Neural Computation - Assignment

Size: px
Start display at page:

Download "Neural Computation - Assignment"

Transcription

1 Neural Computation - Assignment Analysing a Neural Network trained by Backpropagation AA SSt t aa t i iss i t i icc aa l l AA nn aa l lyy l ss i iss i oo f vv aa r i ioo i uu ss l lee l aa r nn i inn gg t ee cc hh nn i iqq i uu ee ss, nn ee t ww oo r kk t oo pp oo l loo gg i iee ss aa nn dd aa cc t i ivv i aa t i ioo i nn f uu nn cc t i ioo i nn ss, f oo r t hh ee cc l laa l ss ss i if i icc i aa t i ioo nn oo f nn oo nn - l li l i inn ee aa r dd aa t aa bb yy aa nn AA r t i if i icc i iaa l l NN ee uu r aa l l NN ee t ww oo r kk. Author: Course: MEng Computer Science & Software Engineering Student No.: Tutor: Dr. Peter Tino Abssttrracctt This report details various learning techniques, network topologies and activation functions (among other variables), which have been analysed in the classification process of non-linear data by an Artificial Neural Network. The implementation of a Feed-Forward Neural Network trained by the Backpropagation technique is detailed, prior to the testing of this network. Supervised learning is achieved through use of a training dataset, prior to testing on a test dataset. The network has been trained and tested using a number of different strategies outlined. Initially; batch learning and online learning, different numbers of hidden units and different activation functions were trialled. The alteration of learning and momentum rates is documented, prior to the application of a technique for the automated variation of a local learning rate. The results of each strategy have been recorded and analysed under a variety of statistical functions. This has enabled the conclusion of the properties of each strategy and the identification of the most suitable strategies for the classification on particular datasets. This report should prove useful to anyone training an ANN by Backpropagation. It gives an in-depth view of the possible variables, strategies and techniques employed in the development. Keyworrdss Backpropagation, Online Learning, Batch Learning, Logistic Sigmoid, tanh Activation Function, Adaptive Learning Rate, Momentum Rate, Cross Validation

2 Neural Computation - Assignment -- IInfforrmattiion This report partially satisfies the requirements of the module; Introduction to Neural Computation Level M A component of the degree of MEng, in Computer Science/Software Engineering,, The University of Birmingham. Name: Student ID #: This report is a summary of the work conducted on the project assignment for the aforementioned module. It presents the research conducted and the results obtained. Specifically, it covers; Section Title Coverage 1 Introduction Concepts and Properties, Training and Testing Datasets. 2 Network Design Models, Topologies and Variables. Network Implementation. 3 Strategy Testing Hypotheses, Strategy and Variables. 4 Results Presentation of statistically organised results. 5 Recommendations Recommendation for optimal network design. 6 Conclusions Conclusions and future work. References IInttrroduccttiion TABLE 1: ORGANISATION OF THIS ASSIGNMENT The aim of the assignment is to develop a feed-forward neural network trained by backpropagation, testing different learning strategies, variables and network topologies. The results from this development are reported in statistically organised formats. The different features, variables and strategies to be tested are outlined later in this section. Prior to that, brief overviews of the neural network, mathematical models and datasets which it will operate upon are presented. Please Note: Throughout this report, I use the terms Neural Network, Artificial Neural Network, ANN and Network. These are all interchangeable. As are the terms for classification units which are used; Unit, Neuron and Perceptron TT hh ee AA NN NN CC oo nn cc ee pp t An Artificial Neural Network (ANN) is a system (which could be implemented in either hardware or software), which may be used to perform classifications on datasets. The ANN can access a solution space that is unavailable to computational systems based on logical inferences. They have the ability to relate n-inputs to m-output classes. Furthermore, they can operate on classification problems which are non-linear. That is to say, they cannot be separated by a single line when plotted on a graph. Figure 1 graphically shows the mathematical difference between linear and non-linear separability. FIGURE 1: A GRAPHICAL REPRESENTATION OF LINEAR AND NON-LINEAR SEPARABILITY

