DEGASSED CATION CONDUCTIVITY MEASUREMENT

Size: px
Start display at page:

Download "DEGASSED CATION CONDUCTIVITY MEASUREMENT"

Transcription

1 (Presented at EPRI's 8th International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators - June 20-23, 2006 Calgary, Alberta Canada) DEGASSED CATION CONDUCTIVITY MEASUREMENT Otakar Jonas, P.E., PhD. Lee Machemer, P.E. Jonas, Inc Faun Road Wilmington, DE Abstract This paper discusses the measurement and interpretation of degassed cation conductivity (DCC). There are three designs of DCC instruments: reboiling before or after cation exchange and nitrogen sparging after the cation column at ambient temperature. Each of these designs yields different results. Reboiling before cation exchange only removes free CO 2. However, cation exchange converts all salts to acids, which are more volatile than salts, and reboiling after cation exchange removes most carbonates and portions of the volatile acids. In addition, the following instrument design and water chemistry factors influence the measured DCC: reboiling vs. sparging, purity of the sparging gas, intensity and length of degassing, removal of vapors, temperature compensation from ~100 C to 25 C (for reboiled DCC), effectiveness of cation exchange, and ph and type of alkalizing agents, salts, and acids in the sample. The main question is about the meaning of the various DCC measurements in relation to corrosion and flow-accelerated corrosion. Introduction Specific conductivity (SC) and cation conductivity (CC) are core parameters for monitoring cycle chemistry. The instruments are accurate, reliable, and inexpensive. SC is a measure of the concentration of a mix of unknown dissolved chemical species, usually dominated by ammonia or amines. CC measures a mix of anions and H + after removal by ion exchange of all (most?) cations and converting salts to the corresponding acids. In an effort to expand the range of cycle chemistry monitoring and get information on the concentration of CO 2, use of degassed cation conductivity (DCC) was patented in 1958 [1]. Initially, there were a few users of this method but its use has increased during the last decade, mostly because of the concerns about FAC, expanded use of organic chemicals that decompose forming CO 2, and in an effort to meet turbine steam cation conductivity limits by substituting DCC for CC. 1

2 Most users of DCC, including the authors, had been under the impression that the DCC instruments remove only the free CO 2, a less corrosive chemical species in steam, condensate, and feedwater. DCC was included as a monitoring parameter in the first comprehensive U.S. cycle chemistry guidelines [2]. After the extensive monitoring project [3], where DCC exhibited poor accuracy (Figure 1) and there was a suspected removal of roughly 1/2 to 2/3 of formic and acetic acids, it was not recommended in the guidelines that followed [4-7]. At the time of the monitoring project [3], the instrument was tested for retention of HCl and HF, but not for organic acids. Figure 1 Degassed Cation Conductivity; Measured vs. Calibration Solutions Supplied from Standard Sample Synthesizer - Six Mixtures Representing Typical Power Plant Water and Steam [3] The use of degassed cation conductivity has become popular in many combined cycle plants due to their inability to meet manufacturer turbine steam cation conductivity limits. Instead, they apply the same limits to degassed cation conductivity in an effort to ignore the effects of high air inleakage, poor makeup water purity (aerated), and organic water treatment chemical decomposition products (carbon dioxide and organic acids) on cycle chemistry control. Cation conductivity is a critical control parameter for modern water and steam systems [2-7]. The cation conductivity of the superheated or reheated steam has a recommended normal limit of between 0.15 and 0.35 µs/cm, depending upon the steam cycle design and selected water treatment [2-7]. Carbon dioxide (Figure 2) and organic acids (Figure 3) often significantly contribute to the measured cation conductivity, sometimes resulting in cation conductivity readings above limits even when the concentrations of mineral acids are low. There are several sources of carbon dioxide in the boiler water and condensate including makeup water (and 2

3 aerated makeup storage tanks), air inleakage, decomposition of carbonates in the boiler, and decomposition of organic compounds [8]. Figure 2 Contribution of Carbon Dioxide to Cation Conductivity [9] Figure 3 Contributions of Chloride, Sulfate, and Organic Acids to Cation Conductivity [9] 3

