Use of Linear Algebra in Cryptography
|
|
|
- Brandon Beasley
- 9 years ago
- Views:
Transcription
1 Use of Linear Algebra in Cryptography Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV p. 1/??
2 Creating a Matrix Problem: To create a matrix A = p. 2/??
3 Creating a Matrix Problem: To create a matrix A = Matlab: p. 2/??
4 Creating a Matrix Problem: To create a matrix A = Matlab: A = [1 2 3;4 5 6;7 8 10] p. 2/??
5 Compute the inverse of A mod m Output setting: Need to set the output as "rational" using a matlab comment format rat; p. 3/??
6 Compute the inverse of A mod m Output setting: Need to set the output as "rational" using a matlab comment format rat; Problem: Given A = 4 5 6, find A 1 mod p. 3/??
7 Step 1: Compute inverse over the reals Matlab commends: p. 4/??
8 Step 1: Compute inverse over the reals Matlab commends: format rat; p. 4/??
9 Step 1: Compute inverse over the reals Matlab commends: format rat; Ainv = inv(a) p. 4/??
10 Step 1: Compute inverse over the reals Matlab commends: format rat; Ainv = inv(a) 2/3 4/3 1 Ainv = 2/3 11/ p. 4/??
11 Step 1: Compute inverse over the reals Matlab commends: format rat; Ainv = inv(a) 2/3 4/3 1 Ainv = 2/3 11/ Observation: 3 is a common denominator. p. 4/??
12 Step 2: Making it all integral Problem: Need to rationalize this matrix before we take modulo m. As every entry of Ainv has a common denominator 3, multiply by 3 to make it an integer valued matrix. p. 5/??
13 Step 2: Making it all integral Problem: Need to rationalize this matrix before we take modulo m. As every entry of Ainv has a common denominator 3, multiply by 3 to make it an integer valued matrix. A1=(Ainv*3) p. 5/??
14 Step 2: Making it all integral Problem: Need to rationalize this matrix before we take modulo m. As every entry of Ainv has a common denominator 3, multiply by 3 to make it an integer valued matrix. A1=(Ainv*3) A1 = p. 5/??
15 Step 3: Find the inverse of A (mod 26) Problem: In Step 2, we computed A1 = 3A 1 (mod 26). We need to multiply A1 by 3 1 to get A 1. p. 6/??
16 Step 3: Find the inverse of A (mod 26) Problem: In Step 2, we computed A1 = 3A 1 (mod 26). We need to multiply A1 by 3 1 to get A 1. Compute (mod 26). p. 6/??
17 Step 3: Find the inverse of A (mod 26) Problem: In Step 2, we computed A1 = 3A 1 (mod 26). We need to multiply A1 by 3 1 to get A 1. Compute (mod 26). Use matlab commend: M2 = round(mod(m1 9,26)) to find A 1 = A2 p. 6/??
18 Step 3: Find the inverse of A (mod 26) Problem: In Step 2, we computed A1 = 3A 1 (mod 26). We need to multiply A1 by 3 1 to get A 1. Compute (mod 26). Use matlab commend: M2 = round(mod(m1 9,26)) to find A 1 = A A 1 := A2 = p. 6/??
19 Example 1: The problem Problem Suppose that we have intercepted a cipher text HVSCSCBKRYMIUA, and intelligent agents informed us that this is encrypted by a block cipher using digraphs (size 2 blocks) with a mod 26 alphabet, and that the plain text of THRY has been encrypted as HVRY. Break this code by finding the plain text. p. 7/??
20 Example 1: Compute deciphering matrix, Step 1 Solution strategy: Compute the decoding matrix A 1 = P 1 C 1 1, where P 1 is given by plain text THRY and C 1 is by cipher text HVRY. p. 8/??
21 Example 1: Compute deciphering matrix, Step 1 Solution strategy: Compute the decoding matrix A 1 = P 1 C 1 1, where P 1 is given by plain text THRY and C 1 is by cipher text HVRY. format rat; C1 = [7 17;21 24],C3 = inv(c1) p. 8/??
22 Example 1: Compute deciphering matrix, Step 1 Solution strategy: Compute the decoding matrix A 1 = P 1 C 1 1, where P 1 is given by plain text THRY and C 1 is by cipher text HVRY. format rat; C1 = [7 17;21 24],C3 = inv(c1) 8/63 17/189 C3 = 1/9 1/27 p. 8/??
23 Example 1: Compute deciphering matrix, Step 1 Solution strategy: Compute the decoding matrix A 1 = P 1 C 1 1, where P 1 is given by plain text THRY and C 1 is by cipher text HVRY. format rat; C1 = [7 17;21 24],C3 = inv(c1) 8/63 17/189 C3 = 1/9 1/27 Observation: 189 is a common denominator. p. 8/??
24 Example 1: Compute deciphering matrix, Step 2 Compute (mod 26) (using powermod or gcd). p. 9/??
25 Example 1: Compute deciphering matrix, Step 2 Compute (mod 26) (using powermod or gcd). C4 = C3 189;C5 = round(mod(c4 15,26)) p. 9/??