3 The Artificial Neural Network is based on a mathematical model, which itself is analogous with the biological processes of neural function within the human cortex. Developments and research in this area aim to assist in bringing computational systems closer to the abilities of the human brain. A number of properties of the ANN make it a very attractive prospect when attempting to solve a number of computational problems. These properties are briefly outlined below. Generalisation Given a series of continuously variable input values, ANNs are able to place each case into a particular output class. If the input variables are represented by n, the output classes by m, then n > m where n and m are members of the set of real numbers [1]. Adaption ANNs have the ability to adapt to their training data sets. Their process development relies on supervised learning; initially training the network on a training data set, τ, prior to execution on an operational or test data set. The ability to adapt to a particular data set has a number of advantages, including the ability to generalise, thus accessing a solution space unavailable to systems based on logical inferences. Graceful Degradation This process occurs alongside generalisation. As ANNs can place a specific case into any one of m output classes given n inputs, if any of the n outputs are incorrect or unavailable, the network can still perform the classification operation. This is not possible for many logical inference based systems. Fundamentally, all of the previously described properties allow the ANN to learn and evolve (in broad terms). Observations and test scenarios (as later illustrated), show that as a network is trained on a data set and then executed on an operational data set, its operation becomes quicker. Continuous alterations to the functions within the network achieve this process, which is known as Hebbian Learning [Hebb, 1949] TT r aa i inn i i inn i gg aa nn dd TT ee ss t i inn i gg DDaa t aa ss ee t The network developed is to be tested on the recommended Ionosphere dataset, which is available from the Johns Hopkins University Ionosphere Database [2]. The dataset contains 351 instances, of which 275 are training examples and 76 are testing examples. Each instance in the dataset is composed of 34 inputs (continuous values) and one discrete output ( or 1). Each continuous input represents an individual antenna reading from the Goose Bay radar system in Labrador. The output pertains to the structure of the atmosphere. That is; Positive Output Ionosphere has a prevalent structure. Negative Output Ionosphere is lacking in structure. The 275 training inputs should be a large enough sample to train the network for execution on the testing data; those unseen examples without outputs. The dataset has a high-dimensional input space. As such, a neural network for nonlinear classification is a suitable solution to the problem. The network should be able to increment through the space of all inputs, adjusting variables as it does, to minimise error on the classification of later unseen inputs. The dataset does not contain any missing inputs, which will ensure that no pre-processing techniques are required. 2 Nettworrk Dessiign;; Modellss,, Topollogiiess and Varriiablless MM aa t hh ee mm aa t i icc i aa l l MM oo dd ee l lss l, aa nn aa l loo gg oo uu ss ww i it hh BB i ioo l loo gg i icc i aa l l PPr r oo cc ee ss ss ee ss An ANN can be modelled in software or electronic circuitry. The majority of contemporary research uses software to model the network. However, previous attempts have been made to use electronics (specifically printed circuit boards), to create a neural-based control system. The ANN is composed of a series of classification units, each taking a series of numerical inputs, applying a function and achieving a single output variable. The activation is based upon whether the summated inputs are greater than a pre-set threshold value, T. Activation functions can be bi-polar ( or 1), tri-polar (-1,, 1) or Continuous (using the Logistic Sigmoid Function)

4 Each classification unit (generally, a Perceptron [1]) is only capable of linear separation. However, non-linearly separable problems may be solved by combining multiple units into a neural network. It is this type of problem solution that will be developed here. Activation values are fed to connecting units, the overall goal being to classify based on a series of inputs, whilst reducing the classification error. The neural network implementation may be broken down into a unit model (the Perceptron (classification unit)), and the network model, which is a network topology, with a unit model at each node. The fully interconnected multi-layer network is similar to that in the human cortex, though the latter will not feature full interconnection generally UU nn i it MM oo dd ee l l The unit model used in this study is the Perceptron, trained under the Perceptron Learning Algorithm. This is equivalent to a single neuron. Figure 2 shows the Perceptron and its similarities with a single neuron. Input vectors take inputs from the dataset or previous units in the network model. These inputs, (x 1..x n ), are vectors which are weighted with random numbers (w 1..w n ). The summation of; (x 1.w 1 ),(x 2.w 2 ),..,(x n.w n ), gives a value, which is compared to the activation threshold. Thus, a value is passed forward, either as a classification value or to another unit for further processing. FIGURE 2: ANALOGY BETWEEN BIOLOGICAL AND ARTIFICIAL NEURAL MODELS The Perceptron learning algorithm is defined by the function; y = g ( Σ W i X i T) (Eq.1) Where y is the activation result, g is the function of the Perceptron learning algorithm, W is the weight vector, X is the input vector, α is the learning rate and T is the threshold value NN ee t ww oo r kk MM oo dd ee l l Typically, one unit model is placed at each node of the network and interconnections run between units. The network model is operated by a training algorithm, which itself has a number of associated variables. The network used in this development employs the backpropagation technique for training. This network is a feed forward multi-layer network. It should contain; 1 Input Layer of Units, At least 1 Hidden Layer of Units, 1 Output Layer of Units (generally to one common output value). It is important to note that weights are assigned to the interconnections between each layer in the network. W ij is generally used to represent the initial interconnection weights, V jk, the next, and so on [3]. The backpropagation technique is employed as a means of reducing error in the network s classification, by initially calculating this error and the propagating it back through the network for reduction. Inputs are propagated to the first layer of hidden units, whose output is calculated and propagated to the next hidden later. This process is repeated until the output layer is reached. Each output layer unit calculates the activation, from the sum of weighted inputs from previous layers. The error on the initial output is computed and propagated back to the first hidden layer, where the weight matrix is updated. This process is repeated until the error is minimised as far as possible. The remainder of this report discusses the additional variables, strategies and tests used in the implementation, and their results

