Biomass gasification in Norway
|
|
|
- Jasmine Jenkins
- 9 years ago
- Views:
Transcription
1 Biomass gasification in Norway Judit Sandquist, SINTEF Energy Teknologi for et bedre samfunn 1
2 Gasification in Norway Biomass gasification has not got a long history in Norway Fundamental research at Universities Applied research Small scale waste-to-energy applications No large scale gasification facilities Some interested larger companies Teknologi for et bedre samfunn 2
3 Small-scale waste gasification Energos EnviroArc Organic Power Teknologi for et bedre samfunn 3
4 ENERGOS Gasification Technology Proven Small-scale, Energy from Waste Petter Lundstrøm
5 Development History Developed in Norway during the 1990 s. The design remit was to deliver: A small-scale energy from waste plant which could provide; Communities with a cost effective alternative to mass-burn incineration with Minimal emissions to atmosphere High flexibility in handling different waste types and CVs The result was: A two-stage thermal process which enabled extremely good combustion control, eliminating the need for complicated and expensive flue gas treatments
6 Development History 1990/97 Technology developed by SINTEF in Trondheim, Norway with support from the Ministry of the Environment 1997 Ranheim; 10,000 tonnes per annum 2000 Averøy; 30,000 tpa 2001 Hurum and Minden; each 38,000 tpa 2002 Forus; 39,000 tpa and Sarpsborg I; 78,000 tpa 2004 ENER G Holdings plc acquires business and assets of ENERGOS ASA 2006 Ranheim plant purchased and re-commissioned Averøy plant purchased (90%) 2007/08 Retrofit of a conventional EfW plant on Isle of Wight; 30,000 tpa
7 Development History 2008 First new order received for 80,000 tonne 2-line plant at Sarpsborg II, Norway Irvine site acquired (with planning permission) Installation work for Sarpsborg II commenced. Preferred Bidder Status awarded to UU/Interserve for Derby/Derbyshire PFI project 2009 Isle of Wight plant commissioned Planning consent granted for Knowsley Planning consents granted (to a partner company) for sites at Doncaster, Newport and Barry New offices opened in Trondheim and Warrington to facilitate growth 2010 Sarpsborg II plant commissioned
8 ENERGOS Energy From Waste Plant 1 Fuel bunker 2 Fuel crane 3 Hopper 4 Primary chamber (Gasification) 5 Secondary chamber (High temperature oxidation) 6 Heat Recovery Steam generator (HRSG) 7 Lime and carbon silo 8 Bag house filter 9 Filter residue silo 10 Flue gas fan 11 Chimney 12 Bottom ash extraction 13 Steam turbine 14 Air cooled condenser
9 The ENERGOS Process SECONDARY CHAMBER (OXIDATION) HEAT RECOVERY STEAM GENERATOR (BOILER) TRANSFER CHANNEL PRIMARY CHAMBER (GASIFIER)
10 The Gasifier & Thermal Oxidiser SECONDARY AIR GUILLOTINE (FUEL THICKNESS ON GRATE) RECIRCULATED FLUE GAS O 2 = 7% t = 900 C to 1000 C C WID COMP FLUE GAS FEED PLUNGER SYNGAS λ= 0.5 H 2 = 5% CH 4 = 4% CO = 14% t 900 C DUPLEX (TRANSPORT MECHANISM) OIL COOLED GRATE
11 Heat Recovery & Steam Generation WATER TUBE PACKAGE SMOKE TUBE BOILER ECONOMISER LIME & ACTIVATED CARBON BOILER DESIGN COOLS FLUE GAS RAPIDLY TO MINIMISE DIOXIN REFORMATION (400 C C) BAG HOUSE FILTER
12 Emissions The ENERGOS plant was designed to minimise emissions. Its provides: Low carbon content in bottom ash (less than 3% TOC) Simultaneously low and stable Carbon Monoxide (CO) and Nitrogen Oxides (NOx) emissions 100% 80% 60% 40% 20% 0% Dust Hg Cd+Tl Metals CO HF HCl TOC NOx NH3 SO2 Dioxins EU Limits Energos Dust Hg Cd+Tl Metals CO 50 2 HF HCl TOC NOx NH SO Dioxins Measurements taken at ENERGOS Averøy plant May 2007 by independent agency, TUV NORD Umweltschutz, and submitted to Norwegian Environmental Agency for regulation purposes. All measurements at 11% Oxygen. Limits are mg/nm 3, except Dioxin / Furans at ng/nm 3.
