniques must be used. Such measurements in Lund have revealed that the combustion process is rather homogeneous in the initial stage but it gradually transfers into a highly inhomogeneous process with steep gradients between reacting and non-reacting zones. The HCCI engine requires active control of the combustion process. Such closed loop combustion control has been demonstrated in a number of multicylinder HCCI engines in Lund. Use of negative overlap is possible but often generates a limited operating range. The use of variable compression ratio is a very powerful control means but can have some problems to reach production for cost reasons. Fast Thermal Management can perhaps be the key technology to be used for HCCI combustion control. The maximum engine speed for HCCI in Lund is rpm and the maximum load is 20.4 bar IMEP/ 16 bar BMEP. This indicates that most interesting speeds and loads can be reached with HCCI. ACKNOWLEDGMENTS The results presented in this paper are a summary of results of the HCCI activities in Lund. I thank all fellow researchers, Ph.D. students and technicians for generating the results. I would also like to thank our sponsors: The Swedish Energy Administration, The
10 Swedish Gas Centre, Volvo Cars, Volvo Trucks, Volvo Penta, Scania CV, Saab Automobile, Fiat-GM Powertrain, Caterpillar, Cummins, Toyota, Nissan and Hino. REFERENCES 1 M. Stockinger, H. Schäpertöns, P. Kuhlmann: Versuche an einem gemischansugenden Verbrennungsmotor mit Selbstzündning, MTZ Motortechnische Zeitschrift 53 (1992) 2 pp J. Yang, T. Culp, T. Kenney, Development of a Gasoline Engine System Using HCCI Technology The Concept and test Results, SAE S: Onishi, S. Hong Jo, K. Shoda, P Do Jo, S. Kato: Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines, SAE Ekenberg, M. In-Cylinder Fluid Flow, Fuel Preparation and Combustion in SI Engines - Application of Optical Diagnostics, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden ISBN Johansson, B., Einewall, P. and Christensen, M. Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas A comparison with spark-ignition operation. SAE Transactions, Journal of Fuels and Lubricants, vol. 106, SAE Technical Paper , Richter, M., Franke, A., Engström, J., Aldén, M., Hultqvist, A. and Johansson, B. The Influence of Charge Inhomogeneity on the HCCI Combustion Process, SAE Technical Paper , Hultqvist, A., Christensen, M., Johansson, B., Richter, M., Nygren, J., Hult, J. and Aldén, M. Characterization of the HCCI Combustion Process in a Heavy Duty Engine by High-Speed Fuel Tracer LIF and Chemiluminescence Imaging, SAE 2002 Transactions, Journal of Engines, SAE Technical Paper , Hultqvist, A., Characterization of the Homogeneous Charge Compression Ignition Combustion Process, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden ISBN Christensen, M. HCCI Combustion - Engine Operation and Emission Characteristics, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden ISBN Jan-Ola Olsson, The HCCI Engine High Load Performance and Control Aspects, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden Strandh, P., Christensen, M., Bengtsson, J., Johansson, R., Vressner, A., Tunestål, P. and Johansson, B., Ion Current Sensing for HCCI Combustion Feedback, SAE , Christensen, M., Hultqvist, A. and Johansson, B. Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio, SAE Transactions, Journal of Engines, vol. 108, SAE Technical Paper , Persson, H, Agrell,M, Olsson, J-O, Johansson, B: The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap, SAE paper Hyvönen, J., Haraldsson, G., Tunestål, P, Johansson, HCCI Closed-Loop Combustion Control Using Fast Thermal Management, SAE paper Hyvönen, J., Haraldsson, G. and Johansson, B. Supercharging HCCI to Extend the Operating Range in a Multi-Cylinder Vcr-Hcci Engine, Olsson, J-O, Tunestål, P. and Johansson, B. Closed-Loop Control of an HCCI Engine. SAE Technical Paper , 2001
INTERNAL COMBUSTION (IC) ENGINES
INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external
Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers
-- Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers Per Tunestål, Magnus Christensen, Patrik Einewall, Tobias Andersson, Bengt Johansson Lund
Engine Efficiency and Power Density: Distinguishing Limits from Limitations
Engine Efficiency and Power Density: Distinguishing Limits from Limitations Chris F. Edwards Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University Exergy to Engines
Engine Heat Transfer. Engine Heat Transfer
Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel
Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute
Fuel Requirements for HCCI Engine Operation Tom Ryan Andrew Matheaus Southwest Research Institute 1 HCCI Fuel & Air Charge Undergoes Compression Spontaneous Reaction Throughout Cylinder Low Temperature
EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.
EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy
Introductory Study of Variable Valve Actuation for Pneumatic Hybridization
2007-01-0288 Introductory Study of Variable Valve Actuation for Pneumatic Hybridization Copyright 2007 SAE International Sasa Trajkovic, Per Tunestål and Bengt Johansson Division of Combustion Engines,
Internal Combustion Optical Sensor (ICOS)
Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly
CFD Simulation of HSDI Engine Combustion Using VECTIS
CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations
CONVERGE Features, Capabilities and Applications
CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE
Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project
Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Bengt Ridell Carl Bro Energikonsult AB, Sweden, 2005-04-15 [email protected] 1. Background The largest private utility company
INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES
INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES TYPES OF RECIPROCATING INTERNAL COMBUSTION PISTON ENGINES Depending on the ignition pattern: Otto cycle (spark-ignition - SI engines), Diesel cycle (auto-ignition
Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison
Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more
Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst Einewall, Patrik; Tunestål, Per; Johansson, Bengt
Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst Einewall, Patrik; Tunestål, Per; Johansson, Bengt Published in: SAE Special Publications Published: -1-1 Link
Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure
SAE TECHNICAL PAPER SERIES 2000-01-0933 Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure Paljoo Yoon, Seungbum Park and Myoungho Sunwoo Hanyang Univ. Inyong
COMBUSTION PROCESS IN CI ENGINES
COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied
US Heavy Duty Fleets - Fuel Economy
US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases
Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project
WHEC 16 / 13-16 June 2006 Lyon France 1(10) Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Bengt Ridell Carl Bro Energikonsult AB, Sweden, 2006-04-21 [email protected] Abstract:
A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)
A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics
Pollution by 2-Stroke Engines
Pollution by 2-Stroke Engines By Engr. Aminu Jalal National Automotive Council At The Nigerian Conference on Clean Air, Clean Fuels and Vehicles, Abuja, 2-3 May 2006 Introduction to the 2-Stroke Engine
Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA
Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering
The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas Engines. The Engine Manufacturers Association August 2004
www.enginemanufacturers.org Two North LaSalle Street Suite 2200 Chicago, Illinois 60602 Tel: 312/827-8700 Fax: 312/827-8737 The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas
Exhaust emissions of a single cylinder diesel. engine with addition of ethanol
www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 [email protected] Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition
Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India
74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor
Marine after-treatment from STT Emtec AB
Marine after-treatment from STT Emtec AB For Your Vessel and the Environment 6 7 8 1 11 1 10 9 1. Pick up. Flow direction valve. Filters. Cooler. Condensate trap 6. Flow meter 7. EGR-valve 8. Secondary
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
Marine Piston Damage By Tom Benton, Marine Surveyor
Marine Piston Damage By Tom Benton, Marine Surveyor In the last several years I have noticed an increase in the number of outboard motors which have sustained piston damage, and several cases in V-8 inboard
Principles of Engine Operation
Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı
Combustion process in high-speed diesel engines
Combustion process in high-speed diesel engines Conventional combustion characteristics New combustion concept characteristics Benefits and drawbacks Carlo Beatrice Istituto Motori CNR The Requirements
Zero Emission Engine. An Economic and Environmental Benefit
Zero Emission Engine An Economic and Environmental Benefit Saskia Scherfling Registration number: 731805 Department: VIII Course of studies: Process and Environmental Engineering September 2007 Table of
Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1
Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault
Perfectly Adapted. ISL Euro 6 Gas Engine 250-320PS
Perfectly Adapted ISL Euro 6 Gas Engine 250-320PS Cummins ISL-G The ISL G is the natural choice in alternative-fuel engine technology. With industry leading performance, it combines all the advantages
Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions
Environ. Eng. Res. Vol. 14, No. 2, pp. 95~101, 2009 Korean Society of Environmental Engineers Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Haeng
Analysis of knocking phenomena in a high performance engine
Analysis of knocking phenomena in a high performance engine Federico Millo, Luciano Rolando 1 st GTI Italian User Conference March 18 th, 2013 Turin OUTLINE Introduction Experimental setup Results & discussion
E - THEORY/OPERATION
E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.
