The Reduced van der Waals Equation of State
|
|
|
- Theodora Myra Powell
- 9 years ago
- Views:
Transcription
1 The Redued van der Waals Equation of State The van der Waals equation of state is na + ( V nb) n (1) V where n is the mole number, a and b are onstants harateristi of a artiular gas, and R the gas onstant P, V, and T are as usual the ressure, volume, and temerature Here we are exressing the van der Waals equation in molar quantities; but as usual, we an relae nr by Nk and write it in terms of moleular quantities It turns out that if we examine the isotherms of a van der Waals gas on a P V lot, one sees a oint of infletion on the isotherm orresonding to the ritial oint of a gas In other words, we have 0 and 0 V V T T T T We set n 1 mole for onveniene and investigate these relations Our goal is to derive a redued form of the van der Waals equation that will not inlude the onstants a and b We first write the van der Waals equation in the form a () V b V Next we find the first and seond derivatives and set eah one equal to zero: a + 0 () V V b V Now we solve both Eq () and Eq (4) for T ( ) 6a 0 (4) V V T ( b) av (5) V ( b) av (6) 4 V Equating the right hand sides of these last two equations, we obtain 1
2 V b a a V V V b or finally, V b (7) We substitute this result bak into Eq (5) to obtain ( ) ( b) a b b 7b We substitute both of these results bak into Eq () to obtain a 7b a or V b V b 9b 7b Note that we have at this oint found the ritial quantities, V, and T in terms of the onstants a and b We ollet these three results as follows: V 7b b 7b or (8) (9) (10) Next, we define the following redued quantities: V T ; V ; T (11) V T Thus the molar van der Waals equation, a +, V beomes 8 a a 8 ( bv b) R T + a b b V R b Colleting terms and simlifying, we at last obtain the redued van der Waals equation,
3 + ( V 1) 8T (1) V Exerise: Plot the isotherms of the redued van der Waals equation and onfirm that there is a oint of infletion for the ritial temerature, T 1 This equation, whih imlies that the equation of state for any van der Waals gas takes exatly the same form, is sometimes alled the Law of Corresonding States In fat, that law is a good deal more general As the grah I will hand out in lass shows, exerimental data for a wide range of substanes fall on the same urves if P, V, and T are measured in terms of the redued quantities defined above (The grah is taken from Stanley s book on ritial henomena, ited below) PV It is of interest to onsider the omressibility ratio Z For an ideal gas, this quantity is of ourse one For a van der Waals gas, Z a ( b ) 7 b 075 (1) 8 7b This result should hold for any van der Waals gas If we omare this redition to the results of ritial oint measurements of real gases, we find something like the following table: Fluid PV water 00 arbon dioxide (CO ) 075 nitrogen (N ) 091 hydrogen (H ) 004 For a more omlete list (and disussion), see H Eugene Stanley, Introdution to Phase Transitions and Critial Phenomena, Oxford, 1971, age69ff The moral is that although the van der Waals gas is learly an imrovement on the ideal gas it at least redits a hase transition, and shows the saling features that an be found in redued lots of real gases it is by no means a highly aurate desrition Z
4 Inversion Curve Finally, onsider the inversion urve for a van der Waals gas We onsidered a Joule- Thomson (or Joule-Kelvin) roess, in whih a gas exands at onstant enthaly aross a Joule-Thomson valve We define the Joule-Thomson oeffiient µ as T µ (14) H To alulate this quantity, we onsider dh TdS + Vd (15) We substitute the seond TdS equation to obtain or, olleting terms, V dh CP dt T d + Vd T V dh CP dt + V T d (16) T Sine H is onstant, dh 0, whereuon Eq (16) redues to µ V V T T T V T C C H ( α 1) 1 V where α is the oeffiient of thermal exansion As we have seen, V T µ > 0 imlies the gas will beome ooler, µ < 0 imlies the gas will atually warm u Thus, µ 0, the equation of the inversion urve, is the urve that divides these two regions Refer to the grah of temerature vs ressure for hydrogen to understand how this situation lays out exerimentally Exerise: Show that for an ideal gas, µ is always zero Exerise: Various aroximation shemes lead to the result in for low densities, the inversion urve is given aroximately by a kti (18) b Confirm this result by working through G&T age 87 arefully and in detail Be sure you see how they introdue the low density aroximation Note that they imliitly define a density ρ N/ V See Reif for a similar aroah By omarison with Reif s exerimental grah for nitrogen, ersuade yourself that this result is not eseially desritive (17) 4
