Solutions to Problem Set 1
|
|
|
- Justina Richardson
- 9 years ago
- Views:
Transcription
1 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose we are told that the plaintext yields the ciphertext breathtaking RUPOTENTOIFV where the Hill cipher is used, but the dimension m is not specified. Determine the encryption matrix. (See lecture notes, week 2, for details on the Hill cipher. Note that letters of the alphabet are encoded by the integers , and all arithmetic is performed modulo 26.) Solution: (Thanks for Jianye Lu to let me use some of his results) (a) This question gives you a sense of how to use known plaintext attack, our decipher requires 12/m m, which means m can only be 1, 2 or 3. Otherwise, we can t solve the linear equation. You should check m = 2 to see whether the key is consistent. We show how to get the solution for case m = 3. i. The message is divided into vectors m i of 3 letters each: m 1 = {1, 17, 4}, m 2 = {0, 19, 7}, m 3 = {19, 0, 10} and m 4 = {8, 13, 6}; ii. We want to know that the three vectors m 1, m 2, and m 3 are linearly independent. We have to check that no linear combination of two of them yields the third. The easiest way to do that is to go ahead and attempt Gaussian Elimination. If the vectors are not linearly independent, we will get stuck trying to find a suitable pivot element. But here, Gaussian elimination is not well defined when working over a ring such as Z 26 that is not a field. In particular, the even numbers and 13 do not have inverses, so we can t use them as pivot elements. It can happen that no candidate pivot elements are relatively prime to 26, even though the matrix does have an inverse. Thus, Gaussian Elimination can fail even when the vectors are linearly independent and the matrix inverse does exist. One fix for this is to reduce the matrix mod 2 and mod 13 to get two new matrices. Use Gaussian elimination on each to find their inverses, then combine them together using the Chinese Remainder Theorem to get the inverse mod 26. Fortunately, in our case, we have three linearly independent vectors {m 1, m 2, m 3 }, and Gaussian Elimination, when modified to search for a pivot element that is relatively prime to 26, does succeed, so the problem can be solved without resort to Chinese remaindering.
2 2 Solutions to Problem Set 1 iii. Solve K 3 3 with {m 1, m 2, m 3, c 1, c 2, c 3 } via Gaussian Elimination (remember to implement all operations modulo 26). Or, we may use matinvert provided for matrix inverting modulo 26. In either way, we have K 3 3 = c 1 c 2 c 3 m 1 m 2 m 3 iv. Verify K 3 3 with all plaintext and cipher pairs. 1 = (b) One can easily assert that there is no encryption matrix for m = 2 or m = 1 by applying the above process. (c) Some people forget to do (or mention) the verification of the key and case for m = 2 and m = 1. Problem 2: Decrypting a substitution cipher The file ciphertext in the course/assignments/ps1/ subdirectory contains encrypted text using a substitution cipher. The set of valid characters is ASCII characters Characters outside of this range (e.g., newline) are left unchanged. Decipher the message. Briefly describe the method that you used. (You will probably want to write some code to help you 1.) Solution: If you are familiar with Sherlock Holmes s story called The Adventure of the Dancing Men, 2 we are essentially doing the same thing as there. Most people did a great job here. So, here is the outline of the cracking: (a) We used the dictionary attack to crack this problem. We first need to assume it is written in English then sort all single characters by its frequency. (b) The most frequently used character must be white space, so we know the separation of the article. (c) Sort all the characters in words with lengths 2, 3, 4, 5 by their frequency. (d) Now, we can compare this with the most frequently used English characters table online or even the frequency sorting of an English article you find. (e) Try to guess the first few character mapping. Note that, the word the is very useful when you recognize it. (f) Apply the partial map you get to the text to see something more interesting. (g) Repeat the last two steps until most texts are clear. (h) When you see the URL, you know the answer. With the help of computer and Internet, seems you can be a better Holmes than the real one. 1 For your reference, the key generation program and the enciphering program are in perm gen.cc and subciph.cc, resp. 2 See for this cryptographic story online. Thanks for Jianye Lu to point out the link.