5 NN ee t ww oo r kk II mm pp l lee l mm ee nn t aa t i ioo i nn This section details my own implementation of the Artificial Neural Network required to perform the classification problem outlined (Section 1.2). The network has been implemented in Java, following guidelines given and examples written in C [4, 5]. I have chosen for my own implementation to be written in Java, as it is the programming language which I am most familiar with. The implementation contains a neural network, which is written as one object, Network, in this implementation. Additional objects inherit this object to vary the strategy used for experimentation. The objects and the strategies they implement are: BatchLearn To implement the batch learning technique, minimising the error for all training samples. OnlineLearn To implement the online learning technique, minimising the error for each training example. HiddenUnits Variation of the number of hidden units in the network. MomentumRate Variation of the momentum rate for gradient descent, avoiding local minima on error curve. LearningRate Variation of the learning rate. This is, in turn, inherited by: o AdaptLearningRate Which implements a strategy for automated learning rate adaptation. ActivationFunction To implement the LogisticSigmoid and TanH activation function objects. The implementation also includes separate objects which read in the training and testing datasets, feeding them to the Network class. A main class has been implemented, which instantiates and runs the network and executes the backpropagation algorithm. Main also reports the Mean and Standard Deviation of the error for a specified number of training epochs Sttrrattegy HH yy pp oo t hh ee ss ee ss Given the experimental nature of this implementation, it is feasible to create a series of hypotheses which, in turn, will assist in the derivation of strategies for network training and testing. The hypotheses that I have concluded are: As the number of hidden units in the network increases, the error should decrease. A lower value for the learning rate should decrease error in this scenario. That is due to the relative complexity of the dataset which has relatively few training inputs. This may lead to an uneven error curve which is plagued with local minima. As such, a lower value of the learning rate will aid the traversal of the error curve. As with the learning rate, due to the potentially high number of local minima, a higher momentum rate will assist in the traversal of the error surface. As the number of training epochs increases, the error should minimise and the momentum rate could be lower. Online learning is the process of calculation of weight change for each individual training example. Therefore, it can be assumed that the error will decrease as the training examples increase. The batch learning procedure calculates weight change over the entire test set, or a subset batch. Therefore, as the number of examples increases the error should remain reasonably stable, varying only slightly. The activation functions to be tested are tanh and the Logistic Sigmoid. As the tanh function has a greater range, it should be more sensitive to the learning rate and weight changes should result in greater values. This should lead to a steeper reduction of error. These hypotheses have led to the derivation of testing strategies, which should determine the most suitable variables for this network, operating on this particular dataset. The network performance is analysed in terms of its mean-squared error (MSE). This is the square of the average difference between actual output and desirable output

6 33 22 SSt tr aa t ee gg yy aa nn dd VV aa r iaa i bb lee ss f oo r TT ee ss t inn i gg Table 2 shows the order and series of tests that were performed upon the network. Each test is measured by using a series of variables, which give the required level of information to perform a statistical analysis on the data. The variables were initially sought through interpolation upon the training examples. After this process was performed, the optimal variables were not changed. Test # Test Description Variables Required / Values Used 1 Batch vs. Online Learning R (# of runs) = 5 E (# of epochs) = -> 5 H (# of hidden units) = 8 M (momentum rate) =. L (learning rate) =.5 2 Number of Hidden Units R (# of runs) = 5 E (# of epochs) = 5 H (# of hidden units) = 1 -> 3 M (momentum rate) =. L (learning rate) =.5 3 Activation Functions (tahh vs. Logistic Sigmoid) R (# of runs) = 5 E (# of epochs) = -> 5 H (# of hidden units) = 8 M (momentum rate) =. L (learning rate) =.5 4 Momentum Rate R (# of runs) = 5 E (# of epochs) = -> 5 H (# of hidden units) = 8 M (momentum rate) = -> 1 L (learning rate) =.5 5 Learning Rate R (# of runs) = 5 E (# of epochs) = -> 5 H (# of hidden units) = 8 M (momentum rate) =. L (learning rate) = -> 1 6 Adaptive Learning Rate R (# of runs) = 5 E (# of epochs) = -> 5 H (# of hidden units) = 8 M (momentum rate) =. L (learning rate) =.5 S (learning rate scale) = -> 1 7 N-Fold Cross Validation R (# of runs) = 5 H (# of hidden units) = 8 M (momentum rate) =. L (learning rate) =.5 F (folds of dataset) = > 275 TABLE 2: STRATEGY FOR NETWORK TESTING Section 4 covers the reporting of the test results. This includes graphical representations over time (varied by the number of epochs) and variable alteration against the mean-squared error. The test results are organised in terms of the test description, test results and a summary which describes these results. Tests were conducted in an ad-hoc approach at first, until optimal values for the variables had been found. Not all optimal variables were specified, as some of them would require significantly more computational power for little additional accuracy in the results. The process of tuning would yield the most suitable values for variables in the network