4 Degassed cation conductivity is the cation conductivity of a solution after the carbon dioxide has been removed either by sparging the solution with a non-reactive gas (typically nitrogen) or by heating close to boiling at ambient pressure. The measurement is supposed to provide an indication of the concentration of corrosive salts and acids in the sampled stream without the influence of carbon dioxide. Degassed cation conductivity is commonly measured on superheated steam samples, however, it can also be applied to saturated steam, condensate, and feedwater sampled after the deaerator. An example of field CC and DCC data is in Figure 4. The data for two superheated steams (HP and LP) are from commissioning of a three drum combined cycle unit using phosphate boiler water treatment with deaeration only in the condenser. As can be seen, there is a large difference between CC and DCC, particularly for the LP steam. DCC Instruments Currently, there are several possible arrangements and two methods commonly used for removing carbon dioxide (degassing) in order to measure degassed cation conductivity: Reboiling the sample is heated to 100ºC after the cation exchange column to remove volatile species, sometimes followed by cooling of the sample for analysis [12, 14 to 19] Sparging the sample is nitrogen sparged after the cation exchange column to remove volatile species [20] The instrument arrangements include: Reboiler or sparger before or after cation exchanger Sample cooler after reboiler before DCC measurement at ambient temperature No sample cooler after reboiler, DCC measurement at ~100 C One example of a DCC flow diagram for degassing after a cation column is shown in Figure 5. An instrument for monitoring degassed cation conductivity was patented by Larson and Lane in 1958 [1] and has been utilized to determine the purity of steam and condensate after removal of ammonia and carbon dioxide. The Larson and Lane patent includes the use of the ion exchange bed without pre-boiling of the condensate, and the other of which provides for re-boiling of the condensate to remove a major portion of the carbon dioxide before the ion exchange treatment to remove ammonia and/or amines. Re-boiling following the ion exchange treatment is provided in the lower unit to reduce the carbon dioxide contact to a minimum. 4

5 Figure 4 Cation Conductivity and Degassed Cation Conductivity for HP and LP Superheated Steam. Commissioning of a 3 Pressure Combined Cycle Unit (Courtesy of Jonas, Inc.) 5

6 Figure 5 Flow Diagram for One Type of DCC Instrument [12] Reboiling Heating the sample to its boiling point increases the volatility of some species, causing them to enter the vapor phase and be removed from the sample. The typical reboiler design has the sample flow into the reboiler, where it is heated to slightly below 100ºC for a short time period, then exits the reboiler and the conductivity of the solution is measured. The residence time in the reboiler is designed to allow enough time for significant removal of volatile species while maintaining a relatively fast response time to changes in sample chemistry. 6

7 Sparging When a sample is sparged with a non-reactive gas (such as nitrogen), the partial pressure of the volatile impurities causes a fraction of the impurity to diffuse into the nitrogen bubbles to achieve equilibrium. As more nitrogen comes in contact with the liquid, more of the volatile impurities are removed. In the case of carbon dioxide, when it is dissolved in water, a fraction of it forms carbonate, a weak acid that increases the conductivity. However, when the nitrogen removes the dissolved carbon dioxide in the water, the carbonate converts to carbon dioxide in an effort to maintain equilibrium. This results in more carbon dioxide being removed, until all of the carbon dioxide in the water is eliminated. As long as sufficient contact time is provided, complete removal of the carbon dioxide can be achieved. Differences between Instruments and Causes of Errors The main difference in DCC measurements is between the instruments with degassing before the cation column and after. This difference depends on ph which determines the concentration of CO 2 gas. The second difference is between the degassing at close to 100 C and at ambient temperature (Figure 6). Gas stripping has a higher CO 2 removal efficiency than reboiling [15]. Figure 6 Removal of CO 2 vs. ph [21] 7

8 The following are causes of errors and other differences: Removal of organic acids by degassing [3] open cycle vs. volatility. An example of a removal of other volatile acids besides the carbonic acid is shown in Table 1, where the DCC is lower than that predicted by subtraction of the CO2 contribution. The data are from a combined cycle unit using an organic oxygen scavenger where the volatile acids removed were probably formic and acetic acids. Incomplete removal of CO 2 removal depends on ph (Figure 6) Incomplete cation exchange amines, oxygen scavengers Intensity and length of reboiling and sparging Rate of vapor removal Purity of the sparging gas (NO X, SO 2, CO 2, organics) Temperature compensation from ~100 C to 25 C vs. chemical species present (see Figure 7 for the large conductivity difference which needs to be compensated for) In some DCC designs [16, 17, 18] that include a reboiler, the degassed cation conductivity is typically measured at close to 100ºC to eliminate the cost of an additional sample cooler. Computerized temperature compensation is then used to adjust the measurement to the equivalent conductivity at 25ºC [13]. The temperature compensation used is independent of the impurities present, which makes the compensation susceptible to errors. In order to avoid these problems, the conductivity should be measured at 25ºC. Table 1 CC and DCC for Three Samples Obtained from a Combined Cycle Plant (Courtesy of Jonas, Inc.) Superheated Steam Cation Conductivity (µs/cm) Degassed Cation Conductivity (µs/cm) Cation Conductivity after Subtraction of CO 2 Contribution (µs/cm) LP IP HP