3 Handout #8 February 21, Here is the final plaintext: The encryption algorithm used in the TI DST tags is an unpublished, proprietary cipher that uses a 40-bit key. The algorithm was designed in the early 1990 s by engineers at Texas Instruments, but is still being deploying in current systems. By today s standards, a 40-bit key is unacceptably short: advances in computing power have made such keys susceptible to brute-force key guessing attacks. Therefore, the actual security of the DST system rests with the secrecy of the proprietary algorithm used in the tags. One of the most important principles in cryptographic design states, however, that the security of a system should be based only on the secrecy of the keys, never on the secrecy of the algorithm. (From Problem 3: Entropy, redundancy, and its use in enabling cryptanalysis Textbook, exercise [Use the definition of redundancy given in the textbook rather than the slightly different version given in the notes.] Solution: This is the easiest one, You should read through the textbook and apply the principle showed in the example to the new problem. The calculation is similar to what the author did in the textbook. The entropy for naming these four attacks can reasonably be as low as = 6.7 There are 39 characters in the strings (including hyphens). So the average length of the four names is 39/4 = Therefore, the average number of bits per letter in these long names is The redundancy of these names is 6.7/9.75 (bits per letter) / > 89%. Depending on how you count the character (whether to include white space and hyphen or not), you may get a slightly different solution. Problem 4: DES Consider a DES-like scheme where block length is 8; f i (x) is (i x) K mod 16 (i = 1,..., 4); number of rounds is 4; Decrypt using K = 1101.
4 4 Solutions to Problem Set 1 Solution: The simplified DES is showed in Fig. 1. The encrypted string is the final result which is L4 and R4. We assume no initial permutation. Here the computation of f i (x) is (i x) 13 mod 16 known L4 = 1010, R4 = 0101 L3 = 0101, R3 = 1010 L2 = 0101, R2 = 0101 L1 = 0101, R1 = 0101 L0 = 0000, R0 = 0101
5 Handout #8 February 21, Figure 1: Simplified DES
Introduction to Hill cipher
Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher
Hill s Cipher: Linear Algebra in Cryptography
Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
RSA Encryption. Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003
RSA Encryption Tom Davis [email protected] http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.
K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013
Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational
An Introduction to Hill Ciphers Using Linear Algebra
An Introduction to Hill Ciphers Using inear Algebra Brian Worthington October 26, 2010 University of North Texas MATH 2700.002 1 Contents 1 Introduction 3 1.1 Substitution Ciphers.........................
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur Lecture No. #06 Cryptanalysis of Classical Ciphers (Refer
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
Multiplicative Ciphers. Cryptography of Multiplicative Ciphers
Fall 2006 Chris Christensen MAT/CSC 483 Multiplicative Ciphers It is evident from the relative ease with which the Caesar Cipher or its generalization to an arbitrary number of positions of shift has been
Advanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier.
Study Group 1 Variables and Types 1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier. 2. What does the byte 00100110 represent? 3. What is the purpose of the declarations
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24. (9x + 2)(mod 26) y 1 1 (x 2)(mod 26) 3(x 2)(mod 26) U : y 1 = 3(20 2)(mod 26) 54(mod 26) 2(mod 26) c
Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24 2. The ciphertext UCR was encrypted using the affine function (9x + 2)(mod 26) Find the plaintext. First, we find the numerical values corresponding to UCR. U
A PPENDIX G S IMPLIFIED DES
A PPENDIX G S IMPLIFIED DES William Stallings opyright 2010 G.1 OVERVIEW...2! G.2 S-DES KEY GENERATION...3! G.3 S-DES ENRYPTION...4! Initial and Final Permutations...4! The Function f K...5! The Switch
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: [email protected] Every day, millions of people
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Symmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
Overview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography
CS101 Lecture 21: Overview of Cryptography Codes and Ciphers Overview/Questions What is cryptography? What are the challenges of data encryption? What factors make an encryption strategy successful? What
Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室
Network Security 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination
Page 1. Session Overview: Cryptography
Cool Careers in Cyber Security Frequency Chart and Cipher Cryptography Delivery: Can be used as a table demo (hands-on) activity or during a presentation session. Best to have the wheels pre-made. Messaging
SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG
SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG Chung-Chih Li, Hema Sagar R. Kandati, Bo Sun Dept. of Computer Science, Lamar University, Beaumont, Texas, USA 409-880-8748,
Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015 Chapter 2: Introduction to Cryptography What is cryptography? It is a process/art of mangling information in such a way so as to make it
Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1)
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 3 Symmetric Cryptography General Description Modes of ion Data ion Standard (DES)
Hill Ciphers and Modular Linear Algebra
Hill Ciphers and Modular Linear Algebra Murray Eisenberg November 3, 1999 Hill ciphers are an application of linear algebra to cryptology (the science of making and breaking codes and ciphers). Below we
The application of prime numbers to RSA encryption
The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
CSE331: Introduction to Networks and Security. Lecture 20 Fall 2006
CSE331: Introduction to Networks and Security Lecture 20 Fall 2006 Announcements Homework 2 has been assigned: **NEW DUE DATE** It's now due on Friday, November 3rd. Midterm 2 is Friday, November 10th
Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010
CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?