13 TÜV Emission Measurements 2003 at ENERGOS Plants 100,0 % 90,0 % 80,0 % % of EU limits 70,0 % 60,0 % 50,0 % 40,0 % 30,0 % 20,0 % 10,0 % 0,0 %
14 Stable Emissions The ENERGOS process offers significantly lower emissions compared with EU WID Its stability is demonstrated by its performance against half hour average peaks The following table shows the maximum emissions recorded during the independent tests undertaken at Averoy in May 07. These tests are carried out over a 4 day testing period The plant processes MSW and C&I waste
15 Averoy Plant - Half Hourly Peaks Emissions 7th year of operation Averoy 1/2 Hourly Emissions May ,0% 90,0% 80,0% 70,0% 60,0% 50,0% 40,0% 30,0% 20,0% 10,0% 0,0% Dust Hg Cd+TI Metals CO* HF* HCl TOC* NOx 2007 EU Limit NH3 SO2 Dioxins/Furans Measurements taken at ENERGOS Averoy plant May 07 by independent agency, TUV NORD Umweltschutz, and submitted to Norwegian Environmental Agency for regulation purposes. All measurements at 11% Oxygen. Limits are mg/nm3, except Dioxin / Furans at ng/nm3. *NOTE: CO, HF and TOC: Measurements show less than (being the lower limit of detection reliability for the measurement instruments).
16 Operational Energos plants 16
17 Energos plants under development 17
18 EnviroArc PyroArc process Teknologi for et bedre samfunn 18
19 Plans Teknologi for et bedre samfunn 19
20 Fiborgtangen Biokraft Investment presentation (in,parts, with confidential info removed) Kristian Lien
21 Introduction Development of a renewable energy plant founded on local waste streams Linked to existing industry, new development providing off take arrangements and new business opportunities. Economic development employment protection and generation
22 What? Gasification plant producing a pure syngas CHP plant producing electric power and heat from pure syngas ~ 100 GWh / yr electric power ~ GWh / yr of steam Linked to existing boiler house at Norske Skog Skogn Operational synergies, lower heat production costs Extended boiler house lifetime and reduced maintenance costs Provisions for future renewable materials / chemicals / fuels.
23 WHO? Fiborgtangen Vekst: Norske Skog: producer. NTE: APP: LGE: Allskog: Project developer Heat customer, renewable materials Electric power customer, energy entrepreneur. Technology provider. Investor, financial facilitator. Future raw materials stakeholder
24 WHY? Environmental recycling of materials and energy High net electricity production Less expensive heat Syngas The gateway to a variety of renewable materials production: Plastics Chemicals Composites Biofuels Future off take and value creation from forestry and used end-of-life biomass resources The next generation of industrial and district heating plants
25 Where? Mill site Gasplasma site Boiler house 25
26 When? Feasibility study: Spring 2010 Pre study: Fall 2010 Investor search / risk mitigation: Spring 2011 Main study: Fall 2011 Permit, contract and financial closure: Spring 2012 Point of no return: Fall 2012 Production: Spring 2014
27 Partners Investment NSI NTE LGE / APP FVAS / Allskog Strategic Rekom, Retura, Fiber Nor Local and national authorities Fiborgtangen Industrial Park Impello (investor search)
28 Research Teknologi for et bedre samfunn 28
29 Project financed through public funding Norwegian Reserach Council Norwegian Research Council RENERGI programme: The objective of RENERGI is to develop knowledge and solutions as a basis for ensuring environment-friendly, economically efficient and effective management of the country's energy resources, a highly reliable energy supply and internationally competitive industrial development. Knowledge-building Project with User Involvement (KMB) Objective: To contribute to long-term industry-oriented researcher training and competence building in Norwegian research communities, within topics that are crucial to the development of business and industry in Norway. Teknologi for et bedre samfunn 29
30 Gasbio key data New project within thermochemical biofuel production Project type: KMB Budget: Norwegian Research Council: 5000 knok/a Industry: 1338 knok/a Total: 6338 knok/a Duration: 4 years Partners: Coordinator project owner: SINTEF Energy Research Industry: Norske Skog, Metso, Statoil, Avinor Other: NTNU Education Teknologi for et bedre samfunn 30