9 Figure 7 Temperature Effects on the Conductivity of High Purity Water [10] Conclusions 1. Degassed cation conductivity is an interesting but controversial steam and condensate monitoring parameter. Different instruments give different values which cannot be practically interpreted, the instruments are difficult to calibrate, and the measured values are non-conservative in relation to turbine corrosion and feedwater and extraction piping flowaccelerated corrosion where CO 2 and organic acids can play a major role. 2. There are two different designs of degassed cation conductivity analyzers: one with the degassing (reboiling or sparging) before the cation exchanger and one with degassing after. Degassing after the cation exchanger is not recommended because it removes an unknown mix of acids and the resulting degassed cation conductivity information cannot be properly interpreted. Also, the conductivity measured at ~100 C and compensation to 25 C can introduce errors. 3. To monitor the cation conductivity of samples without CO 2, the degassing should be before the cation exchange, as originally intended by the inventors of the method. Depending on sample ph, this would leave some CO 2 in the sample as carbonate and bi-carbonate, such as in the actual condensate. In saturated and wet steam, CO 2 and carbonates will be distributed between the gas and liquid phases. 9

10 4. The actual removal of chemical species in the degasser depends on their volatility, time and intensity of degassing, temperature (100 C vs. ambient), removal of the vapor, and the cation exchanger. In instruments with N 2 sparging, impurities, such as NOx, CO 2, SO 2, can be introduced. The volatility depends on the chemical equilibrium in the liquid phase. About 7% of acetate could be removed by reboiling. In cases where amines and certain organic oxygen scavengers are used, their ion exchange in the cation column may not be complete, introducing additional errors. 5. In relation to the purpose of the degassed cation conductivity measurement to monitor only corrosive impurities, such as chlorides and sulfates, degassed cation conductivity is a nonconservative parameter because, at lower temperatures, CO 2, carbonates, and organic acids are also corrosive. Their corrosive effects include stress corrosion cracking of carbon and low alloy steels and enhancement of flow-accelerated corrosion by lowering ph. 6. In monitoring condensate and feedwater in most plants, free CO 2 is already removed by condenser and deaerator deaeration. References 1. T. Larson, R. Lane. Apparatus and Method for Determining Steam Purity. U.S. Patent 2,832,673. April 29, Interim Consensus Guidelines on Fossil Plant Chemistry. EPRI, Palo Alto, CA: June CS Monitoring Cycle Water Chemistry in Fossil Plants: Volume 1. EPRI. Palo Alto, CA: October GS Cycle Chemistry Guidelines for Fossil Plants: All-Volatile Treatment. EPRI, Palo Alto, CA: April TR Cycle Chemistry Guidelines for Fossil Plants: Oxygenated Treatment. EPRI, Palo Alto, CA: December TR Cycle Chemistry Guidelines for Fossil Plants: Phosphate Treatment for Drum Units. EPRI, Palo Alto, CA: December TR Cycle Chemistry Guidelines for Fossil Plants: Phosphate Continuum and Caustic Treatment. EPRI, Palo Alto, CA: February O. Jonas. "Beware of Organic Impurities in Steam Power Systems." Power. Sept PowerPlant Chemistry Practice 006 and 007. PowerPlant Chemistry. January (1). 10. D. Gray. Advances in Cycle Chemistry Conductivity Measurement. PowerPlant Chemistry. June (6). 10

11 11. A. Bursik. Carbon Dioxide and Fossil Plant Cycle Chemistry. Proceedings of International Water Conference. Pittsburgh, PA IWC "Standard Test Method for On-line Determination of Anions and Carbon Dioxide in High Purity Water by Cation Exchange and Degassed Cation Conductivity." Annual Book of ASTM Standards. ASTM. New York. Volume D Standard Test Method for Electrical Conductivity and Resistivity of a Flowing High Purity Water Sample. Annual Book of ASTM Standards. ASTM. New York. Volume D R.W. Lane. Cation and Degassed Conductivity Sentry Equipment Leaflet. March N. Drew. Evaluation of Degassed After-Cation-Exchange Conductivity Techniques. PowerPlant Chemistry. June (6). 16. High Purity Condensate Monitoring. Application Data Sheet, Rosemount Analytical. ADS /Rev.B. August Condensate Analysis. Product Application Data. Foxboro Company. PAD P Martek Dissolved Carbon Dioxide Analyzer. Product Leaflet. Martek Instruments DCCP: Degassed Cation Conductivity Panel. Product Leaflet. Sentry Equipment Rev. 5. April Sparger Assembly. Product Leaflet. Waters Equipment Betz Handbook of Industrial Water Conditioning. Betz Laboratories, Inc. Trevose, PA O. Jonas. Steam, Chemistry, and Corrosion in the Phase Transition Zone of Steam Turbines. EPRI. Palo Alto, CA: February TR

Inferred ph in Steam Plant Water Chemistry Monitoring

Inferred ph in Steam Plant Water Chemistry Monitoring Application Data Sheet ADS 4900-87/rev.B January 2009 Power Industry Inferred ph in Steam Plant Water Chemistry Monitoring INTRODUCTION Inferred ph means ph calculated from straight and cation conductivity.