7 4 -- Ressullttss BB aa t cc hh LL ee aa r nn i inn i gg vvss. OO nn l li l i inn ee LL ee aa r nn i inn i gg Initially, the process of batch learning was trialled against another similar learning scheme, online learning. Batch learning is the process of calculating the weight change (δw) with respect to the error, for the entire epoch. The new weights are calculated at the end of the training epoch. As such, batch learning allows better levels of generalisation, though in some scenarios may decrease accuracy. Online learning calculates δw and updates the weights after each training example has been calculated. The latter approach should allow for the close learning of the training set by the network, resulting in a falling error as the number of training examples increases. The results of this test are shown in Figure Online Batch Epochs (E) FIGURE 3: BATCH VS. ONLINE LEARNING WITH VARIABLES [R=5, H=8, M=., L=.5] As anticipated, the decreasing error given through online learning would cross the relatively stable line which represents batch learning. The batch learning experiment varied more than expected, though this could be due to some examples in the dataset which may throw the experiment out slightly. As seen in the graph, the optimal number of epochs for minimal error in online learning is infinite, though for computational optimisation, a value between 8 and 15 would be sufficient VV aa r yy i inn i gg nn uu mm bb ee r oo f HH i idd dd ee nn UU nn i it it ss The variation of the number of hidden units would define the topology of the network. The previous experiment had shown that an online learning technique which used 5 epochs would be preferable for convergence and error reduction. Although this would take longer, the error would be significantly lower than in batch learning. The testing procedures were performed using refinement and interpolation with results carried forward to all network tests. Figure 4 shows a graph of the mean-squared error against the number of hidden units within this network, allowing an optimal topology decision # of Hidden Units (H) FIGURE 4: BATCH VS. ONLINE LEARNING WITH VARIABLES [R=5, E=5, M=., L=.5]

8 As shown in Figure 4, the decision to use 8 hidden units in the network was taken, specifically due to the local minima in this graph. This decision was a compromise between a low error and a simple network. As the number of hidden units increased, it was expected that the error would become lower still, though computations would take much longer, increasing runtime for the network. The lower the number of variables the network had to deal with, the quicker it would converge upon a solution. Due to the limited number of training examples within the dataset, a low number of hidden units would result in error reduction being too low. A number of hidden units that was too high could result in overfitting, where the network would incorrectly classify unseen problems as it was tuned to the testing dataset too much AA cc t i ivvaa t i ioo nn FF uu nn cc t i ioo i nn ss (( t aa nn hh vv ss. LL oo gg i iss i t i icc i SSi i gg mm oo i idd i )) The backpropagation learning technique can use the Logistic Sigmoid activation function or the tanh activation function at each classification unit. In this experiment, each was trailed and the most suitable selected for continuation in the network. The logistic sigmoid activation function is mathematically defined by the following function; Where y is the activation function. (Eq. 2) The tanh function is an alternative for the activation function, and is mathematically defined by the following; Where tanh(x) is the activation function. (Eq. 3) The tanh function has a greater range than the Logistic Sigmoid. In terms of real numbers, this range is equivalent to double that of the Sigmoid, or [-1, +1]. The range of the Sigmoid function is [, 1]. Therefore, the tanh function is far more sensitive to a change in learning rate, which also ensures that weight changes have a greater range. The two functions are compared to one another in the graph in Figure Log. Sig. (L=.5) tanh (L=.1) Epochs (E) FIGURE 5: LOGISTIC SIGMOID VS. TANH FUNCTION [R=5, H=8, M=., L=.5 &.1] As the graph shows, after approximately 2 epochs, the two functions converge and give similar results. As 5 epochs had been selected in this case, it was decided that the Logistic Sigmoid would be a suitable activation function. It is easier to implement and modify the logistic sigmoid function and see how the classification units are operating. In addition, the Sigmoid gives more freedom with the learning rate. As this is larger, it allows for more significant alterations to weights without throwing the classification out VV aa r yy i inn i gg t hh ee MM oo mm ee nn t uu mm RR aa t ee The momentum rate is used to avoid the network getting stuck in local minima. That is, incorrectly converging upon a solution because it is surrounded by a positive and negative gradient, even if this is not the minimum error. The

9 momentum term is useful when an error surface is jagged, as this example was believed to be. Hypothetically, an uneven error surface would be possible with this dataset due to its few training examples. However, as the graph of this experiment shows, this was not the case Momentum (M) =. Momentum (M) =.25 Momentum (M) =.5 Momentum (M) = Epochs (E) FIGURE 6: VARIATION OF MOMENTUM RATE [R=5, H=8, L=.5] In fact, the error curve appeared to be particularly smooth. As this was the case, the momentum rate had very little effect, other than to speed up the time to convergence. As this experiment uses 5 epochs as an optimal value, this time is insignificant. The momentum rates seemed to converge at around 1 epochs and although the error continued to fall, it was decided that excluding the momentum rate (setting it to.) would be the simplest solution VV aa r yy i inn i gg t hh ee LL ee aa r nn i inn i gg RR aa t ee The learning rate is especially important in accurately classifying the testing examples, and dependant on the dataset. If the error surface is smooth, then a low learning rate will ensure that traversal of the curve takes an unnecessary amount of time. However, if the surface is complex, a small learning rate is required. If a high rate is employed to a complex error surface, the network will bounce in and out of local minima, spuriously altering weights and never converging on an optimal solution. Figure 7 shows the testing of 3 separate rates in this experiment;.25,.5 and Learning Rate (L) =.25 Learning Rate (L) =.5 Learning Rate (L) = Epochs (E) FIGURE 7: VARIATION OF LEARNING RATE [R=5, H=8, M =.] The optimal learning rate was selected as.5 as it has the smoothest descent. In this case, the network converged at around 15 epochs, though after this, the error rates continued to vary. It seems from testing that the learning rate would eventually converge, though this may be at over 1 epochs, which would take a long time to run. What is particularly noticeable is the large difference between rates at 2 epochs. The.5 rate was chosen as it seems to be the median value here, finding the middle ground between a lower error and a premature convergence

