Chapter 10 Introduction to Time Series Analysis
|
|
|
- Howard Gordon
- 10 years ago
- Views:
Transcription
1 Chapter 1 Introduction to Time Series Analysis A time series is a collection of observations made sequentially in time. Examples are daily mortality counts, particulate air pollution measurements, and temperature data. Figure 1 shows these for the city of Chicago from 1987 to The public health question is whether daily mortality is associated with particle levels, controlling for temperature. 134
2 Mortality Pollution Temperature We represent time series measurements with Y 1,..., Y T where T is the total number of measurements. In order to analyze a time series, it is useful to set down a statistical model in the form of a stochastic process. A stochastic process can be described as a statistical phenomenon that evolves in time. While most statistical problems are concerned with estimating properties of a population from a sample, in time series analysis there is a different situation. Although it might be possible to vary the length of the observed sample, it is usually impossible to make multiple observations at any single time (for example, one can t observe today s mortality count more than once). This makes the conventional statistical procedures, based on large sample estimates, inappropriate. Stationarity is a convenient assumption that permits us to describe the statistical properties of a time series.
3 136 CHAPTER 1. INTRODUCTION TO TIME SERIES ANALYSIS 1.1 Stationarity Broadly speaking, a time series is said to be stationary if there is no systematic trend, no systematic change in variance, and if strictly periodic variations or seasonality do not exist. Most processes in nature appear to be non-stationary. Yet much of the theory in time-series literature is only applicable to stationary processes. One way of describing a stochastic process is to specify the joint distribution of the observations Y (t 1 ),..., Y (t n ) for any set of times t 1,..., t n and any value of n. A time series is said to be strictly stationary if the joint distribution of Y (t 1 ),..., Y (t n ) is the same as that of Y (t 1 + h),... Y (t n + h) for all t 1,..., t n and h. To see how this is a useful assumption, notice that the above condition implies that the expected value and covariance structure of any two components, Y a (t) and Y b (t), of a time series are constant in time E{Y a (t)} = µ a, var{y a (t)} = σ 2 a and corr{y a (t), Y b (t + h)} = γ ab (h). (1.1) The function γ ab (h) is called the cross-correlation function if a b and the autocorrelation function if a = b. In practice it is often useful to define stationarity in a less restricted way than that described above. In many cases, the statistical structure of the processes can be completely described with the second-order properties of equation (1.1). We can estimate the quantities in (1.1) using standard statistical procedures, for example we may estimate the cross-correlation at lag h, γ a,b (h) with the sample correlation of Y a (1),..., Y a (T h) and Y b (h + 1),..., Y b (T ) An example: Fetal Monitoring Measurements of fetal heart rate (FHR) and fetal movement (FM) are generated by maternal-fetal monitoring. Approximately measurements per second are taken during minutes on 12 subjects that are monitored at 2,24,28,32,36, and weeks of gestation. Both FHR and FM are recorded giving us a multiple time series Y (t), t = 1,..., 6, where Y (t) is a vector with 2 entries.
4 1.1. STATIONARITY 137 The association between accelerations of FHR and FM has been documented since the 193s. For example, it has been observed that in the third trimester most large fetal heart accelerations are associated with fetal activity. In Section 4.2 we will describe how relatively straight-forward time series techniques provide a visual descriptions of how these associations vary with weeks gestation. These description have motivated a methodology that will provide us is with a more rigorous assessment of this relationship. If we consider the FM and FHR measurements, seen in Figure, as outcomes from a two component time series, we may consider the cross-correlation function of these two components as a description of the association between these two processes. Notice that the measurements taken for each fetus at each gestation week has a cross-correlation function associated with them. In Figure 6, as a descriptive plot, we show the average, over individuals, of these functions for each gestation week. Notice that a peak at around the 6 second lag starts to appear in the plot for the 24 week gestation. As the fetus gets older, this peak grows and becomes more defined. This result can be considered a first step in the characterization of the relationship between FM and FHR.
