Appendix A. Rayleigh Ratios and the Courant-Fischer Theorem
|
|
|
- Georgiana Roberts
- 9 years ago
- Views:
Transcription
1 Appendix A Rayleigh Ratios and the Courant-Fischer Theorem The most important property of symmetric matrices is that they have real eigenvalues and that they can be diagonalized with respect to an orthogonal matrix. Thus, if A is an n n symmetric matrix, then it has n real eigenvalues 1,..., n (not necessarily distinct), and there is an orthonormal basis of eigenvectors (u 1,...,u n ) (for a proof, see Gallier [6]). 211
2 212 APPENDIX A. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM Another fact that is used frequently in optimization problem is that the eigenvalues of a symmetric matrix are characterized in terms of what is known as the Rayleigh ratio, definedby R(A)(x) = x> Ax x > x, x 2 Rn,x6= 0. The following proposition is often used to prove the correctness of various optimization or approximation problems (for example PCA).
3 Proposition A.1. (Rayleigh Ritz) IfA is a symmetric n n matrix with eigenvalues 1 apple 2 apple apple n and if (u 1,...,u n ) is any orthonormal basis of eigenvectors of A, where u i is a unit eigenvector associated with i, then 213 max x6=0 x > x = n (with the maximum attained for x = u n ), and max x6=0,x2{u n k+1,...,u n }? x > x = n k (with the maximum attained for x = u n 1 apple k apple n 1. k ), where Equivalently, if V k is the subspace spanned by (u 1,...,u k ), then k = max x6=0,x2v k x > x, k =1,...,n.
4 214 APPENDIX A. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM For our purposes, we also need the version of Proposition A.1 applying to min instead of max. Proposition A.2. (Rayleigh Ritz) IfA is a symmetric n n matrix with eigenvalues 1 apple 2 apple apple n and if (u 1,...,u n ) is any orthonormal basis of eigenvectors of A, where u i is a unit eigenvector associated with i, then min x6=0 x > x = 1 (with the minimum attained for x = u 1 ), and min x6=0,x2{u 1,...,u i 1 }? x > x = i (with the minimum attained for x = u i ), where 2 apple i apple n. Equivalently, if W k = V k? 1 denotes the subspace spanned by (u k,...,u n ) (with V 0 =(0)), then k = min x6=0,x2w k x > x = min x6=0,x2v? k 1 x > x, k =1,...,n.
5 215 Propositions A.1 and A.2 together are known as the Rayleigh Ritz theorem. As an application of Propositions A.1 and A.2, we give aproofofapropositionwhichisthekeytotheproofof Theorem 2.2. Given an n n symmetric matrix A and an m m symmetric B, withm apple n, if 1 apple 2 apple apple n are the eigenvalues of A and µ 1 apple µ 2 apple appleµ m are the eigenvalues of B, thenwesaythattheeigenvalues of B interlace the eigenvalues of A if i apple µ i apple n m+i, i =1,...,m. The following proposition is known as the Poincaré separation theorem.
6 216 APPENDIX A. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM Proposition A.3. Let A be an n n symmetric matrix, R be an n m matrix such that R > R = I (with m apple n), and let B = R > AR (an m m matrix). The following properties hold: (a) The eigenvalues of B interlace the eigenvalues of A. (b) If 1 apple 2 apple apple n are the eigenvalues of A and µ 1 apple µ 2 apple appleµ m are the eigenvalues of B, and if i = µ i, then there is an eigenvector v of B with eigenvalue µ i such that Rv is an eigenvector of A with eigenvalue i. Observe that Proposition A.3 implies that m apple tr(r > AR) apple n m n. The left inequality is used to prove Theorem 2.2.
7 For the sake of completeness, we also prove the Courant Fischer characterization of the eigenvalues of a symmetric matrix. 217 Theorem A.4. (Courant Fischer) Let A be a symmetric n n matrix with eigenvalues 1 apple 2 apple apple n and let (u 1,...,u n ) be any orthonormal basis of eigenvectors of A, where u i is a unit eigenvector associated with i.ifv k denotes the set of subspaces of R n of dimension k, then k = max min W 2V n k+1 x2w,x6=0 k =min W 2V k max x2w,x6=0 x > x x > x.