10 TT r aa i i l l i inn i gg aa nn AA dd aa pp t i ivv i ee LL ee aa r nn i inn i gg RR aa t ee Trials were also performed with an adaptive learning rate. Adaptation of the local learning rate during training will allow a more precise learning rate to be selected, depending upon the error on that particular training example, or epoch (depending on learning technique). The Taylor Expansion would normally be performed to generalise the gradient of the error function to a quadratic term, which could be used to calculate the learning rate. That was viewed as too complex for this experiment. Instead, the adaptive rate would be set much like the momentum rate is, though the learning rate would be varied instead of the weights. The strategy employed is outlined intuitively as: Calculate the difference in current error (MSE E ) between this and the last training epoch (E-1). o If MSE E-1 is greater than MSE E ; calculate scale S and add to learning rate (L), To calculate S, multiply L by (MSE E-1 - MSE E ). o Else, if MSE E is greater than MSE E-1 ; calculate scale, S, and subtract from learning rate (L), Again, to calculate S, multiply L by (MSE E-1 - MSE E ). That is to say, that as the network sees that the error curve is smooth and it is moving quickly down the error slope, the convergence will speed up. Conversely, as the gradient lessens (possibly due to an uneven error surface), then the learning rate will slow down convergence, becoming more accurate and preventing the bouncing problem caused by an uneven error surface. Figure 8 shows the results of this test, varying the scale for learning rate adaptation from to Learning Scale (S) =. Learning Scale (S) = Epochs (E) FIGURE 8: ADAPTIVE LEARNING RATE [R=5, H=8, M =., L=.5] The results show little difference between the two error scales (S). However, this is probably due to the smooth error surface of this dataset. When S is 1., slightly later convergence is shown, signifying that this strategy should work in practice. As with the momentum term on this dataset, few local minima mean that these functions are limited. Larger values of S could be trialled with other datasets to prove that this concept works NN - FF oo l ldd CC r oo ss ss VV aa l li l i idd aa t i ioo i nn The process of cross validation is performed to estimate the error over the dataset. Small datasets, such as this one are subject to the problem of overfitting, as previously mentioned. That is, where a high test error occurs as the network is specifically tuned to classify a small subset of the total data space. Cross validation produces an estimate of the test error as follows. Initially, the training dataset is split into N subsets, called folds. One fold is selected and removed from the dataset. The network is trained on N-1 folds and the error on the removed subset is calculated. This process is repeated for each subset and an average of the error across the entire dataset is calculated. Figure 9 shows this process, as performed for the Ionosphere dataset using the network developed

11 Cross Fold Validation Actual Error Folds (F) FIGURE 9: 1-FOLD TO 275-FOLD CROSS VALIDATION [R=5, H=8, M =., L=.5] When compared with the actual error, the error given by cross-fold validation is greater than that given by the network. This is possibly due to the data being skewed, though this would have to be proven with an accurate plot of all elements in the test set. It shows that the lowest error is given by 1 folds. The rapid descent of this graph is probably due to a lack of transparency in this dataset. However, this does show that to avoid overfitting, at least 1 training examples should be used. As this experiment uses 275, then the assumption can be made that overfitting does not occur Reccommendattiionss Having conducted an exhaustive series of tests throughout this experiment, it is possible to compare the results gained with the initial hypotheses formed (Section 3.1). Initially, it was correct to assume that error would decrease as the number of hidden units increased. However, for computational speed, it was decided that the optimal value of 8 hidden units would form the network topology. Trials with batch and online learning at an early stage in the experiment allowed the decision for online learning to be made. This was selected as it is able to change the weights for each individual training example, rather than every epoch. This significantly reduced the compound error throughout training. Online learning with 8 hidden units were carried as a strategy throughout the rest of the experiment. Trials were performed with learning and momentum rates. The hypothesis suggested that a relatively low learning rate would be preferable, for the avoidance of the bounce of the network around local minima. However, it appeared that the error surface was relatively even. As such, a medium error rate (.5 in this case) was selected as a compromise between classification accuracy and computational speed. The calculation of momentum was not particularly necessary in this case, again, due to the smooth error curve. Values of momentum rates were tried, but really had no effect. For ease,. was selected as a suitable learning rate. Future work would ensure this was increased slightly, to.1 or.2, thus ensuring that any small local minima could also be overcome by the network. The activation functions trialled showed that the tanh function would probably yield more accurate results than the Logistic Sigmoid function. This was indeed true, though due to the greater range of the function the learning rate was decreased to 1/5 th its original size. This meant that changes to the weights were more sensitive, which could lead to further inaccuracies later. Therefore, the Logistic Sigmoid function was employed instead, allowing greater freedom with the learning rate. Possibly the most suitable decision here was the training over 5 epochs. That, in the majority of cases, would reach firm convergence. Although this took more computational time, it showed that the Hebbian Learning principle works effectively

