Learning the Stiffness Method with FOTRAN, Excel and MathCAD
|
|
|
- Eunice Stone
- 9 years ago
- Views:
Transcription
1 Learning the Stiffness Method with FOTRAN, Excel and MathCAD Peter W. Hoadley 1 Abstract - The stiffness method for structural analysis has been taught at the undergraduate level for several years. Computer languages like BASIC, FORTRAN, Pascal, C++ and Visual Basic have all been used in the classroom to teach the fundamentals of the method. For the last several years in the civil engineering department at VMI, Excel supplemented by commercially available software has been used to present the method. Just recently a student wanted to use MathCAD rather than Excel. A comparison was made as to how well the stiffness method was learned using MathCAD as compared to using Excel in this given class. One could argue that the stiffness method can best be programmed using one software tool as compared to the other but that is not the question posed here. Each software tool has its strengths and weaknesses. It is the effectiveness of the tool for learning that is addressed by this paper. Keywords: Stiffness method, student learning, software tools Introduction In 1930 Hardy Cross published a paper describing a technique that revolutionized structural analysis of indeterminate frames. [Cross, 3] The method is an iterative technique perfectly suited to hand calculations and is still taught today, even in this computer age, as a tool to explain how internal moments caused by external loads are distributed through a structure. Analysis techniques in the 1930 s, including Cross s moment distribution method, relied on member-end forces as unknowns. The roots of the stiffness method, which relies on member-end deformations as unknowns, date to the early 1900 s. [Maney, 5] The method was not popular for complicated structures since it necessitated the solution of large sets of equations. Once the digital computer was developed the stiffness method became practical and it is the solution technique of choice today. The stiffness method was taught to graduate students in the 1950 s and as digital computers became available to undergraduates, the method was introduced to them. In the early days the method had to be programmed using machine code but higher level languages were soon developed. In the 1990 s the development of spreadsheets and other software have made programming of the method far easier. The civil engineering department at VMI offers an elective course presenting the stiffness method. Ten years ago FORTRAN was used by the students to program the method. In the last few years the Excel spreadsheet has been used and most recently MathCAD has been investigated to determine if it would enhance learning. The primary concern is that the chosen software promote and not hinder a student s comprehension of the stiffness method. Every software tool has its strengths and weaknesses but the purpose of this paper is to determine which software tool enhances learning. Often the programming exercise proves too time consuming and students will spend most of their time debugging their computer programs rather than studying the subject. They may lose sight of the forest for the trees. [Chen, 2] Students may focus on the notational details of a certain language preventing them from grasping the big picture. [ECOOP, 4] Every software tool has its strengths and weaknesses and one may serve better than another in a given situation. It is not the purpose of this paper is to lift one software tool over another in a general sense. The purpose of this paper is to describe how learning was affected in a senior level undergraduate class when using FORTRAN, Excel and MathCAD to program the stiffness method. 1 Department of Civil and Environmental Engineering, VMI, Lexington, VA 24450, [email protected]
2 The Stiffness Method The stiffness method for structural analysis involves solving a set of equilibrium equations. Members of a structure are isolated and end forces are written in terms of loads and deformations. Material properties, geometry and member loads serve as input to the process. Support conditions and member connectivity are also needed as input. These member end force equations are written in matrix form and then modified for member orientation. Joint equilibrium equations are written in terms of these end forces resulting in a linear set of equations with deformations as the unknowns. This set of equations is modified for support conditions and then solved yielding values for the unknown deformations. These known deformations are substituted into the original equations for member end forces. Deformations and member end forces serve as output. FOTRAN, MathCAD and Excel are excellent software tools that can be used to program the stiffness method. The question addressed here is, Which software package is best for teaching, learning and understanding the stiffness method? Learning the Stiffness Method with FORTRAN FORTRAN is an acronym that stands for FORmula TRANslation and is a programming language developed in the late 1950 s. [Backus, 1] It was, in some cases perhaps still is, a very popular language in engineering circles. Other software claim superiority but FORTRAN seems to endure. At