31 Gasbio objectives Overall objective: to establish an internationally oriented solid Norwegian competence base within biomass gasification to produce biofuels. Educate PhD and MSc candidates. Train qualified researchers. Publish research results Cooperate closely with industry within personnel training and research. Establish formal links to research groups in Sweden, Denmark and Finland. Establish personnel exchange program. Establish advanced laboratory facilities Develop theories and computational models. Scaling-up from lab. scale to full scale. Develop new gasification concepts Perform case studies in close cooperation with industry Teknologi for et bedre samfunn 31
32 Thank you for your attention! Questions? Teknologi for et bedre samfunn
How To Run A Power Plant In Celje
VRANSKO, May 2009 Waste Management Strategy Waste management strategy in accordance with European directive 91/156/EEC: 1. Reduction at source 2. Reuse 3. Recycle 4. Energy recovery 5.Disposal Celje Regional
T@W Good Practice Form
T@W Good Practice Form Setting Title: Public-private Partnership Leading to a New CHP Plant Utilising Fibre Sludge and Biomass Country: Location: Sweden Mariestad in West Sweden Region Start date: 1999
of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C
refuse collection energy incineration waste REFA Waste-to-Energy Plant from waste to energy REFA Waste-to-Energy Plant - a Facility for waste incineration and energy generation REFA Waste-to-Energy Plant
Developments and trends shaping the future for Waste-to- Energy technology suppliers
Developments and trends shaping the future for Waste-to- Energy technology suppliers 21 st October 2015 Copenhagen, Denmark Edmund Fleck ESWET President 2 Contents 1. About ESWET 2. Introduction 3. Modern
Energy from waste. Introduction. Legal status of this guideline. What is energy from waste? Draft guideline
Draft guideline Energy from waste Publication 1549 September 2013 Authorised and published by EPA Victoria, 200 Victoria Street, Carlton Introduction As outlined in Getting full value: the Victorian Waste
February 9, 2011 Peter Kling, ÅF Consult Ltd Vice President, Bio and WtE Consulting
International WtE projects Project development and implementation February 9, 2011 Peter Kling, ÅF Consult Ltd Vice President, Bio and WtE Consulting 1 ÅF in Energy and Environment World class renown expertise
Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications
Enhanced power and heat generation from biomass and municipal waste Torsten Strand Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten
RECOVERING RESOURCES FOR ALL. Integra North Energy Recovery Facility
RECOVERING RESOURCES FOR ALL Integra North Energy Recovery Facility Integra North Energy Recovery Facility (ERF) was the first of its kind to be built in Hampshire and one of the leading examples of best
RECOVERING RESOURCES FOR ALL. Integra South East Energy Recovery Facility
RECOVERING RESOURCES FOR ALL Integra South East Energy Recovery Facility Integra South East Energy Recovery Facility (ERF) is the third of its kind to be built in Hampshire and is a leading example of
Nordic Baltic Bioenergy Conference, Riga April 2015
Nordic Baltic Bioenergy Conference, Riga April 205 Modern Flue Gas Cleaning how to use waste for heat and electricity with very low environmental impact Per Lindgren, Manager Sales [email protected]
Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues
Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol
Assignment 8: Comparison of gasification, pyrolysis and combustion
AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted
Biomass Supply Chains in South Hampshire
Biomass Supply Chains in South Hampshire 1 Executive Summary This report provides an analysis of how biomass supply chains could be developed within the area covered by the Partnership for Urban South
Factors influencing the development of Small Scale Energy from Waste
Factors influencing the development of Small Scale Energy from Waste Kathryn Warren and Inge Johansson IEA Task 36! IEA Bioenergy, also known as the Implementing Agreement for a Programme of Research,
M.Sc. Matti Kivelä Power Plant Manager R&D Lahti Energia Oy P.O. Box 93 FIN-15141 Lahti Finland Tel. 358 3 823 3240 matti.kivela@lahtienergia.