12 6 -- Conccllussiionss This has been a particularly enjoyable task to undertake, which has definitely optimised my own knowledge of the neural network. Much attention had to be paid to the operation of mathematical models, and, once implemented; an understanding was gained of how these operated. Testing of the model ensured that it was iteratively and strategically validated before actual testing could commence. This also ensured that I learned the precise details of how this commonly implemented network topology operated. The experimental procedures showed that there is no one solution or combination of variables that will work more effectively than others; it is all down to their testing scenario. The process of trade-offs between accuracy (in error reduction), complexity and computational time was an interesting tuning problem to attempt. I feel that the strategy which I executed was almost optimal for this particular dataset. However, were the network tested on a completely different dataset, it is likely that this strategy, too, would be completely different. 7 Refferrenccess The dataset which I have chosen for this experimental work is the Ionosphere dataset, which is located at; [1] Haykin, S. Neural Networks, A Comprehensive Foundation, Second Edition. Prentice Hall, [2] IONOSPHERE Dataset Johns Hopkins University Found at the above link. [3] Tino, P. Lecture 12 Intro. to Neural Computation,, University of Birmingham, 23. [4] Bullinaria, J. Step by Step Guide to Implementing an Neural Network in C,, University of Birmingham. See [5] Tino, P. C Implementation of Feed Forward Backpropagation Network,, University of Birmingham. Found at the above link

Lecture 6. Artificial Neural Networks

Lecture 6. Artificial Neural Networks Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm

More information

Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

More information

SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK

SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Stock Prediction using Artificial Neural Networks

Stock Prediction using Artificial Neural Networks Stock Prediction using Artificial Neural Networks Abhishek Kar (Y8021), Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach to predict

More information

Neural Networks and Support Vector Machines

Neural Networks and Support Vector Machines INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

More information

Data Mining Techniques Chapter 7: Artificial Neural Networks

Data Mining Techniques Chapter 7: Artificial Neural Networks Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................

More information

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time

More information

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College

More information

Neural network software tool development: exploring programming language options

Neural network software tool development: exploring programming language options INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira aao@fe.up.pt Supervisor: Professor Joaquim Marques de Sá June 2006

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

Printing Letters Correctly

Printing Letters Correctly Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar

More information

Package AMORE. February 19, 2015

Package AMORE. February 19, 2015 Encoding UTF-8 Version 0.2-15 Date 2014-04-10 Title A MORE flexible neural network package Package AMORE February 19, 2015 Author Manuel Castejon Limas, Joaquin B. Ordieres Mere, Ana Gonzalez Marcos, Francisco

More information

Bank Customers (Credit) Rating System Based On Expert System and ANN

Bank Customers (Credit) Rating System Based On Expert System and ANN Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,

More information

Feedforward Neural Networks and Backpropagation

Feedforward Neural Networks and Backpropagation Feedforward Neural Networks and Backpropagation Feedforward neural networks Architectural issues, computational capabilities Sigmoidal and radial basis functions Gradient-based learning and Backprogation

More information

SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS

SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS UDC: 004.8 Original scientific paper SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS Tonimir Kišasondi, Alen Lovren i University of Zagreb, Faculty of Organization and Informatics,

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

An Introduction to Neural Networks

An Introduction to Neural Networks An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

More information

Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

More information

NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

More information

Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis

Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt

More information

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed

More information

Neural Networks and Back Propagation Algorithm

Neural Networks and Back Propagation Algorithm Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland mirzac@gmail.com Abstract Neural Networks (NN) are important

More information

Logistic Regression for Spam Filtering

Logistic Regression for Spam Filtering Logistic Regression for Spam Filtering Nikhila Arkalgud February 14, 28 Abstract The goal of the spam filtering problem is to identify an email as a spam or not spam. One of the classic techniques used

More information

How To Use Neural Networks In Data Mining

How To Use Neural Networks In Data Mining International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and

More information

Machine Learning: Multi Layer Perceptrons

Machine Learning: Multi Layer Perceptrons Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons

More information

More Data Mining with Weka

More Data Mining with Weka More Data Mining with Weka Class 5 Lesson 1 Simple neural networks Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Lesson 5.1: Simple neural networks Class

More information

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. 1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very

More information

Machine Learning and Data Mining -

Machine Learning and Data Mining - Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques (nmm@di.fct.unl.pt) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron

More information

OPTIMUM LEARNING RATE FOR CLASSIFICATION PROBLEM

OPTIMUM LEARNING RATE FOR CLASSIFICATION PROBLEM OPTIMUM LEARNING RATE FOR CLASSIFICATION PROBLEM WITH MLP IN DATA MINING Lalitha Saroja Thota 1 and Suresh Babu Changalasetty 2 1 Department of Computer Science, King Khalid University, Abha, KSA 2 Department

More information

Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks

Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.