26 Example 1: Compute deciphering matrix, Step 2 Compute (mod 26) (using powermod or gcd). C4 = C3 189;C5 = round(mod(c4 15,26)) C5 = p. 9/??
27 Example 1: Compute deciphering matrix Ainv, Step 3 Strategy review: A 1 = P 1 C 1 1, and C5 = C 1 1. p. 10/??
28 Example 1: Compute deciphering matrix Ainv, Step 3 Strategy review: A 1 = P 1 C 1 1, and C5 = C 1 1. P1 = [19 17;7 24];Ainv = mod(p1 C5,26) p. 10/??
29 Example 1: Compute deciphering matrix Ainv, Step 3 Strategy review: A 1 = P 1 C 1 1, and C5 = C 1 1. P1 = [19 17;7 24];Ainv = mod(p1 C5,26) Ainv = p. 10/??
30 Example 1: Compute deciphering matrix Ainv, Step 3 Strategy review: A 1 = P 1 C 1 1, and C5 = C 1 1. P1 = [19 17;7 24];Ainv = mod(p1 C5,26) Ainv = p. 10/??
31 Example 1: Decoding Decoding computation: P = A 1 C p. 11/??
32 Example 1: Decoding Decoding computation: P = A 1 C C = [ ; ];P = mod(ainv C,26) p. 11/??
33 Example 1: Decoding Decoding computation: P = A 1 C C = [ ; ];P = mod(ainv C,26) P = p. 11/??
34 Example 1: Decoding Decoding computation: P = A 1 C C = [ ; ];P = mod(ainv C,26) P = Back to English: the message is THISISVERYEASY. p. 11/??
Introduction to Hill cipher
Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: [email protected] Every day, millions of people
Hill s Cipher: Linear Algebra in Cryptography
Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
Solutions to Problem Set 1
YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose
An Introduction to Hill Ciphers Using Linear Algebra
An Introduction to Hill Ciphers Using inear Algebra Brian Worthington October 26, 2010 University of North Texas MATH 2700.002 1 Contents 1 Introduction 3 1.1 Substitution Ciphers.........................
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Students will operate in pairs and teams of four to decipher and encipher information.
Title: SHHHHHH! It s a Secret Link to Outcomes: Patterns and Relationships Cooperation Connections Technology Problem Solving Algebra Writing Students will discover the need for a common understanding
K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013
Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Basic Algorithms In Computer Algebra
Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,
Groups in Cryptography
Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 [email protected] Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary
Page 1. Session Overview: Cryptography
Cool Careers in Cyber Security Frequency Chart and Cipher Cryptography Delivery: Can be used as a table demo (hands-on) activity or during a presentation session. Best to have the wheels pre-made. Messaging
Here are some examples of combining elements and the operations used:
MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
Multiplicative Ciphers. Cryptography of Multiplicative Ciphers
Fall 2006 Chris Christensen MAT/CSC 483 Multiplicative Ciphers It is evident from the relative ease with which the Caesar Cipher or its generalization to an arbitrary number of positions of shift has been
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC DR. LESZEK GAWARECKI 1. The Cartesian Coordinate System In the Cartesian system points are defined by giving their coordinates. Plot the following points:
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information
The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet
Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24. (9x + 2)(mod 26) y 1 1 (x 2)(mod 26) 3(x 2)(mod 26) U : y 1 = 3(20 2)(mod 26) 54(mod 26) 2(mod 26) c
Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24 2. The ciphertext UCR was encrypted using the affine function (9x + 2)(mod 26) Find the plaintext. First, we find the numerical values corresponding to UCR. U
Factoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand
Maths delivers! A guide for teachers Years 11 and 12. RSA Encryption
1 Maths delivers! 2 3 4 5 6 7 8 9 10 11 12 A guide for teachers Years 11 and 12 RSA Encryption Maths delivers! RSA Encryption Dr Michael Evans AMSI Editor: Dr Jane Pitkethly, La Trobe University Illustrations
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
5 Systems of Equations
Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate
An Efficient Data Security in Cloud Computing Using the RSA Encryption Process Algorithm
An Efficient Data Security in Cloud Computing Using the RSA Encryption Process Algorithm V.Masthanamma 1,G.Lakshmi Preya 2 UG Scholar, Department of Information Technology, Saveetha School of Engineering
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
Cryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
RSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室
Network Security 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination
1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier.
Study Group 1 Variables and Types 1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier. 2. What does the byte 00100110 represent? 3. What is the purpose of the declarations
Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)
Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University
Hill Ciphers and Modular Linear Algebra
Hill Ciphers and Modular Linear Algebra Murray Eisenberg November 3, 1999 Hill ciphers are an application of linear algebra to cryptology (the science of making and breaking codes and ciphers). Below we
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
A software solution is needed for secure communication between you and a friend. Requirements
CS Principles Encryption Project Plan Last updated: 02/10/2014 Software Engineer(s): Ada Lovelace & Alan Turing Problem A software solution is needed for secure communication between you and a friend.
