Machine Learning: Multi Layer Perceptrons
|
|
|
- James French
- 9 years ago
- Views:
Transcription
1 Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61
2 Outline multi layer perceptrons (MLP) learning MLPs function minimization: gradient descend & related methods Machine Learning: Multi Layer Perceptrons p.2/61
3 Neural networks single neurons are not able to solve complex tasks (e.g. restricted to linear calculations) creating networks by hand is too expensive; we want to learn from data nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions Machine Learning: Multi Layer Perceptrons p.3/61
4 Neural networks single neurons are not able to solve complex tasks (e.g. restricted to linear calculations) creating networks by hand is too expensive; we want to learn from data nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions we want to have a generic model that can adapt to some training data basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton 1986), also named feed forward networks Machine Learning: Multi Layer Perceptrons p.3/61
5 standard perceptrons calculate a discontinuous function: x f step (w 0 + w, x ) Neurons in a multi layer perceptron Machine Learning: Multi Layer Perceptrons p.4/61
6 Neurons in a multi layer perceptron standard perceptrons calculate a discontinuous function: x f step (w 0 + w, x ) due to technical reasons, neurons in MLPs calculate a smoothed variant of this: with x f log (w 0 + w, x ) f log (z) = e z f log is called logistic function Machine Learning: Multi Layer Perceptrons p.4/61
7 Neurons in a multi layer perceptron standard perceptrons calculate a discontinuous function: x f step (w 0 + w, x ) due to technical reasons, neurons in MLPs calculate a smoothed variant of this: with x f log (w 0 + w, x ) f log (z) = e z f log is called logistic function properties: monotonically increasing lim z = 1 lim z = 0 f log (z) = 1 f log ( z) continuous, differentiable Machine Learning: Multi Layer Perceptrons p.4/61
8 Multi layer perceptrons A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are neurons with logistic activation. x 1... x x n... neurons of i-th layer serve as input features for neurons of i + 1th layer very complex functions can be calculated combining many neurons Machine Learning: Multi Layer Perceptrons p.5/61
9 Multi layer perceptrons multi layer perceptrons, more formally: A MLP is a finite directed acyclic graph. nodes that are no target of any connection are called input neurons. A MLP that should be applied to input patterns of dimension n must have n input neurons, one for each dimension. Input neurons are typically enumerated as neuron 1, neuron 2, neuron 3,... nodes that are no source of any connection are called output neurons. A MLP can have more than one output neuron. The number of output neurons depends on the way the target values (desired values) of the training patterns are described. all nodes that are neither input neurons nor output neurons are called hidden neurons. since the graph is acyclic, all neurons can be organized in layers, with the set of input layers being the first layer. Machine Learning: Multi Layer Perceptrons p.6/61
10 Multi layer perceptrons connections that hop over several layers are called shortcut most MLPs have a connection structure with connections from all neurons of one layer to all neurons of the next layer without shortcuts all neurons are enumerated Succ(i) is the set of all neurons j for which a connection i j exists Pred(i) is the set of all neurons j for which a connection j i exists all connections are weighted with a real number. The weight of the connection i j is named w ji all hidden and output neurons have a bias weight. The bias weight of neuron i is named w i0 Machine Learning: Multi Layer Perceptrons p.7/61
11 Multi layer perceptrons variables for calculation: hidden and output neurons have some variable net i ( network input ) all neurons have some variable a i ( activation / output ) Machine Learning: Multi Layer Perceptrons p.8/61
12 Multi layer perceptrons variables for calculation: hidden and output neurons have some variable net i ( network input ) all neurons have some variable a i ( activation / output ) applying a pattern x = (x 1,...,x n ) T to the MLP: for each input neuron the respective element of the input pattern is presented, i.e. a i x i Machine Learning: Multi Layer Perceptrons p.8/61
13 Multi layer perceptrons variables for calculation: hidden and output neurons have some variable net i ( network input ) all neurons have some variable a i ( activation / output ) applying a pattern x = (x 1,...,x n ) T to the MLP: for each input neuron the respective element of the input pattern is presented, i.e. a i x i for all hidden and output neurons i: after the values a j have been calculated for all predecessors j Pred(i), calculate net i and a i as: net i w i0 + (w ij a j ) a i f log (net i ) j Pred(i) Machine Learning: Multi Layer Perceptrons p.8/61
14 Multi layer perceptrons variables for calculation: hidden and output neurons have some variable net i ( network input ) all neurons have some variable a i ( activation / output ) applying a pattern x = (x 1,...,x n ) T to the MLP: for each input neuron the respective element of the input pattern is presented, i.e. a i x i for all hidden and output neurons i: after the values a j have been calculated for all predecessors j Pred(i), calculate net i and a i as: net i w i0 + (w ij a j ) a i f log (net i ) j Pred(i) the network output is given by the a i of the output neurons Machine Learning: Multi Layer Perceptrons p.8/61
15 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T Machine Learning: Multi Layer Perceptrons p.9/61
16 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i Machine Learning: Multi Layer Perceptrons p.9/61
17 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i propagate forward the activations: Machine Learning: Multi Layer Perceptrons p.9/61