LAHTI ENERGIA OY M.Sc. Matti Kivelä Power Plant Manager R&D Lahti Energia Oy P.O. Box 93 FIN-15141 Lahti Finland Tel. 358 3 823 3240 [email protected] Contact LAHTI ENERGIA OY Founded. 1907
Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi
Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Matti Rautanen Manager, External Networks, Power-wide R&D Tutkimuksella tulevaisuuteen- seminaari Kaukolämpöpäivät, Kuopio 29.8.2013
Waste to Energy. Anders Damgaard. Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides
Denmark (Thomas Astrup) Denmark (COWI) Waste to Energy Anders Damgaard Austria (CEWEP) Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides Copyright Anders Damgaard & Morton A. Barlaz, NC
Advanced Steam Parameters in a Large Scale CFB Application Operating on REF and Biofuels background and experiences
Advanced Steam Parameters in a Large Scale CFB Application Operating on REF and Biofuels background and experiences Matts Strömberg Soderenergi AB, Sweden Presented at Power Gen Europe 2011 Milan, Italy
6 CONSIDERATION OF ALTERNATIVES
6 CONSIDERATION OF ALTERNATIVES 6.1.1 Schedule 4 of the Town and Country Planning (Environmental Impact Assessment) (Scotland) Regulations 2011 sets out the information for inclusion in Environmental Statements
THE OPTIMISATION OF BIOMASS COMBUSTION IN SMALL BOILERS
The optimisation of biomass INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 6/28, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 63 69 Komisja Technicznej Infrastruktury
The heat plant Future biorefinery. Panndagarna 2015 Västerås, 14-15 April
The heat plant Future biorefinery Panndagarna 2015 Västerås, 14-15 April Valmet Technologies Comprehensive Offering for Energy Customers Biomass to Energy, Waste to Energy and Multifuel solutions Fuel
Environment Impact Assessment of Thermal Power Plant for Sustainable Development
International Journal of Environmental Engineering and Management. ISSN 2231-1319, Volume 4, Number 6 (2013), pp. 567-572 Research India Publications http://www.ripublication.com/ ijeem.htm Environment
Energy From Waste or Waste-to-Energy. Pyromex. The Solution to Multiple Energy & Environmental Issues James Pfeiffer, CEM
Energy From Waste or Waste-to-Energy Pyromex The Solution to Multiple Energy & Environmental Issues James Pfeiffer, CEM 1 Agenda Who is PowerHouse Energy What is Pyromex How Does Pyromex Work History of
Waste a source of energy. Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow. Incineration. Incineration
Waste a source of energy Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow Garbage School 301: Waste to Energy All organic materials contains energy Plant or animal based Plastics
Introduction to our Business in Valmet. Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014
Introduction to our Business in Valmet Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014 Valmet in brief Metso Demerger Two independent stock listed companies Metso is a global supplier of technology
Waste Incineration Plants
Waste Incineration Plants Modern Technology for a better Environmental Welcome at Hafner! We Manufacture Systems for Energy Recovery from Wastes and Biomass as well as for Treatment of Hazardous Wastes.
Development of Coal Gasification System for Producing Chemical Synthesis Source Gas
27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA
MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013
MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE Tomáš Rohal, Business Development CEEI 10-Oct-2013 1 Who We Are Central Europe Engineering & Investment (CEEI) offers the state-of-the-art
TGE TECH. Waste and Green Energy Management For a best future TEL HAY JUNE 2008
TGE TECH Waste and Green Energy Management For a best future TEL HAY JUNE 2008 TGE - INTRODUCTION TGE is developper of new Environmental Gasification Technology, focused on the treatment and energy recovery
Waste to Energy in Düsseldorf. for a clean city.