Spark Ignited Natural Gas Engine Technology
Spark Ignited Natural Gas Engine Technology Clean Fleets Technology Conference Sugar Land, TX, June 2014 Jorge Gonzalez Regional Manager Agenda Corporate Overview Natural Gas Technology Evolution Products
Marine after-treatment from STT Emtec AB
Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions
Hydrogen as a fuel for internal combustion engines
Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation
Effect of GTL Diesel Fuels on Emissions and Engine Performance
Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,
Internal Combustion Engines
Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion
COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink
COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat
WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016
WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 Outline» NG vehicles context (3 min)» Why NG? (5 min)» NG engine technologies (7 min)» Particulate matter emissions
NISSAN FIGARO FAULT CODES AND DIAGNOSTICS
NISSAN FIGARO FAULT CODES AND DIAGNOSTICS The Nissan Figaro uses an engine management system with the acronym ECCS you ll see it in large letters on the plenum box when you open the bonnet. It stands for
CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES
CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES 1. Application 2. Basic Engine Design 3. Operating Cycle 4. Working Cycle 5. Valve/Port
Cylinder Pressure in a Spark-Ignition Engine: A Computational Model
J. Undergrad. Sci. 3: 141-145 (Fall 1996) Engineering Sciences Cylinder Pressure in a Spark-Ignition Engine: A Computational Model PAULINA S. KUO The project described in this article attempts to accurately
Comparative Assessment of Blended and Fumigated Ethanol in an Agriculture Diesel Engine
Petrotech-21 31 October-3 November 21, New Delhi, India Paper ID : 2115 Comparative Assessment of Blended and Fumigated Ethanol in an Agriculture Diesel Engine Naveen Kumar* 1, Hari Singh Rathour 2 1 Professor,
Direct fuel injection
Types of Fuel Injection Schemes Direct (cylinder) injection Port injection Manifold riser injection GDI (Gasoline Direct Injection) Direct fuel injection inlet port and manifold riser injection These terms
Chapter 19 - Common Rail High Pressure Fuel Injection Systems
Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common
OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS
UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate
Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique
Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Mark N. Subramaniam and Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison
PRELIMINARY INVESTIGATION OF DIESEL ENGINE WITH ADDITIONAL INJECTION OF ETHYL ALCOHOL
Journal of KONES Internal Combustion Engines 2002 No. 3 4 ISSN 1231 4005 PRELIMINARY INVESTIGATION OF DIESEL ENGINE WITH ADDITIONAL INJECTION OF ETHYL ALCOHOL Andrzej Kowalewicz, Grzegorz Pawlak Technical
Daimler s Super Truck Program; 50% Brake Thermal Efficiency
Daimler s Super Truck Program; 50% Brake Thermal Efficiency 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Marc Allain, David Atherton, Igor Gruden, Sandeep Singh, Kevin
Application and Design of the ebooster from BorgWarner
Application and Design of the ebooster from BorgWarner Knowledge Library Knowledge Library Application and Design of the ebooster from BorgWarner With an electrically assisted compressor, the ebooster,
Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol
Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol 208 V. Pirs, D. Berjoza, G. Birzietis, and I. Dukulis Motor Vehicle Institute, Faculty of Engineering, Latvia
Flow and Mixture Optimization for a Fuel Stratification Engine Using PIV and PLIF Techniques
Home Search Collections Journals About Contact us My IOPscience Flow and Mixture Optimization for a Fuel Stratification Engine Using PIV and PLIF Techniques This content has been downloaded from IOPscience.
MEASUREMENT OF IN-CYLINDER MIXTURE FORMATION BY OPTICAL INDICATION
www.mtzonline.com WORLDWIDE 6 June 213 Volume 74 Offprint from MTZ 6.213 Springer Vieweg Springer Fachmedien Wiesbaden GmbH MEASUREMENT OF IN-CYLINDER MIXTURE FORMATION BY OPTICAL INDICATION DEVELOPMENT
04 2014 CIMAC Position Paper
04 2014 CIMAC Position Paper Methane and Formaldehyde Emissions of Gas Engines By CIMAC WG 17, Gas Engines This publication is for guidance and gives an overview regarding the methane and formaldehyde
Advantage of Using Water-Emulsified Fuel on Combustion and Emission Characteristics
Advantage of Using Water-Emulsified Fuel on Combustion and Emission Characteristics T. Yatsufusa *1, T. Kumura, Y. Nakagawa, Y. Kidoguchi The University of Tokushima Abstract In the present study, the
ECUs and Engine Calibration 201
ECUs and Engine Calibration 201 Jeff Krummen Performance Electronics, Ltd. www.pe-ltd.com Page 1 Before we get started.. ECUs and Engine Calibration 201 The goal of this presentation is to explain the
Not All are Equal Many questions have arisen since the widespread availability of wideband air-fuel meters.
