Study of algorithms for factoring integers and computing discrete logarithms
|
|
|
- Rhoda Boyd
- 9 years ago
- Views:
Transcription
1 Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Kharagpur , India Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 1
2 The integer factorization problem (IFP) Given a positive composite integer n, compute all the prime divisors of n. The IFP is known to be a problem in the complexity class NP conp. The input size is measured by the minimum number of bits needed to encode n, which is log 2 n + 1 = O(log n). No polynomial-time algorithms are known to solve the IFP. The best known algorithms to solve the IFP run in subexponential time. These subexponential algorithms are probabilistic in nature, and their running times often lack rigorous proofs. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 2
3 The discrete logarithm problem (DLP) Let G be a finite cyclic group of size n, and let g be a generator of G. Given a G, compute an integer x = ind g a satisfying a = g x. The index or discrete logarithm x is unique modulo n. There are certain groups where computing indices is computationally difficult. Multiplicative groups of finite fields Groups of rational points on elliptic curves defined over finite fields Jacobians of hyperelliptic curves defined over finite fields Class groups of (algebraic) number fields The finite field discrete logarithm problem is historically of similar complexity as the IFP. The subexponential algorithms for DLP are often adaptations of algorithms for factoring integers. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 3
4 The Diffie-Hellman problem (DHP) Let G be a finite cyclic group, and g a generator of G. Given g x and g y, compute g xy. If the DLP can be solved easily, the DHP can be solved easily too. The converse implication is not proved. The DHP is relevant for groups where computing discrete logarithms is difficult. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 4
5 Relevance to cryptography Public-key cryptography is based on the apparent intractability of solving some computational problems. The IFP, DLP and DHP are widely used in public-key systems. These problems lead to trapdoor one-way functions. The one-way-ness cannot be proved, but only believed. NP-complete problems are not found suitable for building public-key systems. Problems belonging to the class UP (unambiguous polynomial-time) are suitable. We have P UP NP. Both the inclusions are believed to be proper. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 5
6 Cryptography examples RSA is related to the IFP. Inverting RSA keys is probabilistic polynomial-time equivalent to IFP. However, RSA decryption (without the private key) may be easier than solving the IFP. Rabin s encryption algorithm is based on the square-root problem which is probabilistic polynomial-time equivalent to the IFP. The Diffie-Hellman key exchange problem is based on the DHP. ElGamal encryption is based on the DHP. Many other encryption and signature algorithms (like ElGamal signature, DSA) are based on the DLP. IFP and DLP find applications in designing authentication schemes too. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 6
7 Efficient implementation of modular arithmetic An old, yet interesting problem. A cryptography toolkit being developed in IIT Kharagpur runs 5 10% faster than GP/PARI for performing modular exponentiation of integers of cryptographic sizes. Exponentiation based on addition chains has been studied by my team. The goal is to generate crypto-grade exponents which lead to faster key operations than pseudorandom exponents. These works have not been published yet. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 7
8 Fermat s method of factoring integers Let n be an odd (positive) composite integer. Given v Z n, there exist at least two u Z n such that u 2 v 2 (mod n) and u ±v (mod n). For any such pair (u,v), we obtain the non-trivial factor gcd(u v, n) of n. Examples 899 = = , and gcd(30 1, 899) = 29 is a nontrivial factor of = , and gcd(50 1, 833) = 49 is a non-trivial factor of 833. Most modern subexponential algorithms are based on locating such pairs (u, v). Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 8
9 Modern factoring algorithms Subexponential running time L(n,γ, c) = exp [ (c + o(1))(ln n) γ (ln lnn) 1 γ], 0 < γ < 1, c > 0. Algorithms with running time L[c] = L(n, 1/2, c) CFRAC (Continued fraction method) SQUFOF (Square-form factorization) QSM (Quadratic sieve method) CSM (Cubic sieve method) ECM (Elliptic curve method not based on Fermat s method) Algorithms with running time L(n, 1/3, c) SNFSM (Special number field sieve method) GNFSM (General number field sieve method) Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 9
10 A naive algorithm Choose a in the range 1 a < n and take T(a) = a 2 (mod n), 1 T(a) < n. Try to factor T(a) as T(a) = q e 1 1 q e 2 2 q e t t, where q 1, q 2,...,q t are the first t primes. If all e i are even, take u = a and v = q e 1/2 1 q e 2/2 2 q e t/2 t. In general, it is unreasonable to expect that all e i are even. Collect many such relations and combine the relations to arrive at a congruence of the form u 2 v 2 (mod n). This leads to a linear system modulo 2. The expected value of T(a) is O(n). Instead of T(a), we can also try to factor T(a) + kn for small integers k. One can use sieving while considering different values of k. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 10