8 218 APPENDIX A. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM
9 Bibliography [1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning, 56:89 113, [2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15: ,2003. [3] Fan R. K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics. AMS, first edition, [4] Eric D. Demaine and Nicole Immorlica. Correlation clustering with partial information. In S. Arora et al., editor, Working Notes of the 6th International Workshop on Approximation Algorithms for Combinatorial Problems, LNCS Vol. 2764, pages Springer, [5] Jean H. Gallier. Discrete Mathematics. Universitext. Springer Verlag, first edition,
10 220 BIBLIOGRAPHY [6] Jean H. Gallier. Geometric Methods and Applications, For Computer Science and Engineering. TAM, Vol. 38. Springer, second edition, [7] Chris Godsil and Gordon Royle. Algebraic Graph Theory. GTMNo.207.SpringerVerlag,firstedition, [8] H. Golub, Gene and F. Van Loan, Charles. Matrix Computations. TheJohnsHopkinsUniversityPress, third edition, [9] Frank Harary. On the notion of balance of a signed graph. Michigan Math. J., 2(2): ,1953. [10] Jao Ping Hou. Bounds for the least laplacian eigenvalue of a signed graph. Acta Mathematica Sinica, 21(4): , [11] Ravikrishna Kolluri, Jonathan R. Shewchuk, and James F. O Brien. Spectral surface reconstruction from noisy point clouds. In Symposium on Geometry Processing, pages11 21.ACMPress,July2004. [12] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto William De Luca, and Sahin Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization. In SDM 10, pages ,2010.
11 BIBLIOGRAPHY 221 [13] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Transactions on Pattern Analysis and Machine Intelligence, 22(8): , [14] Daniel Spielman. Spectral graph theory. In Uwe Naumannn and Olaf Schenk, editors, Combinatorial Scientific Computing. CRCPress,2012. [15] von Luxburg Ulrike. A tutorial on spectral clustering. Statistics and Computing, 17(4): ,2007. [16] Stella X. Yu. Computational Models of Perceptual Organization. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, USA, Dissertation. [17] Stella X. Yu and Jianbo Shi. Multiclass spectral clustering. In 9th International Conference on Computer Vision, Nice, France, October IEEE, 2003.
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
Soft Clustering with Projections: PCA, ICA, and Laplacian
1 Soft Clustering with Projections: PCA, ICA, and Laplacian David Gleich and Leonid Zhukov Abstract In this paper we present a comparison of three projection methods that use the eigenvectors of a matrix
Conductance, the Normalized Laplacian, and Cheeger s Inequality
Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010
Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization
Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization Jérôme Kunegis Stephan Schmidt Andreas Lommatzsch Jürgen Lerner Ernesto W. De Luca Sahin Albayrak Abstract We study the application
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
Notes on Symmetric Matrices
CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)
SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI (B.Sc.(Hons.), BUAA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MATHEMATICS NATIONAL
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
Numerical Methods I Eigenvalue Problems
Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 [email protected] 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa
ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS Mikhail Tsitsvero and Sergio Barbarossa Sapienza Univ. of Rome, DIET Dept., Via Eudossiana 18, 00184 Rome, Italy E-mail: [email protected], [email protected]
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Modélisation et résolutions numérique et symbolique
Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat [email protected] Outline Previous course: partial review of what
SYMMETRIC EIGENFACES MILI I. SHAH
SYMMETRIC EIGENFACES MILI I. SHAH Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
Cheeger Inequalities for General Edge-Weighted Directed Graphs
Cheeger Inequalities for General Edge-Weighted Directed Graphs T-H. Hubert Chan, Zhihao Gavin Tang, and Chenzi Zhang The University of Hong Kong {hubert,zhtang,czzhang}@cs.hku.hk Abstract. We consider
MATH 551 - APPLIED MATRIX THEORY
MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every
MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials
Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from
NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES
NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES Silvija Vlah Kristina Soric Visnja Vojvodic Rosenzweig Department of Mathematics
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8
Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e
Model order reduction via Proper Orthogonal Decomposition