By Mike Kojima [Note: This is extracted from, and owned by, www.fordmuscle.com. For complete text, and to view discussions, please visit: http://www.fordmuscle.com/archives/2007/06/widebandshootout/index.php
Emissions and fuel consumption of natural gas powered city buses versus diesel buses in realcity
Emissions and fuel consumption of natural gas powered city buses versus diesel buses in realcity traffic L. Pelkmans, D. De Keukeleere & G. Lenaers Vito Flemish Institute for Technological Research, Belgium
STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES
Proceedings of DEER 2003: Diesel Engine Emissions Reduction Newport, Rhode Island, August 2003 STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES Mark Dunn, Cummins Westport Inc.
Electronic Diesel Control EDC 16
Service. Self-Study Programme 304 Electronic Diesel Control EDC 16 Design and Function The new EDC 16 engine management system from Bosch has its debut in the V10-TDI- and R5-TDI-engines. Increasing demands
Marine after-treatment from STT Emtec AB
Marine after-treatment from STT Emtec AB For Your Vessel and the Environment Recommended by Volvo Penta 16 15 5 6 10 8 13 2 14 12 3 4 7 9 11 1 1. SCR Catalyst 2. Injection nozzle 3. Mixer unit 4. Diagnostic
Laws and price drive interest in LNG as marine fuel
Laws and price drive interest in LNG as marine fuel The use of LNG as a marine fuel is one of the hottest topics in shipping. This growing interest is driven by legislation and price. By Henrique Pestana
CATALYTIC CONVERTER TESTS
CATALYTIC CONVERTER TESTS 1. CRANKING TEST There is typically little (390 to 400 PPM at sea level) CO 2 present in the atmosphere. CO 2 is a product of combustion. Therefore any carbon dioxide emissions
BLUES CURING THE FUEL INJECTOR. In 1992, General Motors. BY JEFF MASTERMAN Armed with a pressure gauge, a good
CURING THE FUEL INJECTOR BLUES In 1992, General Motors introduced a very unique fuel injection system on its 4.3-liter Vortec V6 truck engine. Dubbed Central Port Injection, or CPI, the system looked and
Technical Solutions for Emissions Reduction
Genera 2015 Technical Solutions for Emissions Reduction Juan Nogales GE Power & Water Madrid, February 24, 2015 2015 General Electric Company. All rights reserved. This material may not be copied or distributed
Technical and Sales Information. Diesel Glow Plugs
Diesel Glow Plugs This booklet is intended for your use as a sales and technical training reference. It answers the questions most commonly asked by: Automotive parts sales professionals Automotive parts
Natural Gas and Transportation
1 M.J. Bradley & Associates Potential for NG as a Vehicle Fuel Natural Gas and Transportation Options for Effective Resource Management Dana Lowell Senior Consultant Roundtable on Low Sulfur and Alternative
The Ogunmuyiwa Engine Cycle
The Ogunmuyiwa Engine Cycle Dapo Ogunmuyiwa M.Sc VDI Chairman / CEO Tel: (+49) 162 961 04 50 E-mail: [email protected] Ogunmuyiwa Motorentechnik GmbH Technologie- und Gruenderzentrum (TGZ) Am Roemerturm
Perfectly Adapted. ISB Euro 6 Diesel Engines 150-310PS. Cummins Ltd. Address Line One Address Line Two Address Line Three
Perfectly Adapted ISB Euro 6 Diesel Engines 150-310PS Cummins Ltd. Address Line One Address Line Two Address Line Three Tel: +00 0000 000000 Fax: +00 0000 000000 Internet: cummins.com Bulletin 0000000
Measurement Systems for Diesel Exhaust Gas and Future Trends. Oxidation catalyst DPF Flow mete. Soft ionization mass spectrometer
FEATURE ARTICLE Measurement Systems for Diesel Exhaust Gas and Future Trends Ichiro Asano Direct-insertion NOx analyzer Micro-tunnel De-NOx catalyst Oxidation catalyst DPF Flow mete Engine exhaust gas
Cummins Westport, Inc. Engine Overview. March 2015
Cummins Westport, Inc. Engine Overview March 2015 Cummins Westport Inc. (CWI) A Cummins JV Company CWI was established in 2001 as a 50/50 joint venture company between Cummins Inc and Westport Innovations.