5 It is straightforward to find the inversion urve for a van der Waals gas We start with the molar van der Waals equation of state, a V b V and alulate the exansion oeffiient, as follows: We obtain after a little algebra the result R a V T ( ) V b V b V T R V V b T a + V V b a T R V (19) Hene the exansion oeffiient is given by 1 V V b α V T a V b VT R V We seek the inversion urve: µ 0 αt 1 0 Using Eq (0), it is straightforward to show (0) a V b T VT R V, whih after a few lines of algebra redues to a V b b kt V This result for the inversion urve is onsiderably more lausible than the aroximate form ited above To ut it into a onvenient form, we use redued van der Waals quantities It follows from Equations (10) and (11) above that (1) 5
6 We substitute as follows into Eq (1): V bv T 7b a bv b b, 7 b T bv whih after a little algebra redues to 4T ( V 1) Equation () is the equation of the redued inversion urve It is onvenient to write it in terms of and T We will do so, in the roess disensing with the tilde symbol (~) for simliity We first note that, taking the square root of Eq (), ( V 1) V 4T 1 4T V V We use this result to substitute into the redued van der Waals equation [Eq (1) above], whih we write as we obtain 8T V V or 4T 8T V 1 ; V 8T 4T 4T 4T After several lines of algebra, we obtain at last the result ( T ) () 9 1 () whih gives us the inversion urve for the van der Waals equation in a useful form If we solve for T as a funtion of and make a grah, the resulting urve is qualitatively similar to the exerimental inversion urve for nitrogen in Reif s book! 6
Chapter 5 Single Phase Systems
Chapter 5 Single Phase Systems Chemial engineering alulations rely heavily on the availability of physial properties of materials. There are three ommon methods used to find these properties. These inlude
Fugacity, Activity, and Standard States
Fugacity, Activity, and Standard States Fugacity of gases: Since dg = VdP SdT, for an isothermal rocess, we have,g = 1 Vd. For ideal gas, we can substitute for V and obtain,g = nrt ln 1, or with reference
Ideal Gas and Real Gases
Ideal Gas and Real Gases Lectures in Physical Chemistry 1 Tamás Turányi Institute of Chemistry, ELTE State roerties state roerty: determines the macroscoic state of a hysical system state roerties of single
Problem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
1.3 Complex Numbers; Quadratic Equations in the Complex Number System*
04 CHAPTER Equations and Inequalities Explaining Conepts: Disussion and Writing 7. Whih of the following pairs of equations are equivalent? Explain. x 2 9; x 3 (b) x 29; x 3 () x - 2x - 22 x - 2 2 ; x
a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
First Law, Heat Capacity, Latent Heat and Enthalpy
First Law, Heat Caacity, Latent Heat and Enthaly Stehen R. Addison January 29, 2003 Introduction In this section, we introduce the first law of thermodynamics and examine sign conentions. Heat and Work
1 Exercise 4.1b pg 153
In this solution set, an underline is used to show the last significant digit of numbers. For instance in x = 2.51693 the 2,5,1, and 6 are all significant. Digits to the right of the underlined digit,
cos t sin t sin t cos t
Exerise 7 Suppose that t 0 0andthat os t sin t At sin t os t Compute Bt t As ds,andshowthata and B ommute 0 Exerise 8 Suppose A is the oeffiient matrix of the ompanion equation Y AY assoiated with the
HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
DSP-I DSP-I DSP-I DSP-I
DSP-I DSP-I DSP-I DSP-I Digital Signal Proessing I (8-79) Fall Semester, 005 IIR FILER DESIG EXAMPLE hese notes summarize the design proedure for IIR filters as disussed in lass on ovember. Introdution:
Problem Set 3 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start
OPTIONS ON NORMAL UNDERLYINGS
Centre for Risk & Insurane Studies enhaning the understanding of risk and insurane OPTIONS ON NORMAL UNDERLYINGS Paul Dawson, David Blake, Andrew J G Cairns, Kevin Dowd CRIS Disussion Paer Series 007.VII
Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).
CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse
1.3 Saturation vapor pressure. 1.3.1 Vapor pressure
1.3 Saturation vaor ressure Increasing temerature of liquid (or any substance) enhances its evaoration that results in the increase of vaor ressure over the liquid. y lowering temerature of the vaor we
Chapter 1 Microeconomics of Consumer Theory
Chapter 1 Miroeonomis of Consumer Theory The two broad ategories of deision-makers in an eonomy are onsumers and firms. Eah individual in eah of these groups makes its deisions in order to ahieve some
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
THE PERFORMANCE OF TRANSIT TIME FLOWMETERS IN HEATED GAS MIXTURES
Proeedings of FEDSM 98 998 ASME Fluids Engineering Division Summer Meeting June 2-25, 998 Washington DC FEDSM98-529 THE PERFORMANCE OF TRANSIT TIME FLOWMETERS IN HEATED GAS MIXTURES John D. Wright Proess
HEAT CONDUCTION. q A q T
HEAT CONDUCTION When a temperature gradient eist in a material, heat flows from the high temperature region to the low temperature region. The heat transfer mehanism is referred to as ondution and the
- The value of a state function is independent of the history of the system. - Temperature is an example of a state function.