More information

CYCLE CHEMISTRY COMMISSIONING

CYCLE CHEMISTRY COMMISSIONING CYCLE CHEMISTRY COMMISSIONING Otakar Jonas, P.E., Ph.D. Lee Machemer, P.E. Jonas, Inc. 1113 Faun Road Wilmington, DE 19803 USA Abstract This paper presents an outline of cycle chemistry commissioning guidelines

More information

A Comprehensive Look at Conductivity Measurement in Steam and Power Generation Waters

A Comprehensive Look at Conductivity Measurement in Steam and Power Generation Waters Presented at the 67 th Annual International Water Conference, Engineers Society of Western Pennsylviania, Pittsburgh, Oct 2006 A Comprehensive Look at Conductivity Measurement in Steam and Power Generation

More information

Hydrogen Exchange Resin. Steam Purity Analysis

Hydrogen Exchange Resin. Steam Purity Analysis Circular No. 47 1955 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor Hydrogen Exchange Resin ror Steam Purity Analysis by R. W. Lane, T. E. Larson and J. W. Pankey Issued by Department of Registration

More information

The National Board of Boiler and Pressure Vessel Inspectors 1055 Crupper Avenue Columbus, Ohio 43229 614.888.8320

The National Board of Boiler and Pressure Vessel Inspectors 1055 Crupper Avenue Columbus, Ohio 43229 614.888.8320 TheNationalBoardofBoilerandPressureVesselInspectors 1055CrupperAvenue Columbus,Ohio43229 614.888.8320 NB-410, Revision 3 Sept, 2015 1 1.0 GENERAL The purpose of this document is to provide basic guidelines

More information

The International Association for the Properties of Water and Steam. Technical Guidance Document: Steam Purity for Turbine Operation

The International Association for the Properties of Water and Steam. Technical Guidance Document: Steam Purity for Turbine Operation The International Association for the Properties of Water and Steam London, United Kingdom September 2013 Technical Guidance Document: Steam Purity for Turbine Operation 2013 International Association

More information

The control of corrosive conditions caused by concentration of low-volatility solutes in boilers and steam generators

The control of corrosive conditions caused by concentration of low-volatility solutes in boilers and steam generators P R E P R I N T ICPWS XV Berlin, September 8 11, 2008 The control of corrosive conditions caused by concentration of low-volatility solutes in boilers and steam generators Geoffrey J Bignold GJB Chemistry

More information

Forgotten savings: Heat recovery from surface blowdown

Forgotten savings: Heat recovery from surface blowdown Forgotten savings: Heat recovery from surface blowdown 1. Introduction The purpose of this article is to inform thermal plant operators of the interesting fuel savings that can be obtained by recovering

More information

NPL Report MATC (A) 95 Steam Turbine Operating Conditions, Chemistry of Condensates, and Environment Assisted Cracking A Critical Review

NPL Report MATC (A) 95 Steam Turbine Operating Conditions, Chemistry of Condensates, and Environment Assisted Cracking A Critical Review Steam Turbine Operating Conditions, Chemistry of Condensates, and Environment Assisted Cracking A Critical Review Shengqi Zhou and Alan Turnbull May 2002 Date: May 2002 Steam Turbine Operating Conditions,

More information

INSTRUCTION MANUAL. Boil-Out TABLE OF CONTENTS SAFETY WARNINGS 2-3 RESPONSIBILITY 3 INTRODUCTION 3 PRE-BOIL OUT PROCEDURES 3-5 BOIL OUT PROCESS 5-9

INSTRUCTION MANUAL. Boil-Out TABLE OF CONTENTS SAFETY WARNINGS 2-3 RESPONSIBILITY 3 INTRODUCTION 3 PRE-BOIL OUT PROCEDURES 3-5 BOIL OUT PROCESS 5-9 TABLE OF CONTENTS Description Page Number SAFETY WARNINGS 2-3 RESPONSIBILITY 3 INTRODUCTION 3 PRE-BOIL OUT PROCEDURES 3-5 BOIL OUT PROCESS 5-9 Indeck Keystone Energy, LLC. 5451 Merwin Lane, Suite 100 Erie,

More information

Effective Deoxygenation by a Hybrid Process Combining Gas Transfer Membranes with Catalytic Oxygen Reduction

Effective Deoxygenation by a Hybrid Process Combining Gas Transfer Membranes with Catalytic Oxygen Reduction Technical Paper Effective Deoxygenation by a Hybrid Process Combining Gas Transfer Membranes with Catalytic Oxygen Reduction Authors: S. B. Gorry, GE, W. E. Haas, GE and J. W. Mahaffee, Baltimore Gas &