18 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i propagate forward the activations: step Machine Learning: Multi Layer Perceptrons p.9/61
19 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i propagate forward the activations: step by Machine Learning: Multi Layer Perceptrons p.9/61
20 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i propagate forward the activations: step by step Machine Learning: Multi Layer Perceptrons p.9/61
21 Multi layer perceptrons illustration: 1 2 apply pattern x = (x 1,x 2 ) T calculate activation of input neurons: a i x i propagate forward the activations: step by step read the network output from both output neurons Machine Learning: Multi Layer Perceptrons p.9/61
22 algorithm (forward pass): Multi layer perceptrons Require: pattern x, MLP, enumeration of all neurons in topological order Ensure: calculate output of MLP 1: for all input neurons i do 2: set a i x i 3: end for 4: for all hidden and output neurons i in topological order do 5: set net i w i0 + j Pred(i) w ija j 6: set a i f log (net i ) 7: end for 8: for all output neurons i do 9: assemble a i in output vector y 10: end for 11: return y Machine Learning: Multi Layer Perceptrons p.10/61
23 Multi layer perceptrons variant: Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used: neurons with tanh activation function: f log (2x) tanh(x) 1.5 linear activation a i =tanh(net i )= enet i e net i e net i +e net i neurons with linear activation: a i = net i Machine Learning: Multi Layer Perceptrons p.11/61
24 Multi layer perceptrons variant: Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used: neurons with tanh activation function: a i =tanh(net i )= enet i e net i e net i +e net i neurons with linear activation: a i = net i f log (2x) tanh(x) linear activation the calculation of the network output is similar to the case of logistic activation except the relationship between net i and a i is different. the activation function is a local property of each neuron. Machine Learning: Multi Layer Perceptrons p.11/61
25 Multi layer perceptrons typical network topologies: for regression: output neurons with linear activation for classification: output neurons with logistic/tanh activation all hidden neurons with logistic activation layered layout: input layer first hidden layer second hidden layer... output layer with connection from each neuron in layer i with each neuron in layer i + 1, no shortcut connections Machine Learning: Multi Layer Perceptrons p.12/61
26 Multi layer perceptrons typical network topologies: for regression: output neurons with linear activation for classification: output neurons with logistic/tanh activation all hidden neurons with logistic activation layered layout: input layer first hidden layer second hidden layer... output layer with connection from each neuron in layer i with each neuron in layer i + 1, no shortcut connections Lemma: Any boolean function can be realized by a MLP with one hidden layer. Any bounded continuous function can be approximated with arbitrary precision by a MLP with one hidden layer. Proof: was given by Cybenko (1989). Idea: partition input space in small cells Machine Learning: Multi Layer Perceptrons p.12/61
27 MLP Training given training data: D = {( x (1), d (1) ),...,( x (p), d (p) )} where d (i) is the desired output (real number for regression, class label 0 or 1 for classification) given topology of a MLP task: adapt weights of the MLP Machine Learning: Multi Layer Perceptrons p.13/61
28 MLP Training idea: minimize an error term E( w; D) = 1 2 p i=1 y( x (i) ; w) d (i) 2 with y( x; w): network output for input pattern x and weight vector w, u 2 squared length of vector u: u 2 = dim( u) j=1 (u j ) 2 Machine Learning: Multi Layer Perceptrons p.14/61
29 MLP Training idea: minimize an error term E( w; D) = 1 2 p i=1 y( x (i) ; w) d (i) 2 with y( x; w): network output for input pattern x and weight vector w, u 2 squared length of vector u: u 2 = dim( u) j=1 (u j ) 2 learning means: calculating weights for which the error becomes minimal minimize w E( w; D) Machine Learning: Multi Layer Perceptrons p.14/61
30 MLP Training idea: minimize an error term E( w; D) = 1 2 p i=1 y( x (i) ; w) d (i) 2 with y( x; w): network output for input pattern x and weight vector w, u 2 squared length of vector u: u 2 = dim( u) j=1 (u j ) 2 learning means: calculating weights for which the error becomes minimal minimize w E( w; D) interpret E just as a mathematical function depending on w and forget about its semantics, then we are faced with a problem of mathematical optimization Machine Learning: Multi Layer Perceptrons p.14/61
31 discusses mathematical problems of the form: Optimization theory minimize u f( u) u can be any vector of suitable size. But which one solves this task and how can we calculate it? Machine Learning: Multi Layer Perceptrons p.15/61
32 discusses mathematical problems of the form: Optimization theory minimize u f( u) u can be any vector of suitable size. But which one solves this task and how can we calculate it? some simplifications: here we consider only functions f which are continuous and differentiable y y y x x x non continuous function continuous, non differentiable differentiable function (disrupted) function (folded) (smooth) Machine Learning: Multi Layer Perceptrons p.15/61
33 Optimization theory A global minimum u is a point so that: f( u ) f( u) y for all u. A local minimum u + is a point so that exist r > 0 with f( u + ) f( u) for all points u with u u + < r global minima local x Machine Learning: Multi Layer Perceptrons p.16/61
34 analytical way to find a minimum: For a local minimum u +, the gradient of f becomes zero: Optimization theory f u i ( u + ) = 0 for all i Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression) Machine Learning: Multi Layer Perceptrons p.17/61