Combustion characteristics of LNG
Combustion characteristics of LNG LNG Fuel Forum, Stockholm 21. September 2011 Øyvind Buhaug, Principal Engineer - Fuels and Engine Technology, Statoil Content LNG compositions in the global market LNG
VARIABLE COMPOSITION HYDROGEN/NATURAL GAS MIXTURES FOR INCREASED ENGINE EFFICIENCY AND DECREASED EMMISSIONS
VARIABLE COMPOSITION HYDROGEN/NATURAL GAS MIXTURES FOR INCREASED ENGINE EFFICIENCY AND DECREASED EMMISSIONS R. SIERENS University of Gent Laboratory of Transporttechnology Sint-Pietersnieuwstraat B-9000
Review of the prospects for using hydrogen as a fuel source in internal combustion engines
Review of the prospects for using hydrogen as a fuel source in internal combustion engines H2FC Working Paper No. 2 April 2015 Samuel L. Weeks UCL Energy Institute, University College London Central House,
HYDROGEN AS AN ENGINE FUEL SOME PROS AND CONS
Journal of KONES Powertrain and Transport, Vol.14, No. 4 2007 HYDROGEN AS AN ENGINE FUEL SOME PROS AND CONS Ghazi A. Karim Schulich School of Engineering -University of Calgary Calgary, Canada T2N 1N4
An overview of Euro VI for trucks over 3.5t. Brought to you by Mercedes-Benz
An overview of Euro VI for trucks over 3.5t Brought to you by Mercedes-Benz Contents What is Euro VI? What is Euro VI? 01 What s different about Euro VI? 02 When do you need to think about it? 03 How is
ON-Board Diagnostic Trouble Codes
ON-Board Diagnostic Trouble Codes The list below contains standard diagnostic trouble codes (DTC s) that are used by some manufacturers to identify vehicle problems. The codes provide below are generic
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY Torre di Raffreddamento Bilan cia Combustibile DIMEG:ENGINE LABORATORY PLANTS Torre di Raffreddamento P C o o z l z d o P C
Unit 8. Conversion Systems
Unit 8. Conversion Systems Objectives: After completing this unit the students should be able to: 1. Describe the Basic conversion systems 2. Describe main conversion kit types. 3. Describe how the CNG
Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine
Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine 2015 Polttomoottori- ja turboteknologian seminaari Espoo, 7.5.2015 Timo Murtonen, Nils-Olof Nylund, Mårten
The Relation Between Gasoline Quality, Octane Number and the Environment
MH1 The Relation Between Gasoline Quality, Octane Number and the Environment Rafat Assi National Project Manager Jordan s Second National Communications on Climate Change (www.snc.gov.jo) Presented at
TWO STROKE ENGINEERING SOLUTIONS
Niklas XP Tip Tuning manual for SAAB 2-strokes Version 1.6.E-67, 2004-08 www.classicsaabracing.com Niklas Enander 2004 2 Introduction You have now in your hand my tuning manual for SAAB s two stroke engines
Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module
Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module DEF SCR Training Module Welcome to the Cummins Filtration DEF SCR training module. DEF & SCR systems are key to Cummins
Oregon Fuel Injection
FORD POWERSTROKE DIAGNOSTICS 1994-2003 This guide is not a substitute for the proper diagnostic manuals and a scan tool. It is intended to be used with the proper tools to help diagnose and solve drivability
Tangential Impulse Detonation Engine
Tangential Impulse Detonation Engine Ionut Porumbel, Ph.D. Aerodays 2015 21.10.2015, London, UK Overview Ongoing FP 7 project breakthrough propulsion system technology a step change in air transportation;
NISSAN FIGARO - STARTING PROBLEMS
NISSAN FIGARO - STARTING PROBLEMS Just to clarify starting problems in this context assumes that the engine turns over on the starter it simply won t fire-up. If the issue is failure of the engine to turn-over
Natural Gas in Transportation J.B. HUNT Perspective
WHITE PAPER REV 2/14 Natural Gas in Transportation J.B. HUNT Perspective What s your next move? General Position: We believe there will continue to be more and more natural gas tractors go into service
SAS light Check Engine Malfunction Indicator Lamp
SAS light Check Engine Malfunction Indicator Lamp Here's how to do it: In car ECM Diagnostics/ECM Reset procedure: 1) Sit in the driver's seat. 2) Turn the ignition key to the ON position and wait three
MIXED HYDROGEN/NATURAL GAS (HCNG) TECHNOLOGY- VISIT AT COLLIER TECHNOLOIES
ARIELI ASSOCIATES MANAGEMENT, ENGINEERING AND OPERATIONS CONSULTING Report No. 1108 MIXED HYDROGEN/NATURAL GAS (HCNG) TECHNOLOGY- VISIT AT COLLIER TECHNOLOIES -2-1. INTRODUCTION As a California transit
A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior
A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company
Diesel injection, ignition, and fuel air mixing
Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct
Engine Friction and Lubrication
Engine Friction and Lubrication Engine friction terminology Pumping loss Rubbing friction loss Engine Friction: terminology Pumping work: W p Work per cycle to move the working fluid through the engine