More information

World Class Water Chemistry By Accident? BRO Chemistry Session 8/5/2014

World Class Water Chemistry By Accident? BRO Chemistry Session 8/5/2014 World Class Water Chemistry By Accident? BRO Chemistry Session 8/5/2014 From Safe by Accident? by Judy Agnew & Aubrey Daniels Despite decades of reduction in safety related deaths and injuries on the job,

More information

Carbon Dioxide and Dissolved Oxygen Removal From Makeup Water By Gas Transfer Membranes

Carbon Dioxide and Dissolved Oxygen Removal From Makeup Water By Gas Transfer Membranes Technical Paper Carbon Dioxide and Dissolved Oxygen Removal From Makeup Water By Gas Transfer Membranes Authors: S.H. Macklin, Northeast Utilities, W.E. Haas, GE Water & Process Technologies and W.S. Miller,

More information

A Primer on Protecting Idle Boilers By Howard Benisvy, Member ASHRAE

A Primer on Protecting Idle Boilers By Howard Benisvy, Member ASHRAE The following article was published in ASHRAE Journal, December 2002. Copyright 2002 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes

More information

Water Treatment, Cycle Chemistry, Boiler Operation and Related Problems/Failures on Steam Generator Systems > 30 bar

Water Treatment, Cycle Chemistry, Boiler Operation and Related Problems/Failures on Steam Generator Systems > 30 bar Page 1 Water Treatment, Cycle Chemistry, Boiler Operation and Related Problems/Failures on Steam Generator Systems > 30 bar By Mr. Ludwig Hoehenberger, TÜV SÜD, Munich,. Phone: +49 89 5791 1063; Telefax:

More information

How To Prevent Corrosion In A Steam Electric Power Plant

How To Prevent Corrosion In A Steam Electric Power Plant Keeping corrosion at bay Analysis in ultra-supercritical power plants Corrosion is the natural enemy of steam-electric power plants, eating away at pipes, turbine blades, and rotors. The lack of a separation

More information

BASIC WATER TREATMENT OF STEAM BOILERS

BASIC WATER TREATMENT OF STEAM BOILERS BASIC WATER TREATMENT OF STEAM BOILERS Steve Kenny and Dave Pope Chemco Water Technology Vancouver, WA This is a brief discussion on low-pressure steam boiler chemistry. It provides dry kiln boiler operators

More information

DEIONIZATION IN A "NUT SHELL"

DEIONIZATION IN A NUT SHELL Deionized Water (DI) DEIONIZATION IN A "NUT SHELL" City water is passed through dark amber colored, caviar sized plastic beads called cation ion exchange resin. The cation resin is in the hydrogen form

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

THEORY AND APPLICATION OF CONDUCTIVITY

THEORY AND APPLICATION OF CONDUCTIVITY Application Data Sheet ADS 43-018/rev.D January 2010 Theory THEORY AND APPLICATION OF CONDUCTIVITY BACKGROUND Conductivity is a measure of how well a solution conducts electricity. To carry a a solution

More information

The Single Absorption Scrubbing Sulfuric Acid Process

The Single Absorption Scrubbing Sulfuric Acid Process The Single Absorption Scrubbing Sulfuric Acid Process Leonard J. Friedman, Samantha J. Friedman Acid Engineering & Consulting, Inc. 17770 Deauville Lane, 33496, USA LJ.Friedman@Acideng.com Keywords: Sulfuric

More information

Open Cycle Refrigeration System

Open Cycle Refrigeration System Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

More information

Best Practice in Boiler Water Treatment

Best Practice in Boiler Water Treatment Best Practice in Boiler Water Treatment Boiler Water Treatment Part 2 Internal Treatment Objectives of Internal Water Treatment 1 To control the level of total dissolved solids (TDS) within the boiler

More information

9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: awt@awt.org

9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: awt@awt.org 9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: awt@awt.org Part of the recertification process is to obtain Continuing Education Units (CEUs). One way

More information

CYCLE CHEMISTRY ph MEASUREMENT

CYCLE CHEMISTRY ph MEASUREMENT CYCLE CHEMISTRY ph MEASUREMENT David M. Gray and Edward P. Santini Thornton Associates, Waltham MA Electric Utility Chemistry Workshop Champaign, Illinois May 12-14, 1998 Sponsored by University of Illinois

More information

The Relationship between ph and Deionized Water

The Relationship between ph and Deionized Water The Relationship between ph and Deionized Water The basics of ph The topic of ph and water has been well documented over the years; however, there is still much confusion about its significance in high

More information

b. Calculate the value of the equilibrium constant at 127ºC for the reaction 2NH 3 (g) N 2 (g) + 3H 2 (g)

b. Calculate the value of the equilibrium constant at 127ºC for the reaction 2NH 3 (g) N 2 (g) + 3H 2 (g) 1. Write the equilibrium expression for the following reaction: 4NH 3 (g) + 7O 2 (g) 4NO 2 (g) + 6H 2 O(g) 2. The following equilibrium concentrations were observed for this reaction at 127ºC: N 2 (g)