11 Quadratic sieve method (QSM) Let H = n, J = H 2 n. For a small integer a, we have (H +a) 2 T(a) (mod n), where T(a) = J +2aH +a 2. Try to factor T(a) over small primes. We have T(a) = O( n). So we get smooth candidates more frequently than in the naive method. Use sieving for running through all values of a. Running time is L[1]. We have studied some variants which reduce T(a) by small constant factors. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 11
12 Cubic sieve method (CSM) Let the integers x,y, z satisfy x 3 y 2 z (mod n) with x 3 y 2 z as integers. For integers a,b,c with a + b + c = 0, one has (x + ay)(x + by)(x + cy) y 2 T(a, b,c) (mod n), where T(a,b,c) = z + (ab + ac + bc)x + (abc)y = b(b + c)(x + cy) + (z c 2 x). If x,y, z are O(n ξ ), then T(a,b,c) is O(n ξ ) for small values of a,b,c. The best value for ξ is 1/3. In this case T(a, b,c) is O(n 1/3 ). Use sieving for running through all triples (a, b, c) with a + b + c = 0. The best running time is L[ 2/3] = L[0.816]. Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 12
13 Our study of the CSM A heuristic idea was proposed to increase the sieving interval by 20 30%. The resulting increase in the running time of the sieving step is nominal (less than 1%). The congruence x 3 y 2 z (mod n) with x 3 y 2 z is studied. It is an open question whether one can obtain x, y, z of the order O(n ξ ) for ξ < 1/2. We proposed some heuristic counting argument to conclude that the number of solutions of the congruence with 1 x,y, z n ξ is O(n 3ξ 1 ). For ξ slightly bigger than 1/3, we expect to get a solution. It remains open how one can compute such a solution for a general value of n. Publication: Abhijit Das and C E Veni Madhavan, On the cubic sieve method for computing discrete logarithms over prime fields, International Journal of Computer Mathematics, Volume 82, Number 12, December 2005, Taylor & Francis, Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 13
14 The number field sieve method (NFSM) Take n = Choose a polynomial f(x) Z[x] and m Z such that f(m) 0 (mod n). For example, take f(x) = x 4 2x + 3 and m = 14. For this choice, f(m) = = 3n. We have (x 3 ) 2 2x 3 3x 2 (mod f(x)). This implies (14 3 ) (mod n). A non-trivial factor of n is gcd( , n) = 191. Indeed, we have n = Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 14
15 Future directions of research Efficient implementation efforts (for cryptographic and cryptanalytic algorithms). Study of the cubic sieve method, particularly, the congruence x 3 y 2 z (mod n). Study of the number field sieve method. Effective parallelization attempts, pertaining most importantly to the linear system solving stage. A high ambition: designing new subexponential algorithms (with smaller values of the exponent γ and/or the constant c). A dream: arriving at polynomial-time algorithms (possibly randomized) for the IFP and/or the DLP, or proving that no such algorithm can exist. (Note that polynomialtime quantum algorithms are known for both these problems.) Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 15
16 Thank you! Dr. Abhijit Das First Indo-French Workshop on Cryptography and Related Topics, June 11 13, 2007, Paris Slide 16
Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms
Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport
Elements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Primality Testing and Factorization Methods
Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,
Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
Public-Key Cryptanalysis 1: Introduction and Factoring
Public-Key Cryptanalysis 1: Introduction and Factoring Nadia Heninger University of Pennsylvania July 21, 2013 Adventures in Cryptanalysis Part 1: Introduction and Factoring. What is public-key crypto
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Modern/Public-key cryptography started in 1976 with the publication of the following paper. W. Diffie
RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1
Faster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
Factoring. Factoring 1
Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like
Overview of Public-Key Cryptography
CS 361S Overview of Public-Key Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.1-6 slide 2 Public-Key Cryptography public key public key? private key Alice Bob Given: Everybody knows
MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
Factorization Methods: Very Quick Overview
Factorization Methods: Very Quick Overview Yuval Filmus October 17, 2012 1 Introduction In this lecture we introduce modern factorization methods. We will assume several facts from analytic number theory.
The Mathematics of the RSA Public-Key Cryptosystem
The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through
Implementation of Elliptic Curve Digital Signature Algorithm
Implementation of Elliptic Curve Digital Signature Algorithm Aqeel Khalique Kuldip Singh Sandeep Sood Department of Electronics & Computer Engineering, Indian Institute of Technology Roorkee Roorkee, India
FACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
CIS 5371 Cryptography. 8. Encryption --
CIS 5371 Cryptography p y 8. Encryption -- Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: All-or-nothing secrecy.