Waste to Energy in Düsseldorf for a clean city. Waste Management in Düsseldorf. Düsseldorf s public utilities company known as Stadtwerke Düsseldorf operates a waste to energy plant (WtE) that has been
Alternative fuels in cement manufacturing
Alternative fuels in cement manufacturing Martin Oerter Forschungsinstitut der Zementindustrie GmbH Tannenstrasse 2 40476 Düsseldorf Münster, 27 October 2015 Research and services for the industrial minerals
JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14
Presentation of Japanese technology of waste to energy JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14 1 JASE-W established in Oct 2008 Introduction of JASE-world
AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.
AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes
A - 2564 Weissenbach AUSTRIA Tel. +43/2672/890-0, Fax: 890-13 Internet: www.polytechnik.com E-Mail: [email protected]
A - 2564 Weissenbach AUSTRIA Tel. +43/2672/890-0, Fax: 890-13 Internet: www.polytechnik.com E-Mail: [email protected] 1 Biomass heat and energy production Ing. Herbert Brenner Polytechnik Luft-und
Experience with co-combustion of biomass and waste in coal-fired power plants
Experience with co-combustion of biomass and waste in coal-fired power plants Topsøe Catalysis Forum August 2009 Bo Sander, DONG Energy Power, Denmark GENERATION - HCASA DONG Energy Power in Europe Power
Layout Planning of Waste-to-Energy Plants
Layout Planning of Waste-to-Energy Plants Layout Planning of Waste-to-Energy Plants Falko Weber The layout planning of waste incineration and solid recovered fuel power plants is subject to certain local
Improving Energy Efficiency through Biomass Drying
Improving Energy Efficiency through Biomass Drying Gilbert McCoy, Senior Energy Systems Engineer Northwest CHP Technical Assistance Partnership International District Energy Association Woody Biomass CHP
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal
19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi
Bioenergy. A sustainable energy source.
Bioenergy. A sustainable energy source. The natural energy cycle Skellefteå Kraft strongly believes that bioenergy will play an important role in future Swedish energy production. Its raw material consists
Gasification as means of Waste-to-Energy - Main Parameters and application -
Gasification as means of Waste-to-Energy - Main Parameters and application - 9 th ISWA Beacon Conference in Malm, Sweden 18 th NOV. 2015 Block 4: Gasification NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD
Arecibo Resource Recovery Project
Arecibo Resource Recovery Project Energy Answers International, Inc., through its subsidiary, Energy Answers Arecibo, LLC, is developing a 77 MW Resource Recovery Project to generate renewable energy and
Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district
PLANT TORINO NORD Iren Energia is the company in the Iren Group whose core businesses are the production and distribution of electricity, the production and distribution of thermal energy for district
ANNUAL PERFORMANCE REPORT 2012. This report fulfils the requirements of Article 12(2) of the Waste Incineration Directive regarding the:
ANNUAL PERFORMANCE REPORT 2012 Sheffield Energy Recovery Facility PPC Permit: BM4082 1. Introduction. This report fulfils the requirements of Article 12(2) of the Waste Incineration Directive regarding
Valmet biotechnologies and pyrolysis status update. Joakim Autio Product manager, Pyrolysis systems Valmet
Valmet biotechnologies and pyrolysis status update Joakim Autio Product manager, Pyrolysis systems Valmet Presentation outline 1 2 3 Valmet biotechnologies Pyrolysis development background Demonstration
EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ
Parallel session Producing more with less: Efficiency in Power Generation EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Johann Gimmelsberger Linz Strom GmbH EFFICIENT ENERGY
THE KVAERNER MEMBRANE CONTACTOR: LESSONS FROM A CASE STUDY IN HOW TO REDUCE CAPTURE COSTS. Kvaerner Oil & Gas, Sandefjord, Norway
THE KVAERNER MEMBRANE CONTACTOR: LESSONS FROM A CASE STUDY IN HOW TO REDUCE CAPTURE COSTS Howard Herzog 1 and Olav Falk-Pedersen 2 1 Massachusetts Institute of Technology (MIT), Cambridge, MA, USA 2 Kvaerner
Energieffektivitet og bærekraft ved 2. generasjons biodrivstoff. Teknisk Direktør Gjermund Røkke
Energieffektivitet og bærekraft ved 2. generasjons biodrivstoff Teknisk Direktør Gjermund Røkke Biofuels Feedstock, production processes and products From woody biomass to synthetic biodiesel 35% CO 35%
Clean Energy Systems, Inc.