35 analytical way to find a minimum: For a local minimum u +, the gradient of f becomes zero: Optimization theory f u i ( u + ) = 0 for all i Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression) but: there are also other points for which f u i = 0, and resolving these equations is often not possible Machine Learning: Multi Layer Perceptrons p.17/61
36 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? u Machine Learning: Multi Layer Perceptrons p.18/61
37 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? slope is negative (descending), go right! u Machine Learning: Multi Layer Perceptrons p.18/61
38 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? u Machine Learning: Multi Layer Perceptrons p.18/61
39 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? slope is positive (ascending), go left! u Machine Learning: Multi Layer Perceptrons p.18/61
40 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? Which is the best stepwidth? u Machine Learning: Multi Layer Perceptrons p.18/61
41 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? Which is the best stepwidth? slope is small, small step! u Machine Learning: Multi Layer Perceptrons p.18/61
42 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? Which is the best stepwidth? u Machine Learning: Multi Layer Perceptrons p.18/61
43 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? Which is the best stepwidth? slope is large, large step! u Machine Learning: Multi Layer Perceptrons p.18/61
44 Optimization theory numerical way to find a minimum, searching: assume we are starting at a point u. Which is the best direction to search for a point v with f( v) < f( u)? Which is the best stepwidth? general principle: v i u i ǫ f u i ǫ > 0 is called learning rate u Machine Learning: Multi Layer Perceptrons p.18/61
45 Gradient descent approach: Require: mathematical function f, learning rate ǫ > 0 Ensure: returned vector is close to a local minimum of f 1: choose an initial point u 2: while gradf( u) not close to 0 do 3: u u ǫ gradf( u) 4: end while 5: return u open questions: how to choose initial u how to choose ǫ does this algorithm really converge? Gradient descent Machine Learning: Multi Layer Perceptrons p.19/61
46 Gradient descent choice of ǫ Machine Learning: Multi Layer Perceptrons p.20/61
47 Gradient descent choice of ǫ 1. case small ǫ: convergence Machine Learning: Multi Layer Perceptrons p.20/61
48 Gradient descent choice of ǫ 2. case very small ǫ: convergence, but it may take very long Machine Learning: Multi Layer Perceptrons p.20/61
49 Gradient descent choice of ǫ 3. case medium size ǫ: convergence Machine Learning: Multi Layer Perceptrons p.20/61
50 Gradient descent choice of ǫ 4. case large ǫ: divergence Machine Learning: Multi Layer Perceptrons p.20/61
51 Gradient descent choice of ǫ is crucial. Only small ǫ guarantee convergence. for small ǫ, learning may take very long depends on the scaling of f : an optimal learning rate for f may lead to divergence for 2 f Machine Learning: Multi Layer Perceptrons p.20/61
52 Gradient descent some more problems with gradient descent: flat spots and steep valleys: need larger ǫ in u to jump over the uninteresting flat area but need smaller ǫ in v to meet the minimum u v Machine Learning: Multi Layer Perceptrons p.21/61
53 Gradient descent some more problems with gradient descent: flat spots and steep valleys: need larger ǫ in u to jump over the uninteresting flat area but need smaller ǫ in v to meet the minimum u v zig-zagging: in higher dimensions: ǫ is not appropriate for all dimensions Machine Learning: Multi Layer Perceptrons p.21/61
54 Gradient descent conclusion: pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ǫ is annoying. Approaching the minimum is time consuming. Machine Learning: Multi Layer Perceptrons p.22/61
55 Gradient descent conclusion: pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ǫ is annoying. Approaching the minimum is time consuming. heuristics to overcome problems of gradient descent: gradient descent with momentum individual lerning rates for each dimension adaptive learning rates decoupling steplength from partial derivates Machine Learning: Multi Layer Perceptrons p.22/61
56 Gradient descent gradient descent with momentum idea: make updates smoother by carrying forward the latest update. 1: choose an initial point u 2: set 0 (stepwidth) 3: while gradf( u) not close to 0 do 4: ǫ gradf( u)+µ 5: u u + 6: end while 7: return u µ 0,µ < 1 is an additional parameter that has to be adjusted by hand. For µ = 0 we get vanilla gradient descent. Machine Learning: Multi Layer Perceptrons p.23/61
57 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging Machine Learning: Multi Layer Perceptrons p.24/61
58 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.24/61
59 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging gradient descent with momentum Machine Learning: Multi Layer Perceptrons p.24/61
60 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging gradient descent with strong momentum Machine Learning: Multi Layer Perceptrons p.24/61
61 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.24/61
62 Gradient descent advantages of momentum: smoothes zig-zagging accelerates learning at flat spots slows down when signs of partial derivatives change disadavantage: additional parameter µ may cause additional zig-zagging gradient descent with momentum Machine Learning: Multi Layer Perceptrons p.24/61
63 Gradient descent adaptive learning rate idea: make learning rate individual for each dimension and adaptive if signs of partial derivative change, reduce learning rate if signs of partial derivative don t change, increase learning rate algorithm: Super-SAB (Tollenare 1990) Machine Learning: Multi Layer Perceptrons p.25/61