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
A Factoring and Discrete Logarithm based Cryptosystem
Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
RSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES
www.arpapress.com/volumes/vol8issue1/ijrras_8_1_10.pdf SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES Malek Jakob Kakish Amman Arab University, Department of Computer Information Systems, P.O.Box 2234,
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
Primality - Factorization
Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
An Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
Cryptography and Network Security
Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared
On Factoring Integers and Evaluating Discrete Logarithms
On Factoring Integers and Evaluating Discrete Logarithms A thesis presented by JOHN AARON GREGG to the departments of Mathematics and Computer Science in partial fulfillment of the honors requirements
Public Key Cryptography. Performance Comparison and Benchmarking
Public Key Cryptography Performance Comparison and Benchmarking Tanja Lange Department of Mathematics Technical University of Denmark [email protected] 28.08.2006 Tanja Lange Benchmarking p. 1 What
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
Cryptography and Network Security Chapter 10
Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 10 Other Public Key Cryptosystems Amongst the tribes of Central
Cryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Eli Biham Dan Boneh Omer Reingold Abstract The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2
QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University
QUANTUM COMPUTERS AND CRYPTOGRAPHY Mark Zhandry Stanford University Classical Encryption pk m c = E(pk,m) sk m = D(sk,c) m??? Quantum Computing Attack pk m aka Post-quantum Crypto c = E(pk,m) sk m = D(sk,c)
The Quadratic Sieve Factoring Algorithm
The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 Introduction Mathematicians have been attempting to find better and faster ways to factor composite
Digital Signature. Raj Jain. Washington University in St. Louis
Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/
Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur
Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods
A New Generic Digital Signature Algorithm
Groups Complex. Cryptol.? (????), 1 16 DOI 10.1515/GCC.????.??? de Gruyter???? A New Generic Digital Signature Algorithm Jennifer Seberry, Vinhbuu To and Dongvu Tonien Abstract. In this paper, we study
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Cryptography and Network Security Number Theory
Cryptography and Network Security Number Theory Xiang-Yang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography
Kommunikationssysteme (KSy) - Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 2000-2001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem
Computer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
Public-Key Cryptanalysis
To appear in Recent Trends in Cryptography, I. Luengo (Ed.), Contemporary Mathematics series, AMS-RSME, 2008. Public-Key Cryptanalysis Phong Q. Nguyen Abstract. In 1976, Diffie and Hellman introduced the
Smooth numbers and the quadratic sieve
Algorithmic Number Theory MSRI Publications Volume 44, 2008 Smooth numbers and the quadratic sieve CARL POMERANCE ABSTRACT. This article gives a gentle introduction to factoring large integers via the
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS. Carl Pomerance
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES Ounasser Abid 1, Jaouad Ettanfouhi 2 and Omar Khadir 3 1,2,3 Laboratory of Mathematics, Cryptography and Mechanics, Department of Mathematics, Fstm,
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Index Calculation Attacks on RSA Signature and Encryption
Index Calculation Attacks on RSA Signature and Encryption Jean-Sébastien Coron 1, Yvo Desmedt 2, David Naccache 1, Andrew Odlyzko 3, and Julien P. Stern 4 1 Gemplus Card International {jean-sebastien.coron,david.naccache}@gemplus.com
How To Solve The Prime Factorization Of N With A Polynomials
THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. IAN KIMING 1. Forbemærkning. Det kan forekomme idiotisk, at jeg som dansktalende og skrivende i et danskbaseret tidsskrift med en (formentlig) primært dansktalende
2. Cryptography 2.4 Digital Signatures
DI-FCT-UNL Computer and Network Systems Security Segurança de Sistemas e Redes de Computadores 2010-2011 2. Cryptography 2.4 Digital Signatures 2010, Henrique J. Domingos, DI/FCT/UNL 2.4 Digital Signatures
Library (versus Language) Based Parallelism in Factoring: Experiments in MPI. Dr. Michael Alexander Dr. Sonja Sewera.