Clean Energy Systems, Inc. Clean Energy Systems (CES) technology is a zero emission, oxy-fuel combustion power plant. CES approach has been to apply gas generators and high-temperature, high-pressure,
Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin
Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with
BIOMASS RESEARCH at ECN. Bram van der Drift
BIOMASS RESEARCH at ECN Bram van der Drift ECN-BIOMASS ~50 persons, ~8 M /y, organized in three groups: power and heat biomass upgrading (torrefaction) waste to energy co-firing CHP (combustion, gasification)
Technologies for small scale Biomass CHP-Plants an actual survey
Technologies for small scale Biomass CHP-Plants an actual survey Risoe, May, 20th 2003 Dr.-Ing. J. Fischer Institute for Energy Economics and Rational Use of Energy, IER, University of Stuttgart Hessbrühlstr.
Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien
Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien Hermann HOFBAUER, TU Wien Fundamental Idea biogas plant gasification product synthesis gasification
Sludge Treatment Facility Stack Gas Monitoring Report February 2016
I. INTRODUCTION This Monthly Report aims to provide a summary of environmental performance of the Sludge Treatment Facility (STF) over the monitoring period, which includes the air emission data collected
Uusiutuvien teknologioiden kehittäminen yhteistyössä partnereiden kanssa
Uusiutuvien teknologioiden kehittäminen yhteistyössä partnereiden kanssa Jussi Mäntyniemi Technology and R&D Director Valmet Valmet s technology and services offering Transforming renewable raw materials
A New CHP Concept for 60 000 tons of SRF
A New CHP Concept for 60 000 tons of SRF PowerGen 2015, Amsterdam 11th June 2015 Markus Bolhàr-Nordenkampf [email protected] Valmet GesmbH Anders Victoren [email protected] Valmet AB 2015-05-18
Fortum bygger Sveriges största biokraftvärmeverk i Stockholms stad. Daniel Nilsson Värme & Kraftkonferensen, Stockholm 12 november 2014
Fortum bygger Sveriges största biokraftvärmeverk i Stockholms stad Daniel Nilsson Värme & Kraftkonferensen, Stockholm 12 november 2014 2 Projekt KVV8 3 Project KVV 8 in Värtan KVV8 production capacity
Bioenergy Småland. Business development through biomass in the region of Småland
Bioenergy Business development through biomass in the region of Michigan February 2008 Regional economy, Växjö as an example, district heating Hans Gulliksson Energikontor Sydost/Bioenergy Group in Växjö
Stora Enso Fors Ltd Sweden
THE ANALYSIS REPORT OF PLANT NO. 3 Cofiring of biomass - evaluation of fuel procurement and handling in selected existing plants and exchange of information (COFIRING) - Part 2 Stora Enso Fors Ltd Sweden
From forest to gas in the transmission system. Ulf Molén, 2011-10-05
From forest to gas in the transmission system Ulf Molén, 2011-10-05 EU climate target 20/20/20 year 2020 Carbon dioxide reduced by 20% (compared to 1990 years level) Energy efficiency increased by 20%
Integrating renewable energy sources and thermal storage
Integrating renewable energy sources and thermal storage Sven Werner Halmstad University Sweden BRE, October 10, 2013 1 Outline Fundamental idea of district heating Heat supply to European district heating
From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015
From today s systems to the future renewable energy systems Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015 STRUCTURE OF ENERGY SYSTEMS 8/17/2015 Copenhagen, Denmark 2 Components Demand Heat
New Bio Solutions. DONG Energy. Pyroneer November 2013. May 2013
DONG Energy New Bio Solutions Pyroneer November 2013 May 2013 Status of DONG Energy's Pyroneer gasification technology for high alkaline fuels like straw: an efficient and sustainable method to replace
NORTH LONDON HEAT AND POWER PROJECT DESIGN OF PLANT, NUMBER OF PLANT LINES
Intended for North London Waste Authority Document type Report Date November 2014 NORTH LONDON HEAT AND POWER PROJECT DESIGN OF PLANT, NUMBER OF PLANT LINES CONTENTS 1. EXECUTIVE SUMMARY... 3 2. INTRODUCTION...
