Unit 26: Small Sample Inference for One Mean

Size: px
Start display at page: Transcription

1 Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage of t-confidence intervals and significance tests can be found in The Basic Practice of Statistics, Chapter 18, Inference about a Population Mean. Activity Description Most pedometers record step lengths. If you want to know how far you have walked, then you have to calibrate the pedometer by entering your step length. In this activity, students will use t-confidence intervals to estimate the mean step length of male students and female students. They will first need to collect two sets of data: (1) male step lengths and (2) female step lengths. Materials Meter stick or tape measure. The sample data used in the solutions to this activity were gathered from 10th-grade students. Expect estimates to be larger for college students, especially for males. In question 1, students are asked to write a plan for collecting the step-length data. This question could also be a class discussion. In gathering the data, students will get better results if they measure the distance of more than one step and then divide the total distance by the number of steps they walked. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 1

2 In question 4, students are asked to determine whether the mean step length for females differs from the mean step length for males. If there is any overlap in their two confidence intervals, then the answer must be no. However, Unit 27 provides a better way of addressing this question using a two-sample t-test or confidence interval. Unit 27 s Content Overview will use the sample data from this activity as part of the discussion of two sample t-procedures. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 2

3 The Video Solutions 1. The z-procedure assumes that the population standard deviation is known. In most cases, we don t know σ. 2. William S. Gosset 3. Both density curves have a bell shape and are centered at zero. However, the t-distribution has a shorter peak but is more spread out than the standard normal density. 4. The degrees of freedom are one less than the sample size: df = n t* is larger. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 3

4 Unit Activity Solutions 1. Sample answer: Place your heel against the wall. Then take four steps. Measure the distance from the wall to the back of your heel after the fourth step. Divide this distance by four to get the step length. Note: It is important to measure more than one step since your step length with your right foot might differ from your step length with your left foot. 2. Sample data: Male Step Length (cm) Female Step Length (cm) Unit 26: Small Sample Inference for One Mean Faculty Guide Page 4

5 3. Sample answer (based on sample data from question 2). Normal Quantile Plot Normal - 95% CI Normal Quantile Plot Normal - 95% CI Percent 60 Percent Female Step Length (cm) Male Step Length (cm) Given that the pattern of the dots appears fairly linear in both normal quantile plots, and that all dots remain inside the curved bands, it is reasonable to assume that male and female step lengths are normally distributed. 4. a. Sample answer: x M = cm and s M = 7.71 cm b. Sample answer: x F = cm and s M = 7.47 cm 5. a. Sample answer: df M = 12 1 = ± (2.201) ± 4. or (59.18, 68.98) b. Sample answer: df F = 15 1 = ± (2.145) ± 4.14 or (56.20, 64.48) 6. Sample answer: The confidence intervals contain the plausible values for the population means. Since the two confidence intervals share some values, you cannot conclude that the mean step length for men differs from the mean step length for women. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 5

6 Exercise Solutions 1. a. x = 139. mmhg and s = mmhg b. The endpoints of the confidence interval are 139. ± 2.093( ) 139. ± 5.36 or (134.04, ). c. Although the normal quantile plot below is not completely linear due to the five readings of 1, all the dots stay within the curved bands. In addition, a boxplot shows no outliers. So, the data come from a distribution that is close enough to a normal distribution so that t-procedures are valid. 99 Normal Quantile Plot Normal - 95% CI Percent Blood Pressure a. The dots in the normal quantile plot appear roughly linear and all dots stay within the curved bands. It is reasonable to assume the data come from a normal population. 99 Normal Quantile Plot Normal - 95% CI Percent Thickness b. x = and s The value of the t test statistic is: t = Unit 26: Small Sample Inference for One Mean Faculty Guide Page 6