CrypTool. www.cryptool.de www.cryptool.com www.cryptool.org. Claudia Eckert / Thorsten Clausius Bernd Esslinger / Jörg Schneider / Henrik Koy
CrypTool A free software program for creating awareness of IT security issues for learning about and obtaining experience of cryptography for demonstrating encryption algorithms and analysis procedures
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
An Introduction to the RSA Encryption Method
April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
Lecture 3: One-Way Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
Diffusion and Data compression for data security. A.J. Han Vinck University of Duisburg/Essen April 2013 [email protected]
Diffusion and Data compression for data security A.J. Han Vinck University of Duisburg/Essen April 203 [email protected] content Why diffusion is important? Why data compression is important? Unicity
Network Security. HIT Shimrit Tzur-David
Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key
Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)
Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain
Caesar Ciphers: An Introduction to Cryptography
Purdue GK-12 Lesson Plan 2006-07 Caesar Ciphers: An Introduction to Cryptography Purdue University GK-12 2006-07 Lead developer and contact: Lance Bryant Purdue GK-12 Fellow [email protected] Co-author
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
A New Efficient Digital Signature Scheme Algorithm based on Block cipher
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727Volume 7, Issue 1 (Nov. - Dec. 2012), PP 47-52 A New Efficient Digital Signature Scheme Algorithm based on Block cipher 1
How To Encrypt With A 64 Bit Block Cipher
The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Public Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
How To Understand And Understand The History Of Cryptography
CSE497b Introduction to Computer and Network Security - Spring 2007 - Professors Jaeger Lecture 5 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07/
Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015
CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret
How To Know If A Message Is From A Person Or A Machine
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 13
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 13 Some More Secure Channel Issues Outline In the course we have yet only seen catastrophic
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION September 2010 (reviewed September 2014) ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK NETWORK SECURITY
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
Part I. Universität Klagenfurt - IWAS Multimedia Kommunikation (VK) M. Euchner; Mai 2001. Siemens AG 2001, ICN M NT
Part I Contents Part I Introduction to Information Security Definition of Crypto Cryptographic Objectives Security Threats and Attacks The process Security Security Services Cryptography Cryptography (code
Some practice problems for midterm 2
Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
CIS 5371 Cryptography. 8. Encryption --
CIS 5371 Cryptography p y 8. Encryption -- Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: All-or-nothing secrecy.
Cryptography and Network Security Chapter 3
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 3 Block Ciphers and the Data Encryption Standard All the afternoon
SECURITY IN NETWORKS
SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,
Cryptography Exercises
Cryptography Exercises 1 Contents 1 source coding 3 2 Caesar Cipher 4 3 Ciphertext-only Attack 5 4 Classification of Cryptosystems-Network Nodes 6 5 Properties of modulo Operation 10 6 Vernam Cipher 11
Shor s algorithm and secret sharing
Shor s algorithm and secret sharing Libor Nentvich: QC 23 April 2007: Shor s algorithm and secret sharing 1/41 Goals: 1 To explain why the factoring is important. 2 To describe the oldest and most successful
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
1 Data Encryption Algorithm
Date: Monday, September 23, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Data Encryption Standard (DES) The Data Encryption Standard (DES) has been
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Security in Distributed Systems. Network Security
Security in Distributed Systems Introduction Cryptography Authentication Key exchange Computer Science Lecture 18, page 1 Network Security Intruder may eavesdrop remove, modify, and/or insert messages
Message Authentication Code
Message Authentication Code Ali El Kaafarani Mathematical Institute Oxford University 1 of 44 Outline 1 CBC-MAC 2 Authenticated Encryption 3 Padding Oracle Attacks 4 Information Theoretic MACs 2 of 44
NEW HORIZON COLLEGE OF ENGINEERING, BANGALORE CLOUD COMPUTING ASSIGNMENT-1. 1. Explain any six benefits of Software as Service in Cloud computing?