64 Gradient descent 1: choose an initial point u 2: set initial learning rate ǫ 3: set former gradient γ 0 4: while gradf( u) not close to 0 do 5: calculate gradient g grad f( u) 6: for all dimensions i do 7: ǫ i η + ǫ i if g i γ i > 0 η ǫ i if g i γ i < 0 ǫ i otherwise η + 1,η 1 are additional parameters that have to be adjusted by hand. For η + = η = 1 we get vanilla gradient descent. 8: u i u i ǫ i g i 9: end for 10: γ g 11: end while 12: return u Machine Learning: Multi Layer Perceptrons p.26/61
65 Gradient descent advantages of Super-SAB and related approaches: decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change disadavantages: steplength still depends on partial derivatives Machine Learning: Multi Layer Perceptrons p.27/61
66 Gradient descent advantages of Super-SAB and related approaches: decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change disadavantages: steplength still depends on partial derivatives vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.27/61
67 Gradient descent advantages of Super-SAB and related approaches: decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change disadavantages: steplength still depends on partial derivatives SuperSAB Machine Learning: Multi Layer Perceptrons p.27/61
68 Gradient descent advantages of Super-SAB and related approaches: decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change disadavantages: steplength still depends on partial derivatives vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.27/61
69 Gradient descent advantages of Super-SAB and related approaches: decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change disadavantages: steplength still depends on partial derivatives SuperSAB Machine Learning: Multi Layer Perceptrons p.27/61
70 Gradient descent make steplength independent of partial derivatives idea: use explicit steplength parameters, one for each dimension if signs of partial derivative change, reduce steplength if signs of partial derivative don t change, increase steplegth algorithm: RProp (Riedmiller&Braun, 1993) Machine Learning: Multi Layer Perceptrons p.28/61
71 Gradient descent 1: choose an initial point u 2: set initial steplength 3: set former gradient γ 0 4: while gradf( u) not close to 0 do 5: calculate gradient g grad f( u) 6: for all dimensions i do η + i if g i γ i > 0 7: i η i if g i γ i < 0 i otherwise u i + i if g i < 0 8: u i u i i if g i > 0 9: end for 10: γ g 11: end while 12: return u u i otherwise η + 1,η 1 are additional parameters that have to be adjusted by hand. For MLPs, good heuristics exist for parameter settings: η + = 1.2, η = 0.5, initial i = 0.1 Machine Learning: Multi Layer Perceptrons p.29/61
72 Gradient descent advantages of Rprop decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change independent of gradient length Machine Learning: Multi Layer Perceptrons p.30/61
73 Gradient descent advantages of Rprop decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change independent of gradient length vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.30/61
74 Gradient descent advantages of Rprop decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change independent of gradient length Rprop Machine Learning: Multi Layer Perceptrons p.30/61
75 Gradient descent advantages of Rprop decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change independent of gradient length vanilla gradient descent Machine Learning: Multi Layer Perceptrons p.30/61
76 Gradient descent advantages of Rprop decouples learning rates of different dimensions accelerates learning at flat spots slows down when signs of partial derivatives change independent of gradient length Rprop Machine Learning: Multi Layer Perceptrons p.30/61
77 Beyond gradient descent Newton Quickprop line search Machine Learning: Multi Layer Perceptrons p.31/61
78 Beyond gradient descent Newton s method: approximate f by a second-order Taylor polynomial: f( u + ) f( u) + gradf( u) T H( u) with H( u) the Hessian of f at u, the matrix of second order partial derivatives. Machine Learning: Multi Layer Perceptrons p.32/61
79 Beyond gradient descent Newton s method: approximate f by a second-order Taylor polynomial: f( u + ) f( u) + gradf( u) T H( u) with H( u) the Hessian of f at u, the matrix of second order partial derivatives. Zeroing the gradient of approximation with respect to : Hence: 0 (gradf( u)) T + H( u) (H( u)) 1 (gradf( u)) T Machine Learning: Multi Layer Perceptrons p.32/61
80 Beyond gradient descent Newton s method: approximate f by a second-order Taylor polynomial: f( u + ) f( u) + gradf( u) T H( u) with H( u) the Hessian of f at u, the matrix of second order partial derivatives. Zeroing the gradient of approximation with respect to : Hence: 0 (gradf( u)) T + H( u) (H( u)) 1 (gradf( u)) T advantages: no learning rate, no parameters, quick convergence disadvantages: calculation of H and H 1 very time consuming in high dimensional spaces Machine Learning: Multi Layer Perceptrons p.32/61
81 Beyond gradient descent Quickprop (Fahlmann, 1988) like Newton s method, but replaces H by a diagonal matrix containing only the diagonal entries of H. hence, calculating the inverse is simplified replaces second order derivatives by approximations (difference ratios) Machine Learning: Multi Layer Perceptrons p.33/61
82 Beyond gradient descent Quickprop (Fahlmann, 1988) like Newton s method, but replaces H by a diagonal matrix containing only the diagonal entries of H. hence, calculating the inverse is simplified replaces second order derivatives by approximations (difference ratios) update rule: w t i := where g t i = grad f at time t. gt i g t i gt 1 i (w t i w t 1 i ) advantages: no learning rate, no parameters, quick convergence in many cases disadvantages: sometimes unstable Machine Learning: Multi Layer Perceptrons p.33/61