More information

Water Efficiency. Water Management Options. Boilers. for Commercial, Industrial and Institutional Facilities. Boiler Water Impurities

Water Efficiency. Water Management Options. Boilers. for Commercial, Industrial and Institutional Facilities. Boiler Water Impurities Water Efficiency Water Management Options Boilers for Commercial, Industrial and Institutional Facilities Boiler Water Impurities All boiler make-up water contains impurities. As clean steam is released

More information

SUGAR MILL BOILER CYCLE CHEMISTRY: AN UPDATE ON BEST PRACTICES DAVID RODMAN. Nalco Australia Pty Ltd, Townsville

SUGAR MILL BOILER CYCLE CHEMISTRY: AN UPDATE ON BEST PRACTICES DAVID RODMAN. Nalco Australia Pty Ltd, Townsville SUGAR MILL BOILER CYCLE CHEMISTRY: AN UPDATE ON BEST PRACTICES By DAVID RODMAN Nalco Australia Pty Ltd, Townsville KEYWORDS: Sugar, Boiler, Water Chemistry, Deposit, Water Treatment. Abstract SUGAR mill

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

Corrosion Management in Gas Treating Plants (GTP s): Comparison between Corrosion Rate of DEA and MDEA A Case Study in Sour Gas Refinery

Corrosion Management in Gas Treating Plants (GTP s): Comparison between Corrosion Rate of DEA and MDEA A Case Study in Sour Gas Refinery Proceedings of the 214 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 214 Corrosion Management in Gas Treating Plants (GTP s): Comparison between

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

Corrosion of Copper in Water

Corrosion of Copper in Water Corrosion of Copper in Water Digby D. Macdonald Center for Electrochemical Science and Technology Department of Materials Science and Engineering Pennsylvania State University 209 Steidle Bldg University

More information

High-Pressure Steam Cycle and Boiler Water Treatment

High-Pressure Steam Cycle and Boiler Water Treatment High-Pressure Steam Cycle and Boiler Water Treatment High Pressure Boilers Pressure range 60-84 bar Critical needs High quality makeup water External pre-treatment through distillation and mechanical deaeration

More information

WATER CHEMISTRY AND POOL WATER BALANCE

WATER CHEMISTRY AND POOL WATER BALANCE C R6 H A PT E WATER CHEMISTRY AND POOL WATER BALANCE LEARNING OBJECTIVES After completely studying this chapter, you should be able to: Understand and list the parameters upon which water balance is based.

More information

Recover Heat from Boiler Blowdown Water

Recover Heat from Boiler Blowdown Water Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC and its contractor, Southern California Gas

More information

Sulfites for Oxygen Control

Sulfites for Oxygen Control If you would like a more detailed version of this report, please request SOS from lcavano@scrantonassociates.com along with your e-mail address. A. Introduction Sulfites for Oxygen Control Robert R. Cavano

More information

Wall Thinning Trend Analyses for Secondary Side Piping of Korean NPPs

Wall Thinning Trend Analyses for Secondary Side Piping of Korean NPPs Transactions of the 17 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17) Prague, Czech Republic, August 17 22, 2003 Wall Thinning Trend Analyses for Secondary Side Piping

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

Ion Selective Electrodes

Ion Selective Electrodes Ion Selective Electrodes OAKTON has a large selection of Ion Selective Electrodes () to suit a wide variety of applications. Each electrode has a typical response time of 20 to 30 seconds but will vary

More information

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Mark Schiffhauer, ATSI Engineering Services Cameron Veitch, Combustion and Energy Systems Scott Larsen, New York State Energy

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Dehydration. Dehydration UNIT. operations. bioprocess plants

Dehydration. Dehydration UNIT. operations. bioprocess plants Dehydration Dehydration UNIT operations bioprocess plants VOGELBUSCH MOLECULAR SIEVE DEHYDRATION PRESSURE SWING ADSORPTION PROCESS By merging specialized process know-how with existing technology Vogelbusch

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d.