VMI during the 1980 s and early 1990 s, FORTRAN was taught in a dedicated course during the sophomore year and used as the primary software tool for teaching the stiffness method. The stiffness method includes the use of matrices, loops and conditional branching all of which are easy to program in FORTRAN. It is the author s experience that the language is not well suited for learning the stiffness method. There are three basic problems with FORTRAN when learning the stiffness method input/output, syntax and conceptual understanding. Regarding input, a data file has to be created including information about geometry, materials, loads and supports for the structure. The student then has to write the FORTRAN code to properly read the data. This leads to the second problem regarding syntax. Too often the student does not write the proper code to correctly read the data file. It is surprising how much time a student will spend trying to debug their program only to discover that FORMAT was spelled incorrectly! The format of output is relatively tedious and is merely a list of numbers that can be difficult to interpret. Syntax in general is a problem students find difficult when programming FORTRAN. Experience shows that what at first glance appeared to be a major problem in a student s program is merely a missing comma or a command incorrectly spelled. It is remarkable how many creative ways a student can spell CONTINUE! Matrix creation and manipulation is central to the stiffness method. It is the author s experience that college students do not find matrix manipulation difficult but do find it difficult to program. For example, the set of equilibrium equations necessary to solve for unknown displacements can be created by hand and visually offers a powerful representation of how the stiffness method works. Students must take this process and define it in FORTRAN code which requires nested loops and conditional branching. This is a great programming exercise but the energy required to program the process interferes with learning. One advantage of FORTRAN is that the same program that is written to solve for deformations and member-end forces in a simple frame can be used to solve the same in a complicated frame. A generalized program is useful but does not help in learning the method. Learning the Stiffness Method with MathCAD MathCAD is a powerful equation solving software tool ideally suited for engineering problems. The software can be used to solve implicit equations, sets of equations and symbolic equations. MathCAD includes programming tools which can be used to solve structural analysis problems using the stiffness method. One advantage MathCAD has over FORTRAN is that it is far more visual. Matrices are displayed in a way that students can easily understand what each term represents as shown in Figure 1. This figure illustrates a MathCAD function called LMSM with length, Len, area, Ar, moment of inertia I and modulus, E as arguments. The function shows clearly how all variables influence each term in the matrix. The visual nature of the matrix makes it easy to demonstrate to students how it can be partitioned and what each partition represents. Matrix multiplication need not be programmed as in FORTRAN, therefore, the student does not lose sight of the purpose of the matrix multiplication that tedious programming may hide.
3 Assembling the set of joint equilibrium equations using MathCAD is awkward. Each term in the matrix could be created individually which would be tedious. The matrix is symmetric which may simplify the process but this is not a practical option. The process can be programmed in MathCAD much as it is in FORTRAN. Figure 1 A MathCAD function that creates a member stiffness matrix. The author and his students find programming in MathCAD rather awkward. The author was told by colleagues who use MathCAD extensively that they will use another language for programming before they use MathCAD. The programming process in MathCAD requires a function and several nested loops. For example, what a student would type to create the first few lines of a routine for assembling the GSSM might look something like the following (what is actually typed or selected from a menu is in bold): Build(A,B,RB,RE,CB,CE): ]k{0 Select the next empty box Cntrl=, Select the first box, i Select the second box, RB;RE Select the next empty box ]m{ 0 Etc. The resulting MathCAD code is shown in Figure 2. Figure 2. Example of MathCAD code Some of the elements of the MathCAD code can be selected from menus making the process easier. In the statement shown in Figure 2, Build creates a function. The arguments of the function include matrix A representing the member end forces for a given member, matrix B representing the set of joint equilibrium equations for the whole structure and the other arguments represent joint numbers used as indices in programming loops. The vertical line or Add line in MathCAD is used to create a section that is not unlike a subroutine in FORTRAN. The symbol or local definition arrow in MathCAD is the same as an equal sign in a FORTRAN subroutine. The for statement sets up a loop. The symbol means in the range of and is used