83 Beyond gradient descent line search algorithms: two nested loops: outer loop: determine serach direction from gradient inner loop: determine minimizing point on the line defined by current search position and search direction inner loop can be realized by any minimization algorithm for one-dimensional tasks grad search line problem: time consuming for high-dimensional spaces advantage: inner loop algorithm may be more complex algorithm, e.g. Newton Machine Learning: Multi Layer Perceptrons p.34/61
84 Beyond gradient descent line search algorithms: two nested loops: outer loop: determine serach direction from gradient inner loop: determine minimizing point on the line defined by current search position and search direction grad search line problem: time consuming for high-dimensional spaces inner loop can be realized by any minimization algorithm for one-dimensional tasks advantage: inner loop algorithm may be more complex algorithm, e.g. Newton Machine Learning: Multi Layer Perceptrons p.34/61
85 Beyond gradient descent line search algorithms: two nested loops: outer loop: determine serach direction from gradient inner loop: determine minimizing point on the line defined by current search position and search direction search line grad problem: time consuming for high-dimensional spaces inner loop can be realized by any minimization algorithm for one-dimensional tasks advantage: inner loop algorithm may be more complex algorithm, e.g. Newton Machine Learning: Multi Layer Perceptrons p.34/61
86 several algorithms to solve problems of the form: Summary: optimization theory minimize u f( u) gradient descent gives the main idea Rprop plays major role in context of MLPs dozens of variants and alternatives exist Machine Learning: Multi Layer Perceptrons p.35/61
87 Back to MLP Training training an MLP means solving: minimize w E( w; D) for given network topology and training data D E( w; D) = 1 2 p i=1 y( x (i) ; w) d (i) 2 Machine Learning: Multi Layer Perceptrons p.36/61
88 Back to MLP Training training an MLP means solving: minimize w E( w; D) for given network topology and training data D E( w; D) = 1 2 p i=1 y( x (i) ; w) d (i) 2 optimization theory offers algorithms to solve task of this kind open question: how can we calculate derivatives of E? Machine Learning: Multi Layer Perceptrons p.36/61
89 Calculating partial derivatives the calculation of the network output of a MLP is done step-by-step: neuron i uses the output of neurons j Pred(i) as arguments, calculates some output which serves as argument for all neurons j Succ(i). apply the chain rule! Machine Learning: Multi Layer Perceptrons p.37/61
90 Calculating partial derivatives the error term E( w; D) = p i=1 (1 2 y( x(i) ; w) d (i) 2) introducing e( w; x, d) = 1 2 y( x; w) d 2 we can write: Machine Learning: Multi Layer Perceptrons p.38/61
91 Calculating partial derivatives the error term E( w; D) = p i=1 (1 2 y( x(i) ; w) d (i) 2) introducing e( w; x, d) = 1 y( x; w) d 2 we can write: 2 p E( w; D) = e( w; x (i), d (i) ) applying the rule for sums: i=1 Machine Learning: Multi Layer Perceptrons p.38/61
92 Calculating partial derivatives the error term E( w; D) = p i=1 (1 2 y( x(i) ; w) d (i) 2) introducing e( w; x, d) = 1 y( x; w) d 2 we can write: 2 p E( w; D) = e( w; x (i), d (i) ) applying the rule for sums: E( w; D) w kl = i=1 p i=1 e( w; x (i), d (i) ) w kl we can calculate the derivatives for each training pattern indiviudally and sum up Machine Learning: Multi Layer Perceptrons p.38/61
93 individual error terms for a pattern x, d simplifications in notation: Calculating partial derivatives omitting dependencies from x and d y( w) = (y 1,...,y m ) T network output (when applying input pattern x) Machine Learning: Multi Layer Perceptrons p.39/61
94 Calculating partial derivatives individual error term: e( w) = 1 2 y( x; w) d 2 = 1 2 m (y j d j ) 2 j=1 by direct calculation: e y j = (y j d j ) y j is the activation of a certain output neuron, say a i Hence: e = e = (a i d j ) a i y j Machine Learning: Multi Layer Perceptrons p.40/61
95 calculations within a neuron i assume we already know e a i Calculating partial derivatives observation: e depends indirectly from a i and a i depends on net i apply chain rule e = e net i a i a i net i what is a i net i? Machine Learning: Multi Layer Perceptrons p.41/61
96 Calculating partial derivatives a i net i a i is calculated like: a i = f act (net i ) Hence: a i net i = f act(net i ) net i (f act activation function) Machine Learning: Multi Layer Perceptrons p.42/61
97 Calculating partial derivatives a i net i a i is calculated like: a i = f act (net i ) Hence: a i net i = f act(net i ) net i (f act activation function) linear activation: f act (net i ) = net i f act(net i ) net i = 1 Machine Learning: Multi Layer Perceptrons p.42/61
98 Calculating partial derivatives a i net i a i is calculated like: a i = f act (net i ) Hence: a i net i = f act(net i ) net i (f act activation function) linear activation: f act (net i ) = net i f act(net i ) net i = 1 1 logistic activation: f act (net i ) = 1+e net i f act(net i ) net i = e net i = f (1+e net i) 2 log (net i ) (1 f log (net i )) Machine Learning: Multi Layer Perceptrons p.42/61
99 Calculating partial derivatives a i net i a i is calculated like: a i = f act (net i ) Hence: a i net i = f act(net i ) net i (f act activation function) linear activation: f act (net i ) = net i f act(net i ) net i = 1 1 logistic activation: f act (net i ) = 1+e net i f act(net i ) net i = e net i = f (1+e net i) 2 log (net i ) (1 f log (net i )) tanh activation: f act (net i ) = tanh(net i ) f act(net i ) net i = 1 (tanh(net i )) 2 Machine Learning: Multi Layer Perceptrons p.42/61
100 Calculating partial derivatives from neuron to neuron assume we already know e for all net j j Succ(i) observation: e depends indirectly from net j of successor neurons and net j depends on a i apply chain rule Machine Learning: Multi Layer Perceptrons p.43/61