7 To determine the p-value, we consult a t-distribution with df = 9. This is a two-sided test, so we need the area under the t-density curve to the left of -4. and to the right of 4.: p-value 2(0.0004) or slightly less than Since this p-value is so small, we conclude that the mean thickness of the brass washers currently being produced is not The manufacturing process needs to be adjusted. c ± (2.262)( / 10) ± or ( inch, inch). Since the target mean is inch, the confidence interval indicates that the mean has fallen below the target. Hence, the process needs to be adjusted to increase washer thickness. 3. a ± (2.060)( ) ± or (8.673,9.539); ± 2.060( ) ± or (9.4,10.282) b. No. The confidence intervals represent the plausible values for the population means. Since the two confidence intervals overlap, they have some values in common which are plausible values for both µ Forearm and µ Foot. c. % confidence interval for µ Forearm : ± (1.708)( ) ± or (8.747,9.465) % confidence interval for µ Foot : ±1.708( ) ± or (9.3,10.209) The 95% confidence intervals were wider. In order to be more confident, the precision of the interval estimates decreases, which means the intervals get wider. d. In this case, the confidence intervals support the hypotheses that the two means are different because the two intervals do not overlap. 4. a. The differences are: x D = 5.27 and s = 9.32 b. The null hypothesis is that there is no difference between Exam 1 and Exam 2 scores. The alternative hypothesis is that scores went down from Exam 1 to Exam 2, hence the mean difference (Exam 2 Exam 1) is negative. These hypotheses can be expressed symbolically Unit 26: Small Sample Inference for One Mean Faculty Guide Page 7

8 as follows: H 0 = 0 H a < 0 c. t = ; p-value 0.23, which was computed using software and is illustrated below. 0.4 Distribution Plot T, df= Density T d. Yes the professor s concern is supported by the data. The p-value indicates that the null hypothesis should be rejected in favor of the alternative. Hence, the data support the hypothesis that the mean difference in exam scores is less than zero. On average, students do worse on the second exam. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 8

9 Review Questions Solutions 1. a. For the t-distribution, df = 11; t* = b. For the t-distribution, df = 14; t* = c. For the t-distribution, df = 9; t* = a. t = ; p = 2( ) / 3 The mean protein content of rotisserie chicken breasts does not differ from its listing in the SR b. t = ; p-value = 2( ) / 3 The mean cholesterol level of rotisserie chicken thighs does differ significantly from what is listed in the SR. 3. a. H 0 = 0 H a > 0 b. t = (x x ) 0 Post-test Pre-test s n c. p = ( ) 0 = 3.21; degrees of freedom = d. Yes, the p-value is very small, which provides strong evidence against the null hypothesis in favor of the alternative. In fact, p < 0.05, the standard cutoff for significance. The difference in sample means is only While that difference is significant, it does not represent a large improvement in attitude. 4. a. Let μ D be the mean of the differences, second questionnaire score first questionnaire score. The null and alternative hypotheses are: H 0 = 0 H a > 0 Unit 26: Small Sample Inference for One Mean Faculty Guide Page 9

10 The test statistic is t = ; p = Given p < 0.05, we conclude that the workshop had a positive short term effect on students happiness. b. Let μ D be the mean of the differences, third questionnaire score first questionnaire score. The null and alternative hypotheses are: H 0 = 0 H a > The test statistic is t = ; p = We conclude that the workshop had no long term positive effect on students happiness. c ± ± or (-1.142, 0.092) Since the confidence interval includes 0, it is unlikely that the workshop had a positive long-term effect. d. Sample answer: No. Psychology students are probably not representative of all students. For example, biology students or art students might have responded quite differently to the happiness workshop. Unit 26: Small Sample Inference for One Mean Faculty Guide Page 10

Unit 27: Comparing Two Means Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

Unit 31: One-Way ANOVA Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

Mind on Statistics. Chapter 13 Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

Inference for two Population Means Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015 Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

MTH 140 Statistics Videos MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

Paired 2 Sample t-test Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

2 Precision-based sample size calculations Statistics: An introduction to sample size calculations Rosie Cornish. 2006. 1 Introduction One crucial aspect of study design is deciding how big your sample should be. If you increase your sample size

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

Chapter 7 Section 1 Homework Set A Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

Section 1.3 Exercises (Solutions) Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

AP * Statistics Review. Descriptive Statistics AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

STAT 350 Practice Final Exam Solution (Spring 2015) PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

= \$96 = \$24. (b) The degrees of freedom are. s n. 7.3. For the mean monthly rent, the 95% confidence interval for µ is Chapter 7 Solutions 71 (a) The standard error of the mean is df = n 1 = 15 s n = \$96 = \$24 (b) The degrees of freedom are 16 72 In each case, use df = n 1; if that number is not in Table D, drop to the

Chapter 7. One-way ANOVA Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

Chapter 23. Inferences for Regression Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on

How To Check For Differences In The One Way Anova MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

CHAPTER 14 NONPARAMETRIC TESTS CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

12: Analysis of Variance. Introduction 1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

3. There are three senior citizens in a room, ages 68, 70, and 72. If a seventy-year-old person enters the room, the TMTA Statistics Exam 2011 1. Last month, the mean and standard deviation of the paychecks of 10 employees of a small company were \$1250 and \$150, respectively. This month, each one of the 10 employees