More information

Power Prediction Analysis using Artificial Neural Network in MS Excel

Power Prediction Analysis using Artificial Neural Network in MS Excel Power Prediction Analysis using Artificial Neural Network in MS Excel NURHASHINMAH MAHAMAD, MUHAMAD KAMAL B. MOHAMMED AMIN Electronic System Engineering Department Malaysia Japan International Institute

More information

DYNAMIC LOAD BALANCING OF FINE-GRAIN SERVICES USING PREDICTION BASED ON SERVICE INPUT JAN MIKSATKO. B.S., Charles University, 2003 A THESIS

DYNAMIC LOAD BALANCING OF FINE-GRAIN SERVICES USING PREDICTION BASED ON SERVICE INPUT JAN MIKSATKO. B.S., Charles University, 2003 A THESIS DYNAMIC LOAD BALANCING OF FINE-GRAIN SERVICES USING PREDICTION BASED ON SERVICE INPUT by JAN MIKSATKO B.S., Charles University, 2003 A THESIS Submitted in partial fulfillment of the requirements for the

More information

Automatic Inventory Control: A Neural Network Approach. Nicholas Hall

Automatic Inventory Control: A Neural Network Approach. Nicholas Hall Automatic Inventory Control: A Neural Network Approach Nicholas Hall ECE 539 12/18/2003 TABLE OF CONTENTS INTRODUCTION...3 CHALLENGES...4 APPROACH...6 EXAMPLES...11 EXPERIMENTS... 13 RESULTS... 15 CONCLUSION...

More information

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling 1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

More information

Application of Neural Network in User Authentication for Smart Home System

Application of Neural Network in User Authentication for Smart Home System Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart

More information

DEVELOPING AN ARTIFICIAL NEURAL NETWORK MODEL FOR LIFE CYCLE COSTING IN BUILDINGS

DEVELOPING AN ARTIFICIAL NEURAL NETWORK MODEL FOR LIFE CYCLE COSTING IN BUILDINGS DEVELOPING AN ARTIFICIAL NEURAL NETWORK MODEL FOR LIFE CYCLE COSTING IN BUILDINGS Olufolahan Oduyemi 1, Michael Okoroh 2 and Angela Dean 3 1 and 3 College of Engineering and Technology, University of Derby,

More information

Neural Networks algorithms and applications

Neural Networks algorithms and applications Neural Networks algorithms and applications By Fiona Nielsen 4i 12/12-2001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y

More information

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert

More information

Neural Network Design in Cloud Computing

Neural Network Design in Cloud Computing International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer

More information

Follow links Class Use and other Permissions. For more information, send email to: permissions@pupress.princeton.edu

Follow links Class Use and other Permissions. For more information, send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Computational Economics is published by Princeton University Press and copyrighted, 2006, by Princeton University Press. All rights

More information

Neural Network Add-in

Neural Network Add-in Neural Network Add-in Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Pre-processing... 3 Lagging...

More information

Data quality in Accounting Information Systems

Data quality in Accounting Information Systems Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania

More information

Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network

Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIR-AMPRI, BHOPAL prince2010.gupta@gmail.com

More information

Biological Neurons and Neural Networks, Artificial Neurons

Biological Neurons and Neural Networks, Artificial Neurons Biological Neurons and Neural Networks, Artificial Neurons Neural Computation : Lecture 2 John A. Bullinaria, 2015 1. Organization of the Nervous System and Brain 2. Brains versus Computers: Some Numbers

More information

Price Prediction of Share Market using Artificial Neural Network (ANN)

Price Prediction of Share Market using Artificial Neural Network (ANN) Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter

More information

Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

More information

Lecture 8 February 4

Lecture 8 February 4 ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

More information

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,

More information

APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION

APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED

More information

Models of Cortical Maps II

Models of Cortical Maps II CN510: Principles and Methods of Cognitive and Neural Modeling Models of Cortical Maps II Lecture 19 Instructor: Anatoli Gorchetchnikov dy dt The Network of Grossberg (1976) Ay B y f (

More information

A hybrid financial analysis model for business failure prediction

A hybrid financial analysis model for business failure prediction Available online at www.sciencedirect.com Expert Systems with Applications Expert Systems with Applications 35 (2008) 1034 1040 www.elsevier.com/locate/eswa A hybrid financial analysis model for business

More information

NEURAL NETWORKS A Comprehensive Foundation

NEURAL NETWORKS A Comprehensive Foundation NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments

More information

Introduction to Logistic Regression

Introduction to Logistic Regression OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction

More information

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems

More information

TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC

TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC 777 TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC M.R. Walker. S. Haghighi. A. Afghan. and L.A. Akers Center for Solid State Electronics Research Arizona State University Tempe. AZ 85287-6206 mwalker@enuxha.eas.asu.edu

More information

Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *

Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin * Send Orders for Reprints to reprints@benthamscience.ae 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network

More information

Optimum Design of Worm Gears with Multiple Computer Aided Techniques

Optimum Design of Worm Gears with Multiple Computer Aided Techniques Copyright c 2008 ICCES ICCES, vol.6, no.4, pp.221-227 Optimum Design of Worm Gears with Multiple Computer Aided Techniques Daizhong Su 1 and Wenjie Peng 2 Summary Finite element analysis (FEA) has proved

More information

AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING

AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING Abhishek Agrawal*, Vikas Kumar** 1,Ashish Pandey** 2,Imran Khan** 3 *(M. Tech Scholar, Department of Computer Science, Bhagwant University,

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Unconstrained Handwritten Character Recognition Using Different Classification Strategies

Unconstrained Handwritten Character Recognition Using Different Classification Strategies Unconstrained Handwritten Character Recognition Using Different Classification Strategies Alessandro L. Koerich Department of Computer Science (PPGIA) Pontifical Catholic University of Paraná (PUCPR) Curitiba,