101 Calculating partial derivatives from neuron to neuron assume we already know e for all net j j Succ(i) observation: e depends indirectly from net j of successor neurons and net j depends on a i apply chain rule e a i = j Succ(i) ( e net j net j a i ) Machine Learning: Multi Layer Perceptrons p.43/61
102 Calculating partial derivatives from neuron to neuron assume we already know e for all net j j Succ(i) observation: e depends indirectly from net j of successor neurons and net j depends on a i apply chain rule e a i = j Succ(i) ( e net j net j a i ) and: net j = w ji a i +... hence: net j a i = w ji Machine Learning: Multi Layer Perceptrons p.43/61
103 Calculating partial derivatives the weights assume we already know e for neuron net i i and neuron j is predecessor of i observation: e depends indirectly from net i and net i depends on w ij apply chain rule Machine Learning: Multi Layer Perceptrons p.44/61
104 Calculating partial derivatives the weights assume we already know e for neuron net i i and neuron j is predecessor of i observation: e depends indirectly from net i and net i depends on w ij apply chain rule e w ij = e net i net i w ij Machine Learning: Multi Layer Perceptrons p.44/61
105 Calculating partial derivatives the weights assume we already know e for neuron net i i and neuron j is predecessor of i observation: e depends indirectly from net i and net i depends on w ij apply chain rule e w ij = e net i net i w ij and: hence: net i = w ij a j +... net i w ij = a j Machine Learning: Multi Layer Perceptrons p.44/61
106 Calculating partial derivatives bias weights assume we already know e for neuron net i i observation: e depends indirectly from net i and net i depends on w i0 apply chain rule Machine Learning: Multi Layer Perceptrons p.45/61
107 Calculating partial derivatives bias weights assume we already know e for neuron net i i observation: e depends indirectly from net i and net i depends on w i0 apply chain rule e w i0 = e net i net i w i0 Machine Learning: Multi Layer Perceptrons p.45/61
108 Calculating partial derivatives bias weights assume we already know e for neuron net i i observation: e depends indirectly from net i and net i depends on w i0 apply chain rule and: e w i0 = e net i net i w i0 net i = w i hence: net i w i0 = 1 Machine Learning: Multi Layer Perceptrons p.45/61
109 Calculating partial derivatives a simple example: 1 w 2,1 w 3,2 e neuron 1 neuron 2 neuron 3 Machine Learning: Multi Layer Perceptrons p.46/61
110 Calculating partial derivatives a simple example: 1 w 2,1 w 3,2 e neuron 1 neuron 2 neuron 3 e a 3 = a 3 d 1 e net 3 = e a a 3 3 net 3 = e a 3 1 e a 2 = j Succ(2) ( e net j net j e net 2 = e a 2 e w 3,2 = e net 3 net 3 w 3,2 = e e w 2,1 = e a 2 ) = e net 3 w 3,2 a 2 net 2 = e a 2 a 2 (1 a 2 ) net 2 net 2 w 2,1 = e net 3 a 2 net 2 a 1 e w 3,0 = e net 3 net 3 w 3,0 = e net 3 1 e w 2,0 = e net 2 net 2 w 2,0 = e net 2 1 Machine Learning: Multi Layer Perceptrons p.46/61
111 Calculating partial derivatives calculating the partial derivatives: starting at the output neurons neuron by neuron, go from output to input finally calculate the partial derivatives with respect to the weights Backpropagation Machine Learning: Multi Layer Perceptrons p.47/61
112 Calculating partial derivatives illustration: 1 2 Machine Learning: Multi Layer Perceptrons p.48/61
113 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T Machine Learning: Multi Layer Perceptrons p.48/61
114 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: Machine Learning: Multi Layer Perceptrons p.48/61
115 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step Machine Learning: Multi Layer Perceptrons p.48/61
116 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by Machine Learning: Multi Layer Perceptrons p.48/61
117 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step Machine Learning: Multi Layer Perceptrons p.48/61
118 Calculating partial derivatives illustration: 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step calculate error, e a i, and e net i for output neurons Machine Learning: Multi Layer Perceptrons p.48/61
119 illustration: Calculating partial derivatives 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step e calculate error,, and e for output neurons a i net i propagate backward error: step Machine Learning: Multi Layer Perceptrons p.48/61
120 illustration: Calculating partial derivatives 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step e calculate error,, and e for output neurons a i net i propagate backward error: step by Machine Learning: Multi Layer Perceptrons p.48/61
121 illustration: Calculating partial derivatives 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step e calculate error,, and e for output neurons a i net i propagate backward error: step by step Machine Learning: Multi Layer Perceptrons p.48/61
122 illustration: Calculating partial derivatives 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step e calculate error,, and e for output neurons a i net i propagate backward error: step by step calculate e w ji Machine Learning: Multi Layer Perceptrons p.48/61
123 illustration: Calculating partial derivatives 1 2 apply pattern x = (x 1,x 2 ) T propagate forward the activations: step by step e calculate error,, and e for output neurons a i net i propagate backward error: step by step calculate e w ji repeat for all patterns and sum up Machine Learning: Multi Layer Perceptrons p.48/61
124 Back to MLP Training bringing together building blocks of MLP learning: we can calculate E w ij we have discussed methods to minimize a differentiable mathematical function Machine Learning: Multi Layer Perceptrons p.49/61
125 Back to MLP Training bringing together building blocks of MLP learning: we can calculate E w ij we have discussed methods to minimize a differentiable mathematical function combining them yields a learning algorithm for MLPs: (standard) backpropagation = gradient descent combined with calculating E w ij for MLPs backpropagation with momentum = gradient descent with moment combined with calculating E w ij for MLPs Quickprop Rprop... Machine Learning: Multi Layer Perceptrons p.49/61