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d. Assessment Chapter Test A Elements, Compounds, and Mixtures MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is a pure substance made of two or more elements that are

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

ph. Weak acids. A. Introduction

ph. Weak acids. A. Introduction ph. Weak acids. A. Introduction... 1 B. Weak acids: overview... 1 C. Weak acids: an example; finding K a... 2 D. Given K a, calculate ph... 3 E. A variety of weak acids... 5 F. So where do strong acids

More information

KS3 Science: Chemistry Contents

KS3 Science: Chemistry Contents summary KS3 Science MyWorks Guide Chemistry KS3 Science: Chemistry Mini zes: 40 Super zes: 5 Extension zes: 4 Skills zes: 6 TOTAL 54 What are MyWorks zes? MyWorks zes are short individual learning tasks

More information

Case History Report The Dolphin Nonchemical Device Boilers and Cooling Tower

Case History Report The Dolphin Nonchemical Device Boilers and Cooling Tower Case History Report The Dolphin Nonchemical Device Boilers and Cooling Tower Device Evaluated "The Dolphin HYTRONIC Series 1000" pulsed power water treatment device (Dolphin) manufactured by Clearwater

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness Water Softening for Removal 1 in Water High concentration of calcium (Ca2+) and magnesium (Mg2+) ions in water cause hardness Generally, water containing more than 100 mg/l of hardness expressed as calcium

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

High Purity Water Resistivity/ Conductivity Measurement

High Purity Water Resistivity/ Conductivity Measurement CONDUCTIVITY MEASUREMENT IN HIGH PURITY WATER SAMPLES below 10 µsiemens/cm High Purity Water Resistivity/ Conductivity Measurement Ultra-Pure Water without any chemical impurities will still have a conductivity

More information

Some Criteria for Choosing a Steam Boiler for a Microbrewery

Some Criteria for Choosing a Steam Boiler for a Microbrewery Some Criteria for Choosing a Steam Boiler for a Microbrewery Jack Coe Rite Engineering and Manufacturing Corporation Breweries rely on steam heating for a number of functions, primarily to heat the brew

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners.

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners. Water Softeners Industrial Water Purification (800) CAL-WATER By Dave Peairs, Cal Water, Technical Director Rev: 06/08/2004 Before any discussion of water softeners, we must first define what hard water

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

How To Run A Power Plant

How To Run A Power Plant CO 2 Capture at the Kemper County IGCC Project 2011 NETL CO 2 Capture Technology Meeting Kemper County IGCC Overview 2x1 Integrated Gasification Combined Cycle (IGCC) 2 TRansport Integrated Gasifiers (TRIG

More information

Scale and Deposit Formation in Steam Assisted Gravity Drainage (SAGD) Facilities

Scale and Deposit Formation in Steam Assisted Gravity Drainage (SAGD) Facilities Scale and Deposit Formation in Steam Assisted Gravity Drainage (SAGD) Facilities Reprint R-1014 By W. Hugh Goodman, Martin R. Godfrey, and Thomas M. Miller, Nalco Comany, Naperville, IL ABSTRAST Produced

More information

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

More information

DEPARTMENT OF ENVIRONMENTAL REGULATION. Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED

DEPARTMENT OF ENVIRONMENTAL REGULATION. Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED DEPARTMENT OF ENVIRONMENTAL REGULATION Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED JANUARY 1994 BUREAU OF DRINKING WATER AND GROUND WATER RESOURCES 2600 BLAIR

More information

Industrial Water Reuse and Wastewater Minimization

Industrial Water Reuse and Wastewater Minimization Technical Paper Industrial Water Reuse and Wastewater Minimization Author: James P. McIntyre, P.E. Abstract Many industrial users of fresh water are under increasing pressure to reuse water within their

More information

Chemical versus Physical Changes

Chemical versus Physical Changes Chemical versus Physical Changes Permission to Copy - This document may be reproduced for non-commercial educational purposes Copyright 2009 General Electric Company What are physical and chemical changes?

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

Basics of Kraft Pulping & Recovery Process. Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology

Basics of Kraft Pulping & Recovery Process. Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology Basics of Kraft Pulping & Recovery Process Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology Outline History Goals Process Overview Kraft Pulping Process Kraft

More information

IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1. Abstract. 1. Introduction

IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1. Abstract. 1. Introduction IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1 Copyright 2010, Brazilian Petroleum, Gas and Biofuels Institute - IBP This Technical Paper was prepared

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

WATER TREATMENT THE NEED FOR CONTROL COMMON IMPURITIES FOUND IN WATER. CALCIUM CARBONATE (CaCO3) CALCIUM SULFATE (CaSO4) MAGNESIUM SULFATE (MgSO4)

WATER TREATMENT THE NEED FOR CONTROL COMMON IMPURITIES FOUND IN WATER. CALCIUM CARBONATE (CaCO3) CALCIUM SULFATE (CaSO4) MAGNESIUM SULFATE (MgSO4) THE NEED FOR CONTROL Vecom Marine clean ships - clean seas BOILER WATER TREATMENT Whether distilled or raw (city) water is used for boiler make-up, chemical treatment is necessary to counteract harmful

More information

AM-08-14 Cost Effective Solutions for Reduction of Benzene in Gasoline

AM-08-14 Cost Effective Solutions for Reduction of Benzene in Gasoline Annual Meeting March 9-11, 2008 Manchester Grand Hyatt San Diego, CA Cost Effective Solutions for Reduction of Benzene in Gasoline Presented By: Kerry Rock Director, Technology Commercialization CDTECH