Model order reduction via Proper Orthogonal Decomposition Reduced Basis Summer School 2015 Martin Gubisch University of Konstanz September 17, 2015 Martin Gubisch (University of Konstanz) Model order reduction
SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIX-EXPONENTIAL DISTRIBUTIONS
Stochastic Models, 22:289 317, 2006 Copyright Taylor & Francis Group, LLC ISSN: 1532-6349 print/1532-4214 online DOI: 10.1080/15326340600649045 SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL
Max-Min Representation of Piecewise Linear Functions
Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 297-302. Max-Min Representation of Piecewise Linear Functions Sergei Ovchinnikov Mathematics Department,
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Examination paper for TMA4205 Numerical Linear Algebra
Department of Mathematical Sciences Examination paper for TMA4205 Numerical Linear Algebra Academic contact during examination: Markus Grasmair Phone: 97580435 Examination date: December 16, 2015 Examination
ISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
Similar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
A Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering Ulrike von Luxburg Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7276 Tübingen, Germany [email protected] This article appears in Statistics
Decision-making with the AHP: Why is the principal eigenvector necessary
European Journal of Operational Research 145 (2003) 85 91 Decision Aiding Decision-making with the AHP: Why is the principal eigenvector necessary Thomas L. Saaty * University of Pittsburgh, Pittsburgh,
Sketch As a Tool for Numerical Linear Algebra
Sketching as a Tool for Numerical Linear Algebra (Graph Sparsification) David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania April, 2015 Sepehr Assadi (Penn)
160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
Inner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
Visualization of General Defined Space Data
International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 013 Visualization of General Defined Space Data John R Rankin La Trobe University, Australia Abstract A new algorithm
Stephanie A. Blanda 020 McAllister Building University Park, PA 16802 Email: [email protected], Webpage: http://sblanda.weebly.com/
Stephanie A. Blanda 020 McAllister Building University Park, PA 16802 Email: [email protected], Webpage: http://sblanda.weebly.com/ Education The Ph.D. Candidate in Mathematics with a minor in Computational
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics
INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
Chapter 6. Cuboids. and. vol(conv(p ))
Chapter 6 Cuboids We have already seen that we can efficiently find the bounding box Q(P ) and an arbitrarily good approximation to the smallest enclosing ball B(P ) of a set P R d. Unfortunately, both
Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative
Analysis of Internet Topologies
Analysis of Internet Topologies Ljiljana Trajković [email protected] Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British
Data visualization and dimensionality reduction using kernel maps with a reference point
Data visualization and dimensionality reduction using kernel maps with a reference point Johan Suykens K.U. Leuven, ESAT-SCD/SISTA Kasteelpark Arenberg 1 B-31 Leuven (Heverlee), Belgium Tel: 32/16/32 18
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9 - SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
Subspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China [email protected] Stan Z. Li Microsoft
Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu
Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62
On the representability of the bi-uniform matroid
On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
MATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales [email protected] Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated
SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
Review Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
WHEN DOES A CROSS PRODUCT ON R n EXIST?
WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Principal components analysis
CS229 Lecture notes Andrew Ng Part XI Principal components analysis In our discussion of factor analysis, we gave a way to model data x R n as approximately lying in some k-dimension subspace, where k
Tutorial on Exploratory Data Analysis
Tutorial on Exploratory Data Analysis Julie Josse, François Husson, Sébastien Lê julie.josse at agrocampus-ouest.fr francois.husson at agrocampus-ouest.fr Applied Mathematics Department, Agrocampus Ouest
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Analysis of Internet Topologies: A Historical View
Analysis of Internet Topologies: A Historical View Mohamadreza Najiminaini, Laxmi Subedi, and Ljiljana Trajković Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Vancouver,
Math 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