126 generic MLP learning algorithm: 1: choose an initial weight vector w 2: intialize minimization approach 3: while error did not converge do 4: for all ( x, d) D do Back to MLP Training 5: apply x to network and calculate the network output 6: calculate e( x) for all weights w ij 7: end for 8: calculate E(D) for all weights suming over all training patterns w ij 9: perform one update step of the minimization approach 10: end while learning by epoch: all training patterns are considered for one update step of function minimization Machine Learning: Multi Layer Perceptrons p.50/61
127 generic MLP learning algorithm: 1: choose an initial weight vector w 2: intialize minimization approach 3: while error did not converge do 4: for all ( x, d) D do Back to MLP Training 5: apply x to network and calculate the network output 6: calculate e( x) for all weights w ij 7: perform one update step of the minimization approach 8: end for 9: end while learning by pattern: only one training patterns is considered for one update step of function minimization (only works with vanilla gradient descent!) Machine Learning: Multi Layer Perceptrons p.51/61
128 Lernverhalten und Parameterwahl - 3 Bit Parity average no. epochs Bit Paritiy - Sensitivity BP QP Rprop SSAB learning parameter 1 Machine Learning: Multi Layer Perceptrons p.52/61
129 Lernverhalten und Parameterwahl - 6 Bit Parity average no. epochs 6 Bit Paritiy - Sensitivity BP SSAB 100 QP 50 Rprop learning parameter 0.1 Machine Learning: Multi Layer Perceptrons p.53/61
130 Lernverhalten und Parameterwahl - 10 Encoder average no. epochs Encoder - Sensitivity SSAB BP Rprop 0 QP learning parameter 10 Machine Learning: Multi Layer Perceptrons p.54/61
131 Lernverhalten und Parameterwahl - 12 Encoder Encoder - Sensitivity average no. epochs Rprop QP SSAB learning parameter 1 Machine Learning: Multi Layer Perceptrons p.55/61
132 Lernverhalten und Parameterwahl - two sprials Two Spirals - Sensitivity average no. epochs QP BP SSAB Rprop 0 1e learning parameter 0.1 Machine Learning: Multi Layer Perceptrons p.56/61
133 Real-world examples: sales rate prediction Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day it is sold in sales outlets in Germany, differing in a lot of facets Machine Learning: Multi Layer Perceptrons p.57/61
134 Real-world examples: sales rate prediction Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day it is sold in sales outlets in Germany, differing in a lot of facets problem: how many copies are sold in which sales outlet? Machine Learning: Multi Layer Perceptrons p.57/61
135 Real-world examples: sales rate prediction Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day it is sold in sales outlets in Germany, differing in a lot of facets problem: how many copies are sold in which sales outlet? neural approach: train a neural network for each sales outlet, neural network predicts next week s sales rates system in use since mid of 1990s Machine Learning: Multi Layer Perceptrons p.57/61
136 Examples: Alvinn (Dean, Pommerleau, 1992) autonomous vehicle driven by a multi-layer perceptron input: raw camera image output: steering wheel angle generation of training data by a human driver drives up to 90 km/h 15 frames per second Machine Learning: Multi Layer Perceptrons p.58/61
137 Alvinn MLP structure Machine Learning: Multi Layer Perceptrons p.59/61
138 Alvinn Training aspects training data must be diverse training data should be balanced (otherwise e.g. a bias towards steering left might exist) if human driver makes errors, the training data contains errors if human driver makes no errors, no information about how to do corrections is available generation of artificial training data by shifting and rotating images Machine Learning: Multi Layer Perceptrons p.60/61
139 Summary MLPs are broadly applicable ML models continuous features, continuos outputs suited for regression and classification learning is based on a general principle: gradient descent on an error function powerful learning algorithms exist likely to overfit regularisation methods Machine Learning: Multi Layer Perceptrons p.61/61
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Lecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
Chapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
Recurrent Neural Networks
Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time
Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
Machine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons
University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S
Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
Feedforward Neural Networks and Backpropagation
Feedforward Neural Networks and Backpropagation Feedforward neural networks Architectural issues, computational capabilities Sigmoidal and radial basis functions Gradient-based learning and Backprogation
Big Data Analytics CSCI 4030
High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC
777 TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC M.R. Walker. S. Haghighi. A. Afghan. and L.A. Akers Center for Solid State Electronics Research Arizona State University Tempe. AZ 85287-6206 [email protected]
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis
Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
CSCI567 Machine Learning (Fall 2014)
CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /
Neural Computation - Assignment
Neural Computation - Assignment Analysing a Neural Network trained by Backpropagation AA SSt t aa t i iss i t i icc aa l l AA nn aa l lyy l ss i iss i oo f vv aa r i ioo i uu ss l lee l aa r nn i inn gg
Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network.
Global Journal of Computer Science and Technology Volume 11 Issue 3 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...
IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic
Application of Neural Network in User Authentication for Smart Home System
Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart
Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur
Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:
Reinforcement Learning
Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Martin Lauer AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg [email protected]
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING
AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING Abhishek Agrawal*, Vikas Kumar** 1,Ashish Pandey** 2,Imran Khan** 3 *(M. Tech Scholar, Department of Computer Science, Bhagwant University,
Machine Learning and Data Mining -
Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques ([email protected]) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron
Reinforcement Learning
Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Joschka Bödecker AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg [email protected]
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Horse Racing Prediction Using Artificial Neural Networks
Horse Racing Prediction Using Artificial Neural Networks ELNAZ DAVOODI, ALI REZA KHANTEYMOORI Mathematics and Computer science Department Institute for Advanced Studies in Basic Sciences (IASBS) Gavazang,
Lecture 6: Logistic Regression
Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,
(Quasi-)Newton methods
(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting
A Multi-level Artificial Neural Network for Residential and Commercial Energy Demand Forecast: Iran Case Study
211 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (211) (211) IACSIT Press, Singapore A Multi-level Artificial Neural Network for Residential and Commercial Energy
Neural Network Structures
3 Neural Network Structures This chapter describes various types of neural network structures that are useful for RF and microwave applications. The most commonly used neural network configurations, known
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96. Özer CIFTCIOGLU Istanbul Technical University, ITU. and
NEA/NSC-DOC (96)29 AUGUST 1996 SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96 Özer CIFTCIOGLU Istanbul Technical University, ITU and Erdinç TÜRKCAN Netherlands Energy Research
Programming Exercise 3: Multi-class Classification and Neural Networks
Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks
Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression
Natural Language Processing Lecture 13 10/6/2015 Jim Martin Today Multinomial Logistic Regression Aka log-linear models or maximum entropy (maxent) Components of the model Learning the parameters 10/1/15
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
Temporal Difference Learning in the Tetris Game
Temporal Difference Learning in the Tetris Game Hans Pirnay, Slava Arabagi February 6, 2009 1 Introduction Learning to play the game Tetris has been a common challenge on a few past machine learning competitions.
Lecture 5: Variants of the LMS algorithm
1 Standard LMS Algorithm FIR filters: Lecture 5: Variants of the LMS algorithm y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) +...+ w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), Error between filter output
Follow links Class Use and other Permissions. For more information, send email to: [email protected]
COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Computational Economics is published by Princeton University Press and copyrighted, 2006, by Princeton University Press. All rights
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
UDC: 004.8 Original scientific paper SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS Tonimir Kišasondi, Alen Lovren i University of Zagreb, Faculty of Organization and Informatics,
Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation
Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor
Data Mining Techniques Chapter 7: Artificial Neural Networks
Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................
Self Organizing Maps: Fundamentals
Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen
The Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
Efficient online learning of a non-negative sparse autoencoder
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil
Design call center management system of e-commerce based on BP neural network and multifractal
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):951-956 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Design call center management system of e-commerce
4.1 Learning algorithms for neural networks
4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to
Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks
Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.
Big Data Analytics Using Neural networks
San José State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research 4-1-2014 Big Data Analytics Using Neural networks Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
Least-Squares Intersection of Lines
Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
A Time Series ANN Approach for Weather Forecasting
A Time Series ANN Approach for Weather Forecasting Neeraj Kumar 1, Govind Kumar Jha 2 1 Associate Professor and Head Deptt. Of Computer Science,Nalanda College Of Engineering Chandi(Bihar) 2 Assistant
These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop
Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Neural Networks in Quantitative Finance
Neural Networks in Quantitative Finance Master Thesis submitted to Prof. Dr. Wolfgang Härdle Institute for Statistics and Econometrics CASE - Center for Applied Statistics and Economics Humboldt-Universität
A Simple Introduction to Support Vector Machines
A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
arxiv:hep-th/0507236v1 25 Jul 2005
Non perturbative series for the calculation of one loop integrals at finite temperature Paolo Amore arxiv:hep-th/050736v 5 Jul 005 Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo
Package neuralnet. February 20, 2015
Type Package Title Training of neural networks Version 1.32 Date 2012-09-19 Package neuralnet February 20, 2015 Author Stefan Fritsch, Frauke Guenther , following earlier work
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
ELLIOTT WAVES RECOGNITION VIA NEURAL NETWORKS
ELLIOTT WAVES RECOGNITION VIA NEURAL NETWORKS Martin Kotyrba Eva Volna David Brazina Robert Jarusek Department of Informatics and Computers University of Ostrava Z70103, Ostrava, Czech Republic [email protected]
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
NEURAL NETWORKS A Comprehensive Foundation
NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Nonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
Lecture 2: The SVM classifier
Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function
Predictive Dynamix Inc
Predictive Modeling Technology Predictive modeling is concerned with analyzing patterns and trends in historical and operational data in order to transform data into actionable decisions. This is accomplished
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
Models of Cortical Maps II
CN510: Principles and Methods of Cognitive and Neural Modeling Models of Cortical Maps II Lecture 19 Instructor: Anatoli Gorchetchnikov dy dt The Network of Grossberg (1976) Ay B y f (
Artificial neural networks
Artificial neural networks Now Neurons Neuron models Perceptron learning Multi-layer perceptrons Backpropagation 2 It all starts with a neuron 3 Some facts about human brain ~ 86 billion neurons ~ 10 15
AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.
AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree
A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services
A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services Anuj Sharma Information Systems Area Indian Institute of Management, Indore, India Dr. Prabin Kumar Panigrahi
Linear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
Logistic Regression for Spam Filtering
Logistic Regression for Spam Filtering Nikhila Arkalgud February 14, 28 Abstract The goal of the spam filtering problem is to identify an email as a spam or not spam. One of the classic techniques used
Neural Networks: a replacement for Gaussian Processes?
Neural Networks: a replacement for Gaussian Processes? Matthew Lilley and Marcus Frean Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand [email protected] http://www.mcs.vuw.ac.nz/
Support Vector Machines Explained
March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