4 for defining the beginning and end of the loop. In terms of syntax the student must learn about functions, add line, local definitions, how to use for-next loops, and more. Learning how to program in MathCAD becomes an impediment to learning the stiffness method. Other syntax hurdles include the equal sign as there are four different kinds (or six depending on who s counting)! Note that in Figure 2 three equal signs are used: :=, and the. The first is an assignment and is inserted by typing a colon. The second is a local assignment statement and is inserted by typing a left bracket. The third is automatically created by the if statement. Other equal signs include one which yields a value of an expression, one used in symbolic equations (this is the algebraic equal sign) and a one used in global definitions. There are two types of subscripts text and matrix index. They look alike but the text subscript is created by using a period and the matrix index subscript is created by using a [. To enter r A =k 0 *C A where r A is a subscripted variable while k 0 and C A are elements of an array one must type r.a:k[0*c[a. The resulting MathCAD code is shown in Figure 3. This is a feature that is ripe for errors difficult to debug. Figure 3 Example of MathCAD code Correcting subscript errors can be difficult. For example, to delete a matrix index the [ must be deleted but it is not displayed on the screen. One has to know that it is hidden. Tables for input and output can be created and this is an improvement over FORTRAN. Only one format may be used for variables and constants which limits how input/output is displayed. Order of computations is purely linear so output cannot be displayed next to input. Though the stiffness method can be programmed in MathCAD it is not well suited for learning the method by undergraduate students. Learning the Stiffness Method with Excel Using Excel to learn the stiffness method has definite advantages over MathCAD and FORTRAN. Consider the three-member frame in Figure 4. The frame consists of three members supported by two pins subjected to a horizontal load, vertical load and a moment. All three members are rotated from the horizontal. A table well labeled and formatted is used for the input. All input is placed in the yellow-shaded cells and is easily modified for modifications in material, stiffness, geometry, support conditions or loads. Output including joint deformations and member end forces can be displayed on the same page in well labeled and formatted tables. All output is displayed in the blue-shaded cells. Having the output displayed on the same page as input makes it easy to perform what-if studies of the frame. All computations are executed in other locations of the spreadsheet. A template for member matrices can be created, as shown in Figure 5, and cut and pasted for multiple members with different inputs. In MathCAD the terms of the matrix equation are in symbolic form making it clear what variables affect each value. Excel merely displays the numerical result for each term and does not show what values are included in the computations. As in MathCAD matrices are displayed visually making it easy for the student to understand what each term represents. Excel has advanced formatting options allowing one to display the matrices into logical partitions. This is very useful in understanding the nature of these member matrices. It also aids in understanding how the member matrices are used to create the primary matrix of joint equilibrium equations. The joint equilibrium equations (JEE) are difficult to assemble in a general way in Excel. Technically each term in the matrix is unique; however, since member matrices may be partitioned, multiple terms in the JEE can be created with one simple equation. Symmetry further decreases the number of unique equations necessary to form the JEE matrix. The JEE must be modified for support conditions which necessitates conditional branching. This is relatively easy to implement in Excel. The most tedious step is the use of the nodal deformations in the computation of member end loads. All necessary matrices exist but some accurate accounting is necessary to match the right matrix with the right deformations. Since the mechanics of the stiffness method are relatively easy to program in Excel more time can be spent focusing on the derivation of the stiffness coefficients in the member matrices. The transformation matrices and subsequent matrix multiplications are easily executed in Excel so the meaning of the process is not clouded by the complication of the execution. The partitioning of the stiffness matrices can be easily illustrated in Excel, which
5 Three-bar Frame with Nodal Loads Nodal deformations and member end forces are computed for the 3-bar frame shown below. Yellow regions are for input and units of inches and kips were used throughout. A "U" was used for unknown nodal deformations. Output is shown in the blue regions. 15 kips 5' 25 kips ' 75 ft-kips y 1 4 x 25' 14' Nodal Properties Nodal Forces Known Deformations Node # x y F x F 2 M δ x δ y θ Member # U U U U U U U U Member Properties and Connectivity Area Moment of Inertia Modulus Length Angle i-node j-node Deformations Node # δ x δ 2 θ Member Forces (according to the global axis system) i-node j-node Member # Fx Fy M Fx Fy M Figure 4. Excel Spreadsheet - Input and Output