First Law of hermodynamics 1 State Functions - A State Function is a thermodynamic quantity whose value deends only on the state at the moment, i. e., the temerature, ressure, volume, etc - he value of
HOW TO CALCULATE PRESSURE ANYWHERE IN A PUMP SYSTEM? Jacques Chaurette p. eng. www.lightmypump.com April 2003
HOW TO CALCULATE PRESSURE ANYWHERE IN A PUMP SYSTEM? Jaques Chaurette p. en. www.lihtmypump.om April 003 Synopsis Calulatin the total head of the pump is not the only task of the pump system desiner. Often
Measurement of Powder Flow Properties that relate to Gravity Flow Behaviour through Industrial Processing Lines
Measurement of Powder Flow Properties that relate to Gravity Flow ehaviour through Industrial Proessing Lines A typial industrial powder proessing line will inlude several storage vessels (e.g. bins, bunkers,
) ( )( ) ( ) ( )( ) ( ) ( ) (1)
OPEN CHANNEL FLOW Open hannel flow is haraterized by a surfae in ontat with a gas phase, allowing the fluid to take on shapes and undergo behavior that is impossible in a pipe or other filled onduit. Examples
User s Guide VISFIT: a computer tool for the measurement of intrinsic viscosities
File:UserVisfit_2.do User s Guide VISFIT: a omputer tool for the measurement of intrinsi visosities Version 2.a, September 2003 From: Multiple Linear Least-Squares Fits with a Common Interept: Determination
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10
Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force
IDEAL AND NON-IDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
1 CHAPTER 6 PROPERTIES OF GASES
CHAPTER 6 PROPERTIES OF GASES 6. The Ideal Gas Equation In 660, the Honorable Robert Boyle, Father of Chemistry and seventh son of the Earl of Cork, and one of the founders of the Royal Soiety of London,
REGRESSIONS MODELING OF SURFACE ROUGHNESS IN FINISH TURNING OF HARDENED 205Cr115 STEEL USING FACTORIAL DESIGN METHODOLOGY
REGRESSIONS MODELING OF SURFACE ROUGHNESS IN FINISH TURNING OF HARDENED 05Cr115 STEEL USING FACTORIAL DESIGN METHODOLOGY Alexandru STANIMIR, Marius ZAMFIRACHE, Niolae Cătălin EFTENIE University of Craiova
Chapter 1 Classical Thermodynamics: The First Law. 1.2 The first law of thermodynamics. 1.3 Real and ideal gases: a review
Chapter 1 Classical Thermodynamics: The First Law 1.1 Introduction 1.2 The first law of thermodynamics 1.3 Real and ideal gases: a review 1.4 First law for cycles 1.5 Reversible processes 1.6 Work 1.7
Fixed-income Securities Lecture 2: Basic Terminology and Concepts. Present value (fixed interest rate) Present value (fixed interest rate): the arb
Fixed-inome Seurities Leture 2: Basi Terminology and Conepts Philip H. Dybvig Washington University in Saint Louis Various interest rates Present value (PV) and arbitrage Forward and spot interest rates
Gibbs Free Energy and Chemical Potential. NC State University
Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second
Lecture 24: Spinodal Decomposition: Part 3: kinetics of the
Leture 4: Spinodal Deoposition: Part 3: kinetis of the oposition flutuation Today s topis Diffusion kinetis of spinodal deoposition in ters of the onentration (oposition) flutuation as a funtion of tie:
Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W
Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W The rice elasticity of demand (which is often shortened to demand elasticity) is defined to be the
Static Fairness Criteria in Telecommunications
Teknillinen Korkeakoulu ERIKOISTYÖ Teknillisen fysiikan koulutusohjelma 92002 Mat-208 Sovelletun matematiikan erikoistyöt Stati Fairness Criteria in Teleommuniations Vesa Timonen, e-mail: vesatimonen@hutfi
Planning Approximations to the average length of vehicle routing problems with time window constraints
Planning Aroximations to the average length of vehile routing rolems with time window onstraints Miguel Andres Figliozzi ABSTRACT This aer studies aroximations to the average length of Vehile Routing Prolems
Economics 352: Intermediate Microeconomics. Notes and Assignment Chapter 5: Income and Substitution Effects
EC 352: ntermediate Miroeonomis, Leture 5 Eonomis 352: ntermediate Miroeonomis Notes and Assignment Chater 5: nome and Substitution Effets A Quik ntrodution To be lear about this, this hater will involve
Thermodynamics. Chapter 13 Phase Diagrams. NC State University
Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function
Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P
Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
Chapter 8 Maxwell relations and measurable properties
Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate
The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio