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and
Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002
Secret File Sharing Techniques using AES algorithm C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 1. Feature Overview The Advanced Encryption Standard (AES) feature adds support
The Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
An Introduction to RSA Public-Key Cryptography
An Introduction to RSA Public-Key Cryptography David Boyhan August 5, 2008 According to the U.S. Census Bureau, in the 1st quarter of 2008, approximately $33 billion worth of retail sales were conducted
RSA Encryption. Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003
RSA Encryption Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
Rijndael Encryption implementation on different platforms, with emphasis on performance
Rijndael Encryption implementation on different platforms, with emphasis on performance KAFUUMA JOHN SSENYONJO Bsc (Hons) Computer Software Theory University of Bath May 2005 Rijndael Encryption implementation
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.
SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid
Lecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
AStudyofEncryptionAlgorithmsAESDESandRSAforSecurity
Global Journal of Computer Science and Technology Network, Web & Security Volume 13 Issue 15 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
Network Security. HIT Shimrit Tzur-David
Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key
Number Theory and Cryptography using PARI/GP
Number Theory and Cryptography using Minh Van Nguyen [email protected] 25 November 2008 This article uses to study elementary number theory and the RSA public key cryptosystem. Various commands will
Homomorphic Encryption Method Applied to Cloud Computing
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1519-1530 International Research Publications House http://www. irphouse.com Homomorphic Encryption
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works.
MATH 13150: Freshman Seminar Unit 18 1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. 1.1. Bob and Alice. Suppose that Alice wants to send a message to Bob over the internet
CS 173, Spring 2015 Examlet 2, Part A
1 congruence mod k: a b (mod k) if and only if a b = nk for some integer n. Claim: For all integers a, b, c, d, j and k (j and k positive), if a b (mod k) and c d (mod k) and j k, then a + c b + d (mod
ANALYSIS OF RSA ALGORITHM USING GPU PROGRAMMING
ANALYSIS OF RSA ALGORITHM USING GPU PROGRAMMING Sonam Mahajan 1 and Maninder Singh 2 1 Department of Computer Science Engineering, Thapar University, Patiala, India 2 Department of Computer Science Engineering,
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz
8-6 Radical Expressions and Rational Exponents Warm Up Lesson Presentation Lesson Quiz Holt Algebra ALgebra2 2 Warm Up Simplify each expression. 1. 7 3 7 2 16,807 2. 11 8 11 6 121 3. (3 2 ) 3 729 4. 5.
A New Efficient Digital Signature Scheme Algorithm based on Block cipher
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727Volume 7, Issue 1 (Nov. - Dec. 2012), PP 47-52 A New Efficient Digital Signature Scheme Algorithm based on Block cipher 1
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
Math Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
A Factoring and Discrete Logarithm based Cryptosystem
Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine
Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices
Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,
Factoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
MTH124: Honors Algebra I
MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES
HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh
Study of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Introduction to Cryptography CS 355
Introduction to Cryptography CS 355 Lecture 30 Digital Signatures CS 355 Fall 2005 / Lecture 30 1 Announcements Wednesday s lecture cancelled Friday will be guest lecture by Prof. Cristina Nita- Rotaru
Cryptography Exercises
Cryptography Exercises 1 Contents 1 source coding 3 2 Caesar Cipher 4 3 Ciphertext-only Attack 5 4 Classification of Cryptosystems-Network Nodes 6 5 Properties of modulo Operation 10 6 Vernam Cipher 11
Algebra 1 Advanced Mrs. Crocker. Final Exam Review Spring 2014
Name: Mod: Algebra 1 Advanced Mrs. Crocker Final Exam Review Spring 2014 The exam will cover Chapters 6 10 You must bring a pencil, calculator, eraser, and exam review flip book to your exam. You may bring
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
Overview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography
CS101 Lecture 21: Overview of Cryptography Codes and Ciphers Overview/Questions What is cryptography? What are the challenges of data encryption? What factors make an encryption strategy successful? What
SFWR ENG 4C03 - Computer Networks & Computer Security
KEY MANAGEMENT SFWR ENG 4C03 - Computer Networks & Computer Security Researcher: Jayesh Patel Student No. 9909040 Revised: April 4, 2005 Introduction Key management deals with the secure generation, distribution,
Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms
Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport
Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.
Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the
A New Digital Encryption Scheme: Binary Matrix Rotations Encryption Algorithm
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 2, February 2015, PP 18-27 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A
Modélisation et résolutions numérique et symbolique
Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat [email protected] Outline Previous course: partial review of what
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Public Key Cryptography of Digital Signatures
ACTA UNIVERSITATIS APULENSIS No 13/2007 MATHEMATICAL FOUNDATION OF DIGITAL SIGNATURES Daniela Bojan and Sidonia Vultur Abstract.The new services available on the Internet have born the necessity of a permanent
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
The Factor Theorem and a corollary of the Fundamental Theorem of Algebra
Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside
The Mathematics of the RSA Public-Key Cryptosystem
The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through
Split Based Encryption in Secure File Transfer
Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