Mind on Statistics. Chapter 15 Mind on Statistics Chapter 15 Section 15.1 1. A student survey was done to study the relationship between class standing (freshman, sophomore, junior, or senior) and major subject (English, Biology, French,

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7. THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

Statistics 2014 Scoring Guidelines AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

Walk the Line Written by: Maryann Huey Drake University Maryann.Huey@drake.edu Walk the Line Written by: Maryann Huey Drake University Maryann.Huey@drake.edu Overview of Lesson In this activity, students will conduct an investigation to collect data to determine how far students

STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013 STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

Once saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences. 1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis

Chapter 9: Two-Sample Inference Chapter 9: Two-Sample Inference Chapter 7 discussed methods of hypothesis testing about one-population parameters. Chapter 8 discussed methods of estimating population parameters from one sample using

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

Solutions to Homework 6 Statistics 302 Professor Larget s to Homework 6 Statistics 302 Professor Larget Textbook Exercises 5.29 (Graded for Completeness) What Proportion Have College Degrees? According to the US Census Bureau, about 27.5% of US adults over

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

Difference of Means and ANOVA Problems Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

2013 MBA Jump Start Program. Statistics Module Part 3 2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

Online 12 - Sections 9.1 and 9.2-Doug Ensley Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics - Ensley Assignment: Online 12 - Sections 9.1 and 9.2 1. Does a P-value of 0.001 give strong evidence or not especially strong

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

11. Analysis of Case-control Studies Logistic Regression Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

1. How different is the t distribution from the normal? Statistics 101 106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M 7.1 and 7.2, ignoring starred parts. Reread M&M 3.2. The effects of estimated variances on normal approximations. t-distributions.

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2 Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

Johns Hopkins University Bloomberg School of Public Health Johns Hopkins University Bloomberg School of Public Health Report on Johns Hopkins University School of Medicine Faculty Salary Analysis, 2003-2004 With Additional Comments November 29, 2005 Objectives:

Preparation of Two-Year College Mathematics Instructors to Teach Statistics with GAISE Session on Assessment Preparation of Two-Year College Mathematics Instructors to Teach Statistics with GAISE Session on Assessment - 1 - American Association for Higher Education (AAHE) 9 Principles of Good Practice for Assessing

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media Abstract: The growth of social media is astounding and part of that success was

p ˆ (sample mean and sample Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010 MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times

9 Testing the Difference blu49076_ch09.qxd 5/1/2003 8:19 AM Page 431 c h a p t e r 9 9 Testing the Difference Between Two Means, Two Variances, and Two Proportions Outline 9 1 Introduction 9 2 Testing the Difference Between Two

Math 108 Exam 3 Solutions Spring 00 Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8

We extended the additive model in two variables to the interaction model by adding a third term to the equation. Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015 Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field

Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice! Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice!) Part A - Multiple Choice Indicate the best choice

Describing Populations Statistically: The Mean, Variance, and Standard Deviation Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly

How To Compare Birds To Other Birds STT 430/630/ES 760 Lecture Notes: Chapter 7: Two-Sample Inference 1 February 27, 2009 Chapter 7: Two Sample Inference Chapter 6 introduced hypothesis testing in the one-sample setting: one sample is obtained

1-3 id id no. of respondents 101-300 4 respon 1 responsible for maintenance? 1 = no, 2 = yes, 9 = blank Basic Data Analysis Graziadio School of Business and Management Data Preparation & Entry Editing: Inspection & Correction Field Edit: Immediate follow-up (complete? legible? comprehensible? consistent?

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

Case Study Call Centre Hypothesis Testing is often thought of as an advanced Six Sigma tool but it is a very useful technique with many applications and in many cases it can be quite simple to use. Hypothesis tests are used to make comparisons

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

Principles of Hypothesis Testing for Public Health Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

Comparing Means in Two Populations Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

Stats Review Chapters 9-10 Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

HOW TO WRITE A LABORATORY REPORT HOW TO WRITE A LABORATORY REPORT Pete Bibby Dept of Psychology 1 About Laboratory Reports The writing of laboratory reports is an essential part of the practical course One function of this course is to

August 2012 EXAMINATIONS Solution Part I August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

Chapter 2. Hypothesis testing in one population Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship SAUDI SCHOOL ASSESSMENT SYSTEM FOR PREDICTING ADMISSIONS TO SCIENCE COLLEGES 1 Khalid Alnowibet, 2 Shafiq Ahmad 1 Department of Statistics and Operations Research, College of Science, King Saud University,