6 helps students understand the proper position of member matrices in the JEE. Excel s syntax is easy to learn and does not confuse the computational process. When learning the stiffness method, Excel is a relatively easy tool to use that visually demonstrates the process. Of course for the general case some programming language is best. Excel does include programming tools through Visual Basic but has the same disadvantages as in FORTRAN and MathCAD. Local Member Stiffness Matrix for Member 1 Member i-node j-node Area MOI Modulus Length Angle Local Member Stiffness Matrix (LMSM) δix δiy θi δjx δjy θj P i δix V i δiy M i = θi P j δjx V j δjy M j θj Figure 5. Excel member stiffness matrix Conclusion Learning the stiffness method is the primary goal in a senior level civil engineering elective at VMI. FORTRAN, Excel and MathCAD have all been used by students to program the method. Both FORTRAN and MathCAD present obstacles to learning since writing and debugging can be difficult. Excel is easy to program and debug and has proven to be the best software tool for students learning the method. Since using Excel the author has found that more material is covered in the course with better understanding than when using MathCAD or FORTRAN. REFERENCES [1] Backus, J., The History of FORTRAN I, II and III, History of Programming Languages, Edited by Richard L. Wexelblat, Academic Press, Blue Bell, Pennsylvania, 1981, pg [2] Chen, HH, Pedagogically Effective Programming Environment for Teaching Mechanism Design, Computer Applications in Engineering Education, Vo. 2, No. 1, 1994, pp [3] Cross, Hardy, "Analysis of Continuous Frames by Distributing Fixed-End Moments" Proceedings of the American Society of Civil Engineers, ASCE, May [4] European Conference on Object-Oriented Programming, as quoted from the Call for Participation for the Tenth Workshop on Pedagogies and Tools for the Teaching and Learning of Object Oriented Concepts, ECOOP, July 3, 2006, Nantes, France. [5] Maney, G.B., Studies in Engineering, No. 1, University of Minnesota, Minneapolis, Peter W. Hoadley Hoadley received his undergraduate degree from Vanderbilt University and his graduate degrees from The University of Texas at Austin. He is a professor in the Department of Civil and Environmental Engineering at The Virginia Military Institute. He is a licensed engineering in the state of Virginia.
The elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
Quickstart for Desktop Version
Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,
Excel 2007 Basic knowledge
Ribbon menu The Ribbon menu system with tabs for various Excel commands. This Ribbon system replaces the traditional menus used with Excel 2003. Above the Ribbon in the upper-left corner is the Microsoft
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Lecture 2 Mathcad Basics
Operators Lecture 2 Mathcad Basics + Addition, - Subtraction, * Multiplication, / Division, ^ Power ( ) Specify evaluation order Order of Operations ( ) ^ highest level, first priority * / next priority
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
Excel supplement: Chapter 7 Matrix and vector algebra
Excel supplement: Chapter 7 atrix and vector algebra any models in economics lead to large systems of linear equations. These problems are particularly suited for computers. The main purpose of this chapter
Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes
TI-Nspire Activity: Paint Can Dimensions By: Patsy Fagan and Angela Halsted Activity Overview Problem 1 explores the relationship between height and volume of a right cylinder, the height and surface area,
Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12
Mathematics Curriculum Guide Precalculus 2015-16 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing
Introduction to Microsoft Excel 2007/2010
to Microsoft Excel 2007/2010 Abstract: Microsoft Excel is one of the most powerful and widely used spreadsheet applications available today. Excel's functionality and popularity have made it an essential
The Center for Teaching, Learning, & Technology
The Center for Teaching, Learning, & Technology Instructional Technology Workshops Microsoft Excel 2010 Formulas and Charts Albert Robinson / Delwar Sayeed Faculty and Staff Development Programs Colston
Piston Ring. Problem:
Problem: A cast-iron piston ring has a mean diameter of 81 mm, a radial height of h 6 mm, and a thickness b 4 mm. The ring is assembled using an expansion tool which separates the split ends a distance
PTC Mathcad Prime 3.0 Keyboard Shortcuts
PTC Mathcad Prime 3.0 Shortcuts Swedish s Regions Inserting Regions Operator/Command Description Shortcut Swedish Area Inserts a collapsible area you can collapse or expand to toggle the display of your
CATIA Basic Concepts TABLE OF CONTENTS
TABLE OF CONTENTS Introduction...1 Manual Format...2 Log on/off procedures for Windows...3 To log on...3 To logoff...7 Assembly Design Screen...8 Part Design Screen...9 Pull-down Menus...10 Start...10
Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of -6 Grade-Level Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
Everyday Mathematics GOALS