5 138 CHAPTER 1. INTRODUCTION TO TIME SERIES ANALYSIS Time Series Plots of Fetal Activity and Heart Rate 64 Activity Time in minutes Heart Rate Time in minutes
6 1.1. STATIONARITY 139 Average cross-correlations over subjects Week 2 Week 24 Correlation Correlation Lag Week Lag Week 36 Correlation Correlation Lag Lag Week 38 Correlation Lag
7 14 CHAPTER 1. INTRODUCTION TO TIME SERIES ANALYSIS 1.2 Spectral Analysis Sometimes it is useful to describe the properties of the time series in a frequency domain. The spectrum is defined as f ab (λ) = σ2 2π h= γ ab (h) exp( iλh) There is a one-to-one correspondence between the spectrum and the autocovariance function σ 2 γ ab (h) = π π f(λ) exp(iλh)dλ We call f aa 2 the power spectrum. A natural way of estimating a power spectrum is using the periodogram which is the modulus of the Fourier transform of the data I(λ) = 1 T 2πT Y t exp( iλt) 2 t=1 We usually compute the periodogram at the Fourier frequencies λ j = (2πj)/T, j = 1,..., T/2. These have desirable statistical properties The periodogram is also useful for detecting periodicities (deterministic ones) in the signal. It is a mathematical fact that if the data Y 1,...Y T has a period p, the the periodogram will have peaks at frequencies λ = 2πT/p and its multiples.
8 1.2. SPECTRAL ANALYSIS 141 Time Representation 2 Pollution Time in years Frequency Representation Square Root of Power Frequency in cycles per year An Application Figured 4a and 4c shows recorded ECoG signal for two channels for a subject that has received a sensory stimulus at some point during the recording. A straightforward way of estimating the spectrum of a stationary process is the periodogram I(λ) = 1 2πT Y (t) exp(iλt) t In Figures 4b and 4c the periodogram of this data is shown. Brain researchers have speculated that the so-called α (8 13Hz.), β (1 2Hz.), and γ (> 3Hz.) bands of human brain signals can indicate functional activation of sensorimotor cortex. Notice that the periodogram exhibits a peak around frequencies 1 Hz., 2 Hz. and 6 Hz.. If we were to approximate the ECoG signal as a stationary 2.
9 142 CHAPTER 1. INTRODUCTION TO TIME SERIES ANALYSIS processes, we would describe it as having periodic components around these frequencies. However, we are interested in learning how the signal changes when the subjects are given a stimuli. Thus it seems more appropriate to model the signal as a non-stationary processes and study the time-varying spectral density. A straightforward estimate of a time-varying spectral density would be the dynamic periodogram. Basically, for each time t we consider a window around that point of size h(t ) and estimate a weighted periodogram I(t ; λ) = 1 2πh(t ) w t ( ) t t h(t ) Y (t) exp(iλt) Figures 4c and 4e show the estimated time-varying spectral densities for the signals of channels 19 and 2 (lighter colors represent higher values) The figure seems to suggest that the α band changes power and frequency after the stimulus (time ). 2. Trial 1 Trial 9 Trial 8 Trial 7 Trial 6 Trial Trial 4 Trial 3 Trial 2 Trial 1 Mean of these 1 trials Mean of all trials Time (seconds)
10 1.2. SPECTRAL ANALYSIS Frequency (hertz) Time (seconds)
11 144 CHAPTER 1. INTRODUCTION TO TIME SERIES ANALYSIS Frequency (hertz) Time (seconds)
Univariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
Summary Nonstationary Time Series Multitude of Representations Possibilities from Applied Computational Harmonic Analysis Tests of Stationarity
Nonstationary Time Series, Priestley s Evolutionary Spectra and Wavelets Guy Nason, School of Mathematics, University of Bristol Summary Nonstationary Time Series Multitude of Representations Possibilities
Statistical Analysis of Arterial Blood Pressure (ABP), Central Venous. Pressure (CVP), and Intracranial Pressure (ICP)
Statistical Analysis of Arterial Blood Pressure (ABP), Central Venous Pressure (CVP), and Intracranial Pressure (ICP) Heechang Kim, Member, IEEE Portland State University E-mail: [email protected] This
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Advanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
Time Series Analysis in WinIDAMS
Time Series Analysis in WinIDAMS P.S. Nagpaul, New Delhi, India April 2005 1 Introduction A time series is a sequence of observations, which are ordered in time (or space). In electrical engineering literature,
Software Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455-459 (June 2002). Published by Elsevier (ISSN: 0169-2070). http://0-
7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
HERMES: Human Exposure and Radiation Monitoring of Electromagnetic Sources. www.hermes-program.gr
HERMES Program: The Greek Experience of an Electromagnetic Radiation Monitoring System A. Manassas, A. Boursianis, T. Samaras and J. N. Sahalos HERMES: Human Exposure and Radiation Monitoring of Electromagnetic