More information

Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks

Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks Ph. D. Student, Eng. Eusebiu Marcu Abstract This paper introduces a new method of combining the

More information

Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department

Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department DOI: 10.5769/C2012010 or http://dx.doi.org/10.5769/c2012010 Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department Antonio Manuel Rubio Serrano (1,2), João Paulo

More information

Comparison of K-means and Backpropagation Data Mining Algorithms

Comparison of K-means and Backpropagation Data Mining Algorithms Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and

More information

A Content based Spam Filtering Using Optical Back Propagation Technique

A Content based Spam Filtering Using Optical Back Propagation Technique A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT

More information

Tennis Winner Prediction based on Time-Series History with Neural Modeling

Tennis Winner Prediction based on Time-Series History with Neural Modeling Tennis Winner Prediction based on Time-Series History with Neural Modeling Amornchai Somboonphokkaphan, Suphakant Phimoltares, and Chidchanok Lursinsap Abstract Tennis is one of the most popular sports

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

The ABC s of Web Site Evaluation

The ABC s of Web Site Evaluation The ABC s of Web Site Evaluation by Kathy Schrock Digital Literacy by Paul Gilster Digital literacy is the ability to understand and use information in multiple formats from a wide range of sources when

More information

Stabilization by Conceptual Duplication in Adaptive Resonance Theory

Stabilization by Conceptual Duplication in Adaptive Resonance Theory Stabilization by Conceptual Duplication in Adaptive Resonance Theory Louis Massey Royal Military College of Canada Department of Mathematics and Computer Science PO Box 17000 Station Forces Kingston, Ontario,

More information

Data Mining and Neural Networks in Stata

Data Mining and Neural Networks in Stata Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca mario.lucchini@unimib.it maurizio.pisati@unimib.it

More information

Impelling Heart Attack Prediction System using Data Mining and Artificial Neural Network

Impelling Heart Attack Prediction System using Data Mining and Artificial Neural Network General Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Impelling

More information

Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network.

Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network. Global Journal of Computer Science and Technology Volume 11 Issue 3 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172

More information

Designing a neural network for forecasting financial time series

Designing a neural network for forecasting financial time series Designing a neural network for forecasting financial time series 29 février 2008 What a Neural Network is? Each neurone k is characterized by a transfer function f k : output k = f k ( i w ik x k ) From

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Cash Forecasting: An Application of Artificial Neural Networks in Finance

Cash Forecasting: An Application of Artificial Neural Networks in Finance International Journal of Computer Science & Applications Vol. III, No. I, pp. 61-77 2006 Technomathematics Research Foundation Cash Forecasting: An Application of Artificial Neural Networks in Finance

More information

Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm

Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm Azeem

More information

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory

More information

PLAANN as a Classification Tool for Customer Intelligence in Banking

PLAANN as a Classification Tool for Customer Intelligence in Banking PLAANN as a Classification Tool for Customer Intelligence in Banking EUNITE World Competition in domain of Intelligent Technologies The Research Report Ireneusz Czarnowski and Piotr Jedrzejowicz Department

More information

Tolerance of Radial Basis Functions against Stuck-At-Faults

Tolerance of Radial Basis Functions against Stuck-At-Faults Tolerance of Radial Basis Functions against Stuck-At-Faults Ralf Eickhoff 1 and Ulrich Rückert 1 Heinz Nixdorf Institute System and Circuit Technology University of Paderborn, Germany eickhoff,rueckert@hni.upb.de

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Role of Neural network in data mining

Role of Neural network in data mining Role of Neural network in data mining Chitranjanjit kaur Associate Prof Guru Nanak College, Sukhchainana Phagwara,(GNDU) Punjab, India Pooja kapoor Associate Prof Swami Sarvanand Group Of Institutes Dinanagar(PTU)

More information

Data Mining using Artificial Neural Network Rules

Data Mining using Artificial Neural Network Rules Data Mining using Artificial Neural Network Rules Pushkar Shinde MCOERC, Nasik Abstract - Diabetes patients are increasing in number so it is necessary to predict, treat and diagnose the disease. Data

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information

Lecture 5: Variants of the LMS algorithm

Lecture 5: Variants of the LMS algorithm 1 Standard LMS Algorithm FIR filters: Lecture 5: Variants of the LMS algorithm y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) +...+ w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), Error between filter output

More information

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation

More information

Big Data Analytics Using Neural networks

Big Data Analytics Using Neural networks San José State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research 4-1-2014 Big Data Analytics Using Neural networks Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects

More information

Self Organizing Maps: Fundamentals

Self Organizing Maps: Fundamentals Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen

More information

1. Classification problems

1. Classification problems Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

More information

Horse Racing Prediction Using Artificial Neural Networks

Horse Racing Prediction Using Artificial Neural Networks Horse Racing Prediction Using Artificial Neural Networks ELNAZ DAVOODI, ALI REZA KHANTEYMOORI Mathematics and Computer science Department Institute for Advanced Studies in Basic Sciences (IASBS) Gavazang,

More information

Data Mining Techniques for Prognosis in Pancreatic Cancer

Data Mining Techniques for Prognosis in Pancreatic Cancer Data Mining Techniques for Prognosis in Pancreatic Cancer by Stuart Floyd A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUE In partial fulfillment