Copyright Wright Group/McGraw-Hill GOALS The following tables list the Grade-Level Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS
1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the
Algorithm & Flowchart & Pseudo code. Staff Incharge: S.Sasirekha
Algorithm & Flowchart & Pseudo code Staff Incharge: S.Sasirekha Computer Programming and Languages Computers work on a set of instructions called computer program, which clearly specify the ways to carry
Programming in Access VBA
PART I Programming in Access VBA In this part, you will learn all about how Visual Basic for Applications (VBA) works for Access 2010. A number of new VBA features have been incorporated into the 2010
Introduction to the TI-Nspire CX
Introduction to the TI-Nspire CX Activity Overview: In this activity, you will become familiar with the layout of the TI-Nspire CX. Step 1: Locate the Touchpad. The Touchpad is used to navigate the cursor
Solving Mass Balances using Matrix Algebra
Page: 1 Alex Doll, P.Eng, Alex G Doll Consulting Ltd. http://www.agdconsulting.ca Abstract Matrix Algebra, also known as linear algebra, is well suited to solving material balance problems encountered
ANALYSIS OF STRUCTURAL MEMBER SYSTEMS JEROME J. CONNOR NEW YORK : ':,:':,;:::::,,:
ANALYSIS OF JEROME J. CONNOR, Sc.D., Massachusetts Institute of Technology, is Professor of Civil Engineering at Massachusetts Institute of Technology. He has been active in STRUCTURAL MEMBER teaching
Excel Basics By Tom Peters & Laura Spielman
Excel Basics By Tom Peters & Laura Spielman What is Excel? Microsoft Excel is a software program with spreadsheet format enabling the user to organize raw data, make tables and charts, graph and model
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
http://school-maths.com Gerrit Stols
For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It
Code_Aster. A finite element of cable-pulley
Titre : Un élément fini de câble-poulie Date : 09/12/2013 Page : 1/14 A finite element of cable-pulley Summarized : The pulleys play an important role in structures of cables such as the air electric lines.
Excel & Visual Basic for Applications (VBA)
Excel & Visual Basic for Applications (VBA) The VBA Programming Environment Recording Macros Working with the Visual Basic Editor (VBE) 1 Why get involved with this programming business? If you can't program,
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
The Matrix Stiffness Method for 2D Trusses
The Matrix Stiffness Method for D Trusses Method CEE 4L. Matrix Structural Analysis Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 04. Number all of the nodes and
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
Back to Elements - Tetrahedra vs. Hexahedra
Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different
Unit 4: Analyze and Graph Linear Equations, Functions, and Relations
Unit 4 Table of Contents Unit 4: Analyze and Graph Linear Equations, Functions and Relations Video Overview Learning Objectives 4.2 Media Run Times 4.3 Instructor Notes 4.4 The Mathematics of Analyzing
EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES
EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic
Application of Linear Algebra in. Electrical Circuits
Application of Linear Algebra in Electrical Circuits Seamleng Taing Math 308 Autumn 2001 December 2, 2001 Table of Contents Abstract..3 Applications of Linear Algebra in Electrical Circuits Explanation..
Using Casio Graphics Calculators
Using Casio Graphics Calculators (Some of this document is based on papers prepared by Donald Stover in January 2004.) This document summarizes calculation and programming operations with many contemporary
Statics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
I PUC - Computer Science. Practical s Syllabus. Contents
I PUC - Computer Science Practical s Syllabus Contents Topics 1 Overview Of a Computer 1.1 Introduction 1.2 Functional Components of a computer (Working of each unit) 1.3 Evolution Of Computers 1.4 Generations
High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
Using Parametric Equations in SolidWorks, Example 1
Using Parametric Equations in SolidWorks, Example 1 (Draft 4, 10/25/2006, SW 2006) Introduction In this example the goal is to place a solid roller on a solid wedge. Their relationship will be governed
TEACHER S GUIDE TO RUSH HOUR
Using Puzzles to Teach Problem Solving TEACHER S GUIDE TO RUSH HOUR Includes Rush Hour 2, 3, 4, Rush Hour Jr., Railroad Rush Hour and Safari Rush Hour BENEFITS Rush Hour is a sliding piece puzzle that
Microsoft Excel 2010 Part 3: Advanced Excel
CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Microsoft Excel 2010 Part 3: Advanced Excel Winter 2015, Version 1.0 Table of Contents Introduction...2 Sorting Data...2 Sorting
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du [email protected] University of British Columbia
Beginner s Matlab Tutorial
Christopher Lum [email protected] Introduction Beginner s Matlab Tutorial This document is designed to act as a tutorial for an individual who has had no prior experience with Matlab. For any questions
Guidelines for Effective Data Migration
Guidelines for Effective Data Migration Applies to: SAP R/3. All releases. For more information, visit the ABAP homepage. Summary Data Migration is an important step in any SAP implementation projects.