Univariate Time Series Analysis; ARIMA Models
Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay Business cycle plays an important role in economics. In time series analysis, business cycle
Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005
Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall
Chapter 9: Univariate Time Series Analysis
Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of
Sales forecasting # 2
Sales forecasting # 2 Arthur Charpentier [email protected] 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
Time Series Analysis
JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),
VCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
Speech Signal Processing: An Overview
Speech Signal Processing: An Overview S. R. M. Prasanna Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati December, 2012 Prasanna (EMST Lab, EEE, IITG) Speech
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
Time series Forecasting using Holt-Winters Exponential Smoothing
Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
Time Series Analysis
Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected
TIME SERIES ANALYSIS: AN OVERVIEW
Outline TIME SERIES ANALYSIS: AN OVERVIEW Hernando Ombao University of California at Irvine November 26, 2012 Outline OUTLINE OF TALK 1 TIME SERIES DATA 2 OVERVIEW OF TIME DOMAIN ANALYSIS 3 OVERVIEW SPECTRAL
Geography 4203 / 5203. GIS Modeling. Class (Block) 9: Variogram & Kriging
Geography 4203 / 5203 GIS Modeling Class (Block) 9: Variogram & Kriging Some Updates Today class + one proposal presentation Feb 22 Proposal Presentations Feb 25 Readings discussion (Interpolation) Last
Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?
Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
Introduction to Time Series Analysis. Lecture 1.
Introduction to Time Series Analysis. Lecture 1. Peter Bartlett 1. Organizational issues. 2. Objectives of time series analysis. Examples. 3. Overview of the course. 4. Time series models. 5. Time series
Matrices and Polynomials
APPENDIX 9 Matrices and Polynomials he Multiplication of Polynomials Let α(z) =α 0 +α 1 z+α 2 z 2 + α p z p and y(z) =y 0 +y 1 z+y 2 z 2 + y n z n be two polynomials of degrees p and n respectively. hen,
NRZ Bandwidth - HF Cutoff vs. SNR
Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP
Promotional Forecast Demonstration
Exhibit 2: Promotional Forecast Demonstration Consider the problem of forecasting for a proposed promotion that will start in December 1997 and continues beyond the forecast horizon. Assume that the promotion
Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem
Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become
1 Example of Time Series Analysis by SSA 1
1 Example of Time Series Analysis by SSA 1 Let us illustrate the 'Caterpillar'-SSA technique [1] by the example of time series analysis. Consider the time series FORT (monthly volumes of fortied wine sales
Time Series Analysis of Aviation Data
Time Series Analysis of Aviation Data Dr. Richard Xie February, 2012 What is a Time Series A time series is a sequence of observations in chorological order, such as Daily closing price of stock MSFT in
Lesson19: Comparing Predictive Accuracy of two Forecasts: Th. Diebold-Mariano Test
Lesson19: Comparing Predictive Accuracy of two Forecasts: The Diebold-Mariano Test Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, [email protected]
Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)
Working Papers No. 2/2012 (68) Piotr Arendarski Łukasz Postek Cointegration Based Trading Strategy For Soft Commodities Market Warsaw 2012 Cointegration Based Trading Strategy For Soft Commodities Market
THE SVM APPROACH FOR BOX JENKINS MODELS
REVSTAT Statistical Journal Volume 7, Number 1, April 2009, 23 36 THE SVM APPROACH FOR BOX JENKINS MODELS Authors: Saeid Amiri Dep. of Energy and Technology, Swedish Univ. of Agriculture Sciences, P.O.Box
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
Time series analysis as a framework for the characterization of waterborne disease outbreaks
Interdisciplinary Perspectives on Drinking Water Risk Assessment and Management (Proceedings of the Santiago (Chile) Symposium, September 1998). IAHS Publ. no. 260, 2000. 127 Time series analysis as a
Discrete Time Series Analysis with ARMA Models
Discrete Time Series Analysis with ARMA Models Veronica Sitsofe Ahiati ([email protected]) African Institute for Mathematical Sciences (AIMS) Supervised by Tina Marquardt Munich University of Technology,
Frequency domain application of the Hot-Spot method for the fatigue assessment of the weld seams
Frequency domain application of the Hot-Spot method for the fatigue assessment of the weld seams Dr. Ing. Sauro Vannicola 1 [email protected] Dr. Ing. Luigi De Mercato 2 [email protected]
CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS.
CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. 6.1. CONNECTIONS AMONG NEURONS Neurons are interconnected with one another to form circuits, much as electronic components are wired together to form a functional
Chapter 5: Bivariate Cointegration Analysis
Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...
Brain Maps The Sensory Homunculus
Brain Maps The Sensory Homunculus Our brains are maps. This mapping results from the way connections in the brain are ordered and arranged. The ordering of neural pathways between different parts of the
Lecture 8: Signal Detection and Noise Assumption
ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,
Chapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Moving Holidays and Seasonality: An Application in the Time and the Frequency Domains For Turkey
This version: 04/02/01 Comments are welcome. Moving Holidays and Seasonality: An Application in the Time and the Frequency Domains For Turkey C. Emre Alper Department of Economics and Center for Economics
Using Options Trading Data to Algorithmically Detect Insider Trading
MS&E 444 Final Project Report Using Options Trading Data to Algorithmically Detect Insider Trading Instructor: Prof. Kay Giesecke TA: Benjamin Armbruster Group Members: 1 Youdan Li Elaine Ou Florin Ratiu
Introduction to time series analysis
Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples
How To Model A Series With Sas
Chapter 7 Chapter Table of Contents OVERVIEW...193 GETTING STARTED...194 TheThreeStagesofARIMAModeling...194 IdentificationStage...194 Estimation and Diagnostic Checking Stage...... 200 Forecasting Stage...205
Trend and Seasonal Components
Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing
Selected Radio Frequency Exposure Limits
ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015
A course in Time Series Analysis. Suhasini Subba Rao Email: [email protected]
A course in Time Series Analysis Suhasini Subba Rao Email: [email protected] August 5, 205 Contents Introduction 8. Time Series data................................. 8.. R code....................................2
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
Time series analysis of data from stress ECG
Communications to SIMAI Congress, ISSN 827-905, Vol. 3 (2009) DOI: 0.685/CSC09XXX Time series analysis of data from stress ECG Camillo Cammarota Dipartimento di Matematica La Sapienza Università di Roma,
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London)
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London) 1 Forecasting: definition Forecasting is the process of making statements about events whose
Time Series - ARIMA Models. Instructor: G. William Schwert
APS 425 Fall 25 Time Series : ARIMA Models Instructor: G. William Schwert 585-275-247 [email protected] Topics Typical time series plot Pattern recognition in auto and partial autocorrelations
Univariate Time Series Analysis; ARIMA Models
Econometrics 2 Fall 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple
State Space Time Series Analysis
State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State
Time Series Analysis by Higher Order Crossings. Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD
Time Series Analysis by Higher Order Crossings Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD 1 Stochastic Process A stochastic or random process {Z t },, 1,0,1,,
INTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS
INTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS C&PE 940, 17 October 2005 Geoff Bohling Assistant Scientist Kansas Geological Survey [email protected] 864-2093 Overheads and other resources available
NONLINEAR TIME SERIES ANALYSIS
NONLINEAR TIME SERIES ANALYSIS HOLGER KANTZ AND THOMAS SCHREIBER Max Planck Institute for the Physics of Complex Sy stems, Dresden I CAMBRIDGE UNIVERSITY PRESS Preface to the first edition pug e xi Preface
Tutorial on Markov Chain Monte Carlo
Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,
4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression
ITSM-R Reference Manual
ITSM-R Reference Manual George Weigt June 5, 2015 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................