Library (versus Language) Based Parallelism in Factoring: Experiments in MPI Dr. Michael Alexander Dr. Sonja Sewera Talk 2007-10-19 Slide 1 of 20 Primes Definitions Prime: A whole number n is a prime number
Public Key Cryptography. c Eli Biham - March 30, 2011 258 Public Key Cryptography
Public Key Cryptography c Eli Biham - March 30, 2011 258 Public Key Cryptography Key Exchange All the ciphers mentioned previously require keys known a-priori to all the users, before they can encrypt
Signature Schemes. CSG 252 Fall 2006. Riccardo Pucella
Signature Schemes CSG 252 Fall 2006 Riccardo Pucella Signatures Signatures in real life have a number of properties They specify the person responsible for a document E.g. that it has been produced by
Elliptic Curve Cryptography
Elliptic Curve Cryptography Elaine Brow, December 2010 Math 189A: Algebraic Geometry 1. Introduction to Public Key Cryptography To understand the motivation for elliptic curve cryptography, we must first
Improved Online/Offline Signature Schemes
Improved Online/Offline Signature Schemes Adi Shamir and Yael Tauman Applied Math. Dept. The Weizmann Institute of Science Rehovot 76100, Israel {shamir,tauman}@wisdom.weizmann.ac.il Abstract. The notion
Network Security. Chapter 2 Basics 2.2 Public Key Cryptography. Public Key Cryptography. Public Key Cryptography
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Encryption/Decryption using Public Key Cryptography Network Security Chapter 2 Basics 2.2 Public Key Cryptography
ECE 842 Report Implementation of Elliptic Curve Cryptography
ECE 842 Report Implementation of Elliptic Curve Cryptography Wei-Yang Lin December 15, 2004 Abstract The aim of this report is to illustrate the issues in implementing a practical elliptic curve cryptographic
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
Notes on Network Security Prof. Hemant K. Soni
Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications
LUC: A New Public Key System
LUC: A New Public Key System Peter J. Smith a and Michael J. J. Lennon b a LUC Partners, Auckland UniServices Ltd, The University of Auckland, Private Bag 92019, Auckland, New Zealand. b Department of
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION. Takayuki Yato. A Senior Thesis. Submitted to
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION by Takayuki Yato A Senior Thesis Submitted to Department of Information Science Faculty of Science The University of Tokyo on
Advanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
Introduction. Digital Signature
Introduction Electronic transactions and activities taken place over Internet need to be protected against all kinds of interference, accidental or malicious. The general task of the information technology
Lecture 3: One-Way Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
Lecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
A new probabilistic public key algorithm based on elliptic logarithms
A new probabilistic public key algorithm based on elliptic logarithms Afonso Comba de Araujo Neto, Raul Fernando Weber 1 Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Caixa
Public Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
Public Key (asymmetric) Cryptography
Public-Key Cryptography UNIVERSITA DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Public Key (asymmetric) Cryptography Luca Veltri (mail.to: [email protected]) Course of Network Security,
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Factoring and Discrete Log
Factoring and Discrete Log Nadia Heninger University of Pennsylvania June 1, 2015 Textbook RSA [Rivest Shamir Adleman 1977] Public Key N = pq modulus e encryption exponent Private Key p, q primes d decryption
Factoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 7: Public-key cryptography and RSA Ion Petre Department of IT, Åbo Akademi University 1 Some unanswered questions
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method Joseph C. Woodson Home School P. O. Box 55005 Tulsa, OK 74155 Abstract The process of finding the prime factorization
Textbook: Introduction to Cryptography 2nd ed. By J.A. Buchmann Chap 12 Digital Signatures
Textbook: Introduction to Cryptography 2nd ed. By J.A. Buchmann Chap 12 Digital Signatures Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝 陽 科 技 大 學 資 工
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Number Theory and Cryptography using PARI/GP
Number Theory and Cryptography using Minh Van Nguyen [email protected] 25 November 2008 This article uses to study elementary number theory and the RSA public key cryptosystem. Various commands will
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
How To Know If A Message Is From A Person Or A Machine
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
Ch.9 Cryptography. The Graduate Center, CUNY.! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis
Ch.9 Cryptography The Graduate Center, CUNY! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis Why is Modern Cryptography part of a Complexity course? Short answer:! Because Modern Cryptography
3. Computational Complexity.
3. Computational Complexity. (A) Introduction. As we will see, most cryptographic systems derive their supposed security from the presumed inability of any adversary to crack certain (number theoretic)
HYPERELLIPTIC CURVE METHOD FOR FACTORING INTEGERS. 1. Thoery and Algorithm
HYPERELLIPTIC CURVE METHOD FOR FACTORING INTEGERS WENHAN WANG 1. Thoery and Algorithm The idea of the method using hyperelliptic curves to factor integers is similar to the elliptic curve factoring method.
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.
Cryptographic Algorithms and Key Size Issues. Çetin Kaya Koç Oregon State University, Professor http://islab.oregonstate.edu/koc [email protected].
Cryptographic Algorithms and Key Size Issues Çetin Kaya Koç Oregon State University, Professor http://islab.oregonstate.edu/koc [email protected] Overview Cryptanalysis Challenge Encryption: DES AES Message
Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information
The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