Chater 3 3.4- The Comressibility Fator Equatio of State The dimesioless omressibility fator, Z, for a gaseous seies is defied as the ratio Z = (3.4-1) If the gas behaes ideally Z = 1. The extet to whih
Journal of Manufacturing Systems. Tractable supply chain production planning, modeling nonlinear lead time and quality of service constraints
Journal of Manufaturing Systems 26 (2007) 6 34 Contents lists available at SieneDiret Journal of Manufaturing Systems journal homeage: www.elsevier.om/loate/jmansys Tehnial aer Tratable suly hain rodution
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
5.2 The Master Theorem
170 CHAPTER 5. RECURSION AND RECURRENCES 5.2 The Master Theorem Master Theorem In the last setion, we saw three different kinds of behavior for reurrenes of the form at (n/2) + n These behaviors depended
PHYS-2010: General Physics I Course Lecture Notes Section XIII
PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and
CLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
CHEMISTRY GAS LAW S WORKSHEET
Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is
Capacity at Unsignalized Two-Stage Priority Intersections
Capaity at Unsignalized Two-Stage Priority Intersetions by Werner Brilon and Ning Wu Abstrat The subjet of this paper is the apaity of minor-street traffi movements aross major divided four-lane roadways
Chapter 6 A N ovel Solution Of Linear Congruenes Proeedings NCUR IX. (1995), Vol. II, pp. 708{712 Jerey F. Gold Department of Mathematis, Department of Physis University of Utah Salt Lake City, Utah 84112
Gas Turbine Performance Optimization Using Compressor Online Water Washing Technique
Engineering, 2011, 3, 500-507 doi:10.4236/eng.2011.35058 Published Online May 2011 (htt://www.sirp.org/journal/eng) Gas urbine Performane Otimization Using Comressor Online Water Washing ehnique Abstrat
Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases
Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on
Answer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
CIS570 Lecture 4 Introduction to Data-flow Analysis 3
Introdution to Data-flow Analysis Last Time Control flow analysis BT disussion Today Introdue iterative data-flow analysis Liveness analysis Introdue other useful onepts CIS570 Leture 4 Introdution to
Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
The Impact of Digital File Sharing on the Music Industry: A Theoretical and Empirical Analysis
The Imat of Digital File Sharing on the Musi Industry: A Theoretial and Emirial Analysis by Norbert J. Mihel 14 Massahusetts Ave NE The Heritage Foundation Washington, D.C. 000 USA Email: [email protected]
Weighting Methods in Survey Sampling
Setion on Survey Researh Methods JSM 01 Weighting Methods in Survey Sampling Chiao-hih Chang Ferry Butar Butar Abstrat It is said that a well-designed survey an best prevent nonresponse. However, no matter
tr(a + B) = tr(a) + tr(b) tr(ca) = c tr(a)
Chapter 3 Determinant 31 The Determinant Funtion We follow an intuitive approah to introue the efinition of eterminant We alreay have a funtion efine on ertain matries: the trae The trae assigns a numer
10 UNSTEADY FLOW IN OPEN CHANNELS
0 UNTEY FLOW IN OEN CHNNEL 0. Introdution Unsteady flow in open hannels differs from that in losed onduits in that the eistene of a free surfae allows the flow ross-setion to freely hange, a fator whih
Channel Assignment Strategies for Cellular Phone Systems
Channel Assignment Strategies for Cellular Phone Systems Wei Liu Yiping Han Hang Yu Zhejiang University Hangzhou, P. R. China Contat: [email protected] 000 Mathematial Contest in Modeling (MCM) Meritorious
CHEMICAL EQUILIBRIUM (ICE METHOD)
CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
Exam 4 Practice Problems false false
Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids
So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:
1.- One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume V0=1liter. The gas goes through the free expansion process (Q = 0, W = 0), in which the pressure drops down to the atmospheric
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
10.1 The Lorentz force law
Sott Hughes 10 Marh 2005 Massahusetts Institute of Tehnology Department of Physis 8.022 Spring 2004 Leture 10: Magneti fore; Magneti fields; Ampere s law 10.1 The Lorentz fore law Until now, we have been
3 Game Theory: Basic Concepts
3 Game Theory: Basi Conepts Eah disipline of the soial sienes rules omfortably ithin its on hosen domain: : : so long as it stays largely oblivious of the others. Edard O. Wilson (1998):191 3.1 and and
THE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
Introduction to the Ideal Gas Law
Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.