Thermal & Biogas Production In Egypt. By Prof. Dr. Ahmed Abd El-Ati Ahmed Egypt - GBEP Focal Point
Thermal & Biogas Production In Egypt By Prof. Dr. Ahmed Abd El-Ati Ahmed Egypt - GBEP Focal Point Some Related Socioeconomic indicators : The total land area is 1 Million Km 2. 97 % of the total area is
Chemical Engineer Office of Resource Conservation and Recovery
Waste-to to-energy in the U.S. and Trends for the Future Jesse Miller Chemical Engineer Office of Resource Conservation and Recovery Tuesday, August 9, 2011 1 Presentation Outline ORCR Atiiti Activities
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct
ENERGY EFFICIENCY IN POWER PLANTS
Plenary session Producing more with less: Efficiency in Power Generation ENERGY EFFICIENCY IN POWER PLANTS Frans van Aart, Wim Kok, Pierre Ploumen KEMA Power Generation & Sustainables ENERGY EFFICIENCY
Metsä Fibre s Bioproduct mill
s Bioproduct mill Camilla Wikström VP, Bioproduct mill Manager, Metsä Group part of Metsä Group We focus on products and services with promising growth prospects and in which we have strong competence
Business Plan: Wood chip gasifier (Deliverable 5.2)
Public Energy Alternatives Business Plan: Wood chip gasifier (Deliverable 5.2) Period of publishing 6th reporting period Organization PP 20: Ylivieska Subregion TABLE OF CONTENTS 1 Characterics of deliverable
Green Energy in Europe - Potentials and Prospects
Green Energy in Europe - Potentials and Prospects Gerfried Jungmeier, JOANNEUM RESEARCH, Austria Tel: +43 (0) 316 876 1313 Fax: +43 (0) 316 876 1320 e-mail: [email protected] www.joanneum.at
IT3 01 Conference, Philadelphia, PA, May 14-18, 2001
IT3 01 Conference, Philadelphia, PA, May 14-18, 2001 BAGHOUSE OPTIMIZATION AT A MEDICAL WASTE INCINERATOR R. D. Montgomery Phoenix Services, Inc. John Kumm EA Engineering, Science, and Technology C. P.
Low grade thermal energy sources and uses from the process industry in the UK
Low grade thermal energy sources and uses from the process industry in the UK Yasmine Ammar, Sharon Joyce, Rose Norman, Yaodong Wang, Anthony P. Roskilly Sustainable Thermal Energy Management in the Process
Ligentoplant - The biomass cogeneration. Ligento green power GmbH
Ligento greenpower GmbH Ligentoplant - The biomass cogeneration Ligento - With a pioneering spirit for sustainable energy supply! Ligentoplant is producing electricity and in a combined and power process.