NEW HORIZON COLLEGE OF ENGINEERING, BANGALORE CLOUD COMPUTING ASSIGNMENT-1 1. Explain any six benefits of Software as Service in Cloud computing? 2. List the different cloud applications available in the
Thinking of a (block) cipher as a permutation (depending on the key) on strings of a certain size, we would not want such a permutation to have many
Fixed points of permutations Let f : S S be a permutation of a set S. An element s S is a fixed point of f if f(s) = s. That is, the fixed points of a permutation are the points not moved by the permutation.
EXAM questions for the course TTM4135 - Information Security May 2013. Part 1
EXAM questions for the course TTM4135 - Information Security May 2013 Part 1 This part consists of 5 questions all from one common topic. The number of maximal points for every correctly answered question
A short primer on cryptography
A short primer on cryptography A. V. Atanasov April 14 2007 1 Preliminaries (This section is an introduction to the referred mathematical concepts. Feel free to skip it if you are familiar with the first
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond
Mathematical Model Based Total Security System with Qualitative and Quantitative Data of Human
Int Jr of Mathematics Sciences & Applications Vol3, No1, January-June 2013 Copyright Mind Reader Publications ISSN No: 2230-9888 wwwjournalshubcom Mathematical Model Based Total Security System with Qualitative
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona [email protected] Copyright c 2012 Christian
IT Networks & Security CERT Luncheon Series: Cryptography
IT Networks & Security CERT Luncheon Series: Cryptography Presented by Addam Schroll, IT Security & Privacy Analyst 1 Outline History Terms & Definitions Symmetric and Asymmetric Algorithms Hashing PKI
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
Network Security Technology Network Management
COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Modern/Public-key cryptography started in 1976 with the publication of the following paper. W. Diffie
Split Based Encryption in Secure File Transfer
Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical
Introduction to Encryption
Computers and Society Introduction to Encryption Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/35 3-0: Terminology
RSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
Application Layer (1)
Application Layer (1) Functionality: providing applications (e-mail, Web service, USENET, ftp etc) providing support protocols to allow the real applications to function properly (e.g. HTTP for Web appl.)
CIS433/533 - Computer and Network Security Cryptography
CIS433/533 - Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and
1 Message Authentication
Theoretical Foundations of Cryptography Lecture Georgia Tech, Spring 200 Message Authentication Message Authentication Instructor: Chris Peikert Scribe: Daniel Dadush We start with some simple questions
Introduction To Security and Privacy Einführung in die IT-Sicherheit I
Introduction To Security and Privacy Einführung in die IT-Sicherheit I Prof. Dr. rer. nat. Doğan Kesdoğan Institut für Wirtschaftsinformatik [email protected] http://www.uni-siegen.de/fb5/itsec/
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ MEng. Nguyễn CaoĐạt
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ MEng. Nguyễn CaoĐạt 1 Lecture 11: Network Security Reference: Chapter 8 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2 Research Student, Bharti Vidyapeeth, Pune, India [email protected] Modern College of Engineering,
Cryptography: Authentication, Blind Signatures, and Digital Cash
Cryptography: Authentication, Blind Signatures, and Digital Cash Rebecca Bellovin 1 Introduction One of the most exciting ideas in cryptography in the past few decades, with the widest array of applications,
Students will operate in pairs and teams of four to decipher and encipher information.
Title: SHHHHHH! It s a Secret Link to Outcomes: Patterns and Relationships Cooperation Connections Technology Problem Solving Algebra Writing Students will discover the need for a common understanding
AStudyofEncryptionAlgorithmsAESDESandRSAforSecurity
Global Journal of Computer Science and Technology Network, Web & Security Volume 13 Issue 15 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
Chapter 10. Network Security
Chapter 10 Network Security 10.1. Chapter 10: Outline 10.1 INTRODUCTION 10.2 CONFIDENTIALITY 10.3 OTHER ASPECTS OF SECURITY 10.4 INTERNET SECURITY 10.5 FIREWALLS 10.2 Chapter 10: Objective We introduce