More information

ACIDS AND BASES SAFETY PRECAUTIONS

ACIDS AND BASES SAFETY PRECAUTIONS ACIDS AND BASES Mild acids and bases are used in cooking (their reaction makes biscuits and bread rise). Acids such as those in our stomachs eat away at food or digest it. Strong acids and bases are used

More information

AP CHEMISTRY 2013 SCORING GUIDELINES

AP CHEMISTRY 2013 SCORING GUIDELINES AP CHEMISTRY 2013 SCORING GUIDELINES Question 4 (15 points) For each of the following three reactions, write a balanced equation for the reaction in part (i) and answer the question about the reaction

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

University of Iowa Power Plant

University of Iowa Power Plant University of Iowa Power Plant Contents Purpose... 2 History... 3 Cogeneration... 6 Boilers... 7 Environmental Impact... 10 Steam Turbine Generators... 12 Modernization... 14 Biomass Fuel Initiative...

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

Equilibria Involving Acids & Bases

Equilibria Involving Acids & Bases Week 9 Equilibria Involving Acids & Bases Acidic and basic solutions Self-ionisation of water Through reaction with itself: The concentration of water in aqueous solutions is virtually constant at about

More information

North American Stainless

North American Stainless Introduction: North American Stainless Flat Products Stainless Steel Grade Sheet 309S (S30908)/ EN1.4833 SS309 is a highly alloyed austenitic stainless steel used for its excellent oxidation resistance,

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Chapter 8 How to Do Chemical Calculations

Chapter 8 How to Do Chemical Calculations Chapter 8 How to Do Chemical Calculations Chemistry is both a qualitative and a quantitative science. In the laboratory, it is important to be able to measure quantities of chemical substances and, as

More information

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria Chemistry 13 NT The most difficult thing to understand is the income tax. Albert Einstein 1 Chem 13 NT Solubility and Complex-ion Equilibria Module 1 Solubility Equilibria The Solubility Product Constant

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Hydrochemistry. Deacidification. Junianti Roslinda Sihombing. Practical Date : Monday, 01.11.2010 Report Delivery : Monday, 22.11.

Hydrochemistry. Deacidification. Junianti Roslinda Sihombing. Practical Date : Monday, 01.11.2010 Report Delivery : Monday, 22.11. Hydrochemistry Deacidification Practical Date : Monday, 01.11.2010 Report Delivery : Monday, 22.11.2010 Junianti Roslinda Sihombing TABLE OF CONTENTS 1. BACKGROUND... 3 1.1 CARBON DIOXIDE AND CARBONIC

More information

Boiler Blowdown Analysis In An Industrial Boiler

Boiler Blowdown Analysis In An Industrial Boiler IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 07 (July. 2015), V3 PP 22-28 www.iosrjen.org Boiler Blowdown Analysis In An Industrial Boiler Keerthi R Lekshmi

More information

Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal

Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal Technical Paper Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal Authors: Ted Prato and Richard G. Parent, Ionics Reprinted from Proceedings of 1993 AWWA

More information

2 MATTER. 2.1 Physical and Chemical Properties and Changes

2 MATTER. 2.1 Physical and Chemical Properties and Changes 2 MATTER Matter is the material of which the universe is composed. It has two characteristics: It has mass; and It occupies space (i.e., it has a volume). Matter can be found in three generic states: Solid;

More information

Chapter 2.2: Boilers

Chapter 2.2: Boilers Chapter 2.2: Boilers Part I: Objective type Questions and Answers 1. The minimum capacity of any closed vessel which generates steam under Indian Boilers Regulation Act is. a) 2.275 liters b) 22.75 kilo

More information

Steam Generation Efficiency Module Blowdown Losses Section

Steam Generation Efficiency Module Blowdown Losses Section Steam End User Training Steam Generation Efficiency Module Blowdown Losses Section Slide 1 Blowdown Losses Module This section will discuss blowdown loss and its affect on boiler efficiency. [Slide Visual

More information

Boiler Blowdown. Boiler Blowdown Benefits. Best Operating Practices for Boiler Blowdown

Boiler Blowdown. Boiler Blowdown Benefits. Best Operating Practices for Boiler Blowdown Boiler Blowdown Even with the best pretreatment programs, boiler feedwater often contains some degree of impurities, such as suspended and dissolved solids. The impurities can remain and accumulate inside

More information

Problem Solving. Stoichiometry of Gases

Problem Solving. Stoichiometry of Gases Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

More information

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources Matthew L. Haikalis Veolia Water Solutions & Technologies April 24, 2013 Operational Priorities

More information

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd)

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd) Ion Exchange Design Hand calculation Brian Windsor (Purolite International Ltd) Introduction Before design programmes were introduced, every engineer had to calculate the design by hand using resin manufacturers

More information