A Comparative Assessment of Commercial Technologies for Conversion of Solid Waste to Energy
A Comparative Assessment of Commercial Technologies for Conversion of Solid Waste to Energy Bary Wilson, Ph.D. Neil Williams, Ph.D., P.E. Barry Liss, Ph.D., P.E. Brandon Wilson, Ph.D. Prepared for EnviroPower
GUIDELINES FOR PROCESSING AND USING REFUSE DERIVED FUEL (RDF) IN CEMENT INDUSTRY
1 GUIDELINES FOR PROCESSING AND USING REFUSE DERIVED FUEL (RDF) IN CEMENT INDUSTRY August, 2012 Government of Pakistan Pakistan Environmental Protection Agency (Ministry of Climate Change) Islamabad 2
The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/
The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/ 1 Times Are Changing As Yogi Berra said: The Future Ain t What It Used to Be 2 Overview
GENERATION TECHNOLOGY ASSESSMENT
SPO PLANNING ANALYSIS GENERATION TECHNOLOGY ASSESSMENT Technology Cost & Performance Milestone 2 Public Technical Conference OCTOBER 30, 2014 NOTE: ALL IRP MATERIALS ARE PRELIMINARY & SUBJECT TO CHANGE
From solid fuels to substitute natural gas (SNG) using TREMP
From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected
Impact of coal quality and gasifier technology on IGCC performance
Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad 1 *, Howard Herzog**, Olav Bolland*, János Beér** *The Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,
Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER
WIERTNICTWO NAFTA GAZ TOM 28 ZESZYT 1 2 2011 Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER In modern period the useful extraction of energy
Marsa Thermal Treatment Facility Yearly Emissions Statement
Marsa Thermal Treatment Facility Yearly Emissions Statement Declaration Period: 2009 FACILITY DETAILS IPPC permit number: IP 0004/07 Name of the facility: MARSA THERMAL TREATMENT FACILITY Street address:
CO2 enhanced coal gasification and BlueCoal new Clean Coal Technologies proposals from Poland
European Union Side Event Paris, Le Bourget, 9th December 2015 CO2 enhanced coal gasification and BlueCoal new Clean Coal Technologies proposals from Poland Aleksander Sobolewski INSTITUTE FOR CHEMICAL
Technique of Monitoring Dioxins in Flue Gas from MSW Incinerators using Dioxin Precursor Analyzer
Technique of Monitoring Dioxins in Flue Gas from MSW Incinerators using Dioxin Precursor Analyzer Hideki Nagano*, Kunio Miyazawa**, Yoshinori Yomura***, Toshihiko Iwasaki****, Takashi Yokoyama***** and
Energy Efficiency in Steam Systems
Energy Efficiency in Steam Systems Fundamentals of Energy Efficiency: An Introductory Workshop April 2008 John S. Raschko, Ph.D. Mass. Office of Technical Assistance www.mass.gov/envir/ota (617) 626-1093
Iron and Steel Manufacturing
Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Iron and Steel Manufacturing Industry Description and Practices Steel is manufactured by the chemical reduction of iron
Treatment and Disposal Technologies for Medical Wastes in Developing Countries
Treatment and Disposal Technologies for Medical Wastes in Developing Countries Mohd Nasir Hassan, PhD Environmental Engineer WORLD HEALTH ORGANIZATION (WHO) (Cambodia/Lao PDR) Where do We Start? Definition>>>>Legal
Efficiency on a large scale CFB Steam Boilers
Efficiency on a large scale CFB Steam Boilers Circulating Fluidized Bed Steam Boiler The Circulating Fluidized Bed Steam Boiler is an offering from Bosch Thermotechnology a member of the worldwide Bosch
Michael Williams Gasification Technologies Council, 28 th October 2014. Smaller scale Fischer-Tropsch enables biomass-to-liquids
Michael Williams Gasification Technologies Council, 28 th October 2014 Smaller scale Fischer-Tropsch enables biomass-to-liquids Velocys The company at the forefront of smaller scale GTL and BTL Leader
A Review of Biomass Boiler Technologies. Fernando Preto CanmetENERGY, Natural Resources Canada
A Review of Biomass Boiler Technologies Fernando Preto CanmetENERGY, Natural Resources Canada Agricultural Biomass for Combustion Energy April 14 2011, Guelph About CanmetENERGY CanmetENERGY is a science
Green Gas on the Road Bram van der Drift
Green Gas on the Road Bram van der Drift Presented at the Malmö Gasification Seminar,, Malmö, Sweden ECN-L--11-123 November 2011 GREEN GAS on the ROAD Bram van der Drift www.ecn.nl CONTENT What is Green