Power Spectral Density
C H A P E R 0 Power Spectral Density INRODUCION Understanding how the strength of a signal is distributed in the frequency domain, relative to the strengths of other ambient signals, is central to the
A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH [email protected]
A Regime-Switching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH [email protected] May 31, 25 A Regime-Switching Model for Electricity Spot Prices Abstract Electricity markets
Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models
Overview 1 Introduction Longitudinal Data Variation and Correlation Different Approaches 2 Mixed Models Linear Mixed Models Generalized Linear Mixed Models 3 Marginal Models Linear Models Generalized Linear
SYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
NAG C Library Chapter Introduction. g13 Time Series Analysis
g13 Time Series Analysis Introduction g13 NAG C Library Chapter Introduction g13 Time Series Analysis Contents 1 Scope of the Chapter... 3 2 Background to the Problems... 3 2.1 Univariate Analysis... 3
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Statistical Tests for Multiple Forecast Comparison
Statistical Tests for Multiple Forecast Comparison Roberto S. Mariano (Singapore Management University & University of Pennsylvania) Daniel Preve (Uppsala University) June 6-7, 2008 T.W. Anderson Conference,
Statistical Analysis of Non-stationary Waves off the Savannah Coast, Georgia, USA
1 Statistical Analysis of Non-stationary Waves off the Savannah Coast, Xiufeng Yang School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332 ([email protected])
Time Series HILARY TERM 2010 PROF. GESINE REINERT http://www.stats.ox.ac.uk/~reinert
Time Series HILARY TERM 2010 PROF. GESINE REINERT http://www.stats.ox.ac.uk/~reinert Overview Chapter 1: What are time series? Types of data, examples, objectives. Definitions, stationarity and autocovariances.
Analysis and Computation for Finance Time Series - An Introduction
ECMM703 Analysis and Computation for Finance Time Series - An Introduction Alejandra González Harrison 161 Email: [email protected] Time Series - An Introduction A time series is a sequence of observations
Introduction to Time Series Analysis and Forecasting. 2nd Edition. Wiley Series in Probability and Statistics
Brochure More information from http://www.researchandmarkets.com/reports/3024948/ Introduction to Time Series Analysis and Forecasting. 2nd Edition. Wiley Series in Probability and Statistics Description:
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Studying Achievement
Journal of Business and Economics, ISSN 2155-7950, USA November 2014, Volume 5, No. 11, pp. 2052-2056 DOI: 10.15341/jbe(2155-7950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
Measuring Line Edge Roughness: Fluctuations in Uncertainty
Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as
Time Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents
Time Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents Prasanna Desikan and Jaideep Srivastava Department of Computer Science University of Minnesota. @cs.umn.edu
Spectrum Level and Band Level
Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic
Autocovariance and Autocorrelation
Chapter 3 Autocovariance and Autocorrelation If the {X n } process is weakly stationary, the covariance of X n and X n+k depends only on the lag k. This leads to the following definition of the autocovariance
Vector Time Series Model Representations and Analysis with XploRe
0-1 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin [email protected] plore MulTi Motivation
3. Regression & Exponential Smoothing
3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a
The Information Processing model
The Information Processing model A model for understanding human cognition. 1 from: Wickens, Lee, Liu, & Becker (2004) An Introduction to Human Factors Engineering. p. 122 Assumptions in the IP model Each
Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa
Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),
Time Series Analysis
Time Series Analysis Autoregressive, MA and ARMA processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 212 Alonso and García-Martos
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
SR2000 FREQUENCY MONITOR
SR2000 FREQUENCY MONITOR THE FFT SEARCH FUNCTION IN DETAILS FFT Search is a signal search using FFT (Fast Fourier Transform) technology. The FFT search function first appeared with the SR2000 Frequency
Time Series Analysis in Economics. Klaus Neusser
Time Series Analysis in Economics Klaus Neusser May 26, 2015 Contents I Univariate Time Series Analysis 3 1 Introduction 1 1.1 Some examples.......................... 2 1.2 Formal definitions.........................
An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R)
DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R) Ernst