2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.
UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in
HEAT EXCHANGERS-2. Associate Professor. IIT Delhi E-mail: [email protected]. P.Talukdar/ Mech-IITD
HEA EXHANGERS-2 Prabal alukdar Assoiate Professor Department of Mehanial Engineering II Delhi E-mail: [email protected] Multipass and rossflow he subsripts 1 and 2 represent the inlet and outlet, respetively..
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
CHAPTER J DESIGN OF CONNECTIONS
J-1 CHAPTER J DESIGN OF CONNECTIONS INTRODUCTION Chapter J of the addresses the design and heking of onnetions. The hapter s primary fous is the design of welded and bolted onnetions. Design requirements
Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.
Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical
THE BAROMETRIC FALLACY
THE BAROMETRIC FALLACY It is often assumed that the atmosheric ressure at the surface is related to the atmosheric ressure at elevation by a recise mathematical relationshi. This relationshi is that given
Optimal Sales Force Compensation
Optimal Sales Fore Compensation Matthias Kräkel Anja Shöttner Abstrat We analyze a dynami moral-hazard model to derive optimal sales fore ompensation plans without imposing any ad ho restritions on the
A Comparison of Service Quality between Private and Public Hospitals in Thailand
International Journal of Business and Soial Siene Vol. 4 No. 11; September 2013 A Comparison of Servie Quality between Private and Hospitals in Thailand Khanhitpol Yousapronpaiboon, D.B.A. Assistant Professor
Impedance Method for Leak Detection in Zigzag Pipelines
10.478/v10048-010-0036-0 MEASUREMENT SCIENCE REVIEW, Volume 10, No. 6, 010 Impedane Method for Leak Detetion in igzag Pipelines A. Lay-Ekuakille 1, P. Vergallo 1, A. Trotta 1 Dipartimento d Ingegneria
be the mass flow rate of the system input stream, and m be the mass flow rates of the system output stream, then Vout V in in out out
Chater 4 4. Energy Balances on Nonreactive Processes he general energy balance equation has the form Accumulation Inut Outut Heat added = + of Energy of Energy of Energy to System Work by done System Let
Dispersion in Optical Fibres
Introdution Optial Communiations Systems Dispersion in Optial Fibre (I) Dispersion limits available bandwidth As bit rates are inreasing, dispersion is beoming a ritial aspet of most systems Dispersion
Relativity in the Global Positioning System
Relativity in the Global Positioning System Neil Ashby Department of Physis,UCB 390 University of Colorado, Boulder, CO 80309-00390 NIST Affiliate Email: [email protected] July 0, 006 AAPT workshop
USA Mathematical Talent Search. PROBLEMS / SOLUTIONS / COMMENTS Round 3 - Year 12 - Academic Year 2000-2001
USA Mathematial Talent Searh PROBLEMS / SOLUTIONS / COMMENTS Round 3 - Year - Aademi Year 000-00 Gene A. Berg, Editor /3/. Find the smallest positive integer with the property that it has divisors ending
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory
How To Fator
CHAPTER hapter 4 > Make the Connetion 4 INTRODUCTION Developing seret odes is big business beause of the widespread use of omputers and the Internet. Corporations all over the world sell enryption systems
Suggested Answers, Problem Set 5 Health Economics
Suggested Answers, Problem Set 5 Health Eonomis Bill Evans Spring 2013 1. The graph is at the end of the handout. Fluoridated water strengthens teeth and redues inidene of avities. As a result, at all
19 The Kinetic Theory of Gases
19 The Kinetic Theory of Gases When a container of cold champagne, soda pop, or any other carbonated drink is opened, a slight fog forms around the opening and some of the liquid sprays outward. (In the
OPTIMAL TAXATION AND SOCIAL INSURANCE IN A LIFETIME PERSPECTIVE
January 26 OPTIMAL TAXATION AND SOCIAL INSURANCE IN A LIFETIME PERSPECTIVE A. Lans Bovenberg, Tilburg University, CEPR and CESifo ) Peter Birh Sørensen, University of Copenhagen, EPRU and CESifo ) Abstrat
Molar Mass of Butane
Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures
Physics 5D - Nov 18, 2013
Physics 5D - Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A- A A + 0 0-59.9 60-64.9 65-69.9 70-74.9 75-79.9 80-84.9 Percent Range (%) The two problems with the fewest correct