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
Fourth generation techniques (4GT)
Fourth generation techniques (4GT) The term fourth generation techniques (4GT) encompasses a broad array of software tools that have one thing in common. Each enables the software engineer to specify some
ECDL. European Computer Driving Licence. Spreadsheet Software BCS ITQ Level 2. Syllabus Version 5.0
European Computer Driving Licence Spreadsheet Software BCS ITQ Level 2 Using Microsoft Excel 2010 Syllabus Version 5.0 This training, which has been approved by BCS, The Chartered Institute for IT, includes
Five High Order Thinking Skills
Five High Order Introduction The high technology like computers and calculators has profoundly changed the world of mathematics education. It is not only what aspects of mathematics are essential for learning,
Microsoft Excel 2010 Tutorial
1 Microsoft Excel 2010 Tutorial Excel is a spreadsheet program in the Microsoft Office system. You can use Excel to create and format workbooks (a collection of spreadsheets) in order to analyze data and
CATIA Functional Tolerancing & Annotation TABLE OF CONTENTS
TABLE OF CONTENTS Introduction...1 Functional Tolerancing and Annotation...2 Pull-down Menus...3 Insert...3 Functional Tolerancing and Annotation Workbench...4 Bottom Toolbar Changes...5 3D Grid Toolbar...5
Numeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
sensitivity analysis. Using Excel 2.1 MANUAL WHAT-IF ANALYSIS 2.2 THRESHOLD VALUES
Sensitivity Analysis Using Excel The main goal of sensitivity analysis is to gain insight into which assumptions are critical, i.e., which assumptions affect choice. The process involves various ways of
(Refer Slide Time: 2:03)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were
Excel -- Creating Charts
Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel
Graphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the
Greatest Common Factors and Least Common Multiples with Venn Diagrams
Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors
Logo Symmetry Learning Task. Unit 5
Logo Symmetry Learning Task Unit 5 Course Mathematics I: Algebra, Geometry, Statistics Overview The Logo Symmetry Learning Task explores graph symmetry and odd and even functions. Students are asked to
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook
Parsing Technology and its role in Legacy Modernization. A Metaware White Paper
Parsing Technology and its role in Legacy Modernization A Metaware White Paper 1 INTRODUCTION In the two last decades there has been an explosion of interest in software tools that can automate key tasks
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Mark Scheme (Results) June 2011. GCSE Mathematics (1380) Paper 1F (Non-Calculator)
Mark Scheme (Results) June 2011 GCSE Mathematics (1380) Paper 1F (Non-Calculator) Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range
Intro to Excel spreadsheets
Intro to Excel spreadsheets What are the objectives of this document? The objectives of document are: 1. Familiarize you with what a spreadsheet is, how it works, and what its capabilities are; 2. Using
Excel 2003: Ringtones Task
Excel 2003: Ringtones Task 1. Open up a blank spreadsheet 2. Save the spreadsheet to your area and call it Ringtones.xls 3. Add the data as shown here, making sure you keep to the cells as shown Make sure
Balanced Assessment Test Algebra 2008
Balanced Assessment Test Algebra 2008 Core Idea Task Score Representations Expressions This task asks students find algebraic expressions for area and perimeter of parallelograms and trapezoids. Successful
Such As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
Scientific Graphing in Excel 2010
Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.
There are six different windows that can be opened when using SPSS. The following will give a description of each of them.
SPSS Basics Tutorial 1: SPSS Windows There are six different windows that can be opened when using SPSS. The following will give a description of each of them. The Data Editor The Data Editor is a spreadsheet
Graphing Parabolas With Microsoft Excel
Graphing Parabolas With Microsoft Excel Mr. Clausen Algebra 2 California State Standard for Algebra 2 #10.0: Students graph quadratic functions and determine the maxima, minima, and zeros of the function.
PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,
1 of 5 11/18/2004 6:24 PM PARAMETRIC MODELING David Rosen December 1997 The term parametric modeling denotes the use of parameters to control the dimensions and shape of CAD models. Think of a rubber CAD
Computational Mathematics with Python
Computational Mathematics with Python Basics Claus Führer, Jan Erik Solem, Olivier Verdier Spring 2010 Claus Führer, Jan Erik Solem, Olivier Verdier Computational Mathematics with Python Spring 2010 1
Recovering Business Rules from Legacy Source Code for System Modernization
Recovering Business Rules from Legacy Source Code for System Modernization Erik Putrycz, Ph.D. Anatol W. Kark Software Engineering Group National Research Council, Canada Introduction Legacy software 000009*
5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
DRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
Circuits 1 M H Miller
Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents
MicroStrategy Desktop
MicroStrategy Desktop Quick Start Guide MicroStrategy Desktop is designed to enable business professionals like you to explore data, simply and without needing direct support from IT. 1 Import data from
Module 3: Correlation and Covariance
Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis
Mathematical goals. Starting points. Materials required. Time needed
Level A3 of challenge: C A3 Creating and solving harder equations equations Mathematical goals Starting points Materials required Time needed To enable learners to: create and solve equations, where the
CONSTRUCTING SINGLE-SUBJECT REVERSAL DESIGN GRAPHS USING MICROSOFT WORD : A COMPREHENSIVE TUTORIAL
CONSTRUCTING SINGLE-SUBJECT REVERSAL DESIGN GRAPHS USING MICROSOFT WORD : A COMPREHENSIVE TUTORIAL PATRICK GREHAN ADELPHI UNIVERSITY DANIEL J. MORAN MIDAMERICAN PSYCHOLOGICAL INSTITUTE This document is
Computational Mathematics with Python
Boolean Arrays Classes Computational Mathematics with Python Basics Olivier Verdier and Claus Führer 2009-03-24 Olivier Verdier and Claus Führer Computational Mathematics with Python 2009-03-24 1 / 40
High School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
Different Approaches to White Box Testing Technique for Finding Errors
Different Approaches to White Box Testing Technique for Finding Errors Mohd. Ehmer Khan Department of Information Technology Al Musanna College of Technology, Sultanate of Oman [email protected] Abstract
CURRICULUM FOUNDATIONS
Susan H. Carper Old Dominion University OTED 785 Fall 2002 CURRICULUM FOUNDATIONS DEFINITION OF MICROSOFT OFFICE Microsoft Office is a software suite that includes several productivity applications. Microsoft
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
What Is Singapore Math?
What Is Singapore Math? You may be wondering what Singapore Math is all about, and with good reason. This is a totally new kind of math for you and your child. What you may not know is that Singapore has
TImath.com Algebra 1. Absolutely!
Absolutely! ID: 8791 Time required 45 minutes Activity Overview In this activity, students first solve linear absolute value equations in a single variable using the definition of absolute value to write
TurboNest. What s New. Version 11.0. Released April 2014. Copyright 2014 Hypertherm, Inc. All rights reserved.
TurboNest Version 11.0 2015 What s New Released April 2014 What s New in TurboNest 2015 (v11.0) 1 New Features and Enhancements The following enhancements are available in the TurboNest 11.0 release: Ribbon
Basic Excel Handbook
2 5 2 7 1 1 0 4 3 9 8 1 Basic Excel Handbook Version 3.6 May 6, 2008 Contents Contents... 1 Part I: Background Information...3 About This Handbook... 4 Excel Terminology... 5 Excel Terminology (cont.)...
COMPUTER SCIENCE (5651) Test at a Glance
COMPUTER SCIENCE (5651) Test at a Glance Test Name Computer Science Test Code 5651 Time Number of Questions Test Delivery 3 hours 100 selected-response questions Computer delivered Content Categories Approximate
Introduction to Microsoft Excel 2010
Introduction to Microsoft Excel 2010 Screen Elements Quick Access Toolbar The Ribbon Formula Bar Expand Formula Bar Button File Menu Vertical Scroll Worksheet Navigation Tabs Horizontal Scroll Bar Zoom
[Refer Slide Time: 05:10]
Principles of Programming Languages Prof: S. Arun Kumar Department of Computer Science and Engineering Indian Institute of Technology Delhi Lecture no 7 Lecture Title: Syntactic Classes Welcome to lecture
PoW-TER Problem Packet A Phone-y Deal? (Author: Peggy McCloskey)
PoW-TER Problem Packet A Phone-y Deal? (Author: Peggy McCloskey) 1. The Problem: A Phone-y Deal? [Problem #3280] With cell phones being so common these days, the phone companies are all competing to earn
P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
Fixplot Instruction Manual. (data plotting program)
Fixplot Instruction Manual (data plotting program) MANUAL VERSION2 2004 1 1. Introduction The Fixplot program is a component program of Eyenal that allows the user to plot eye position data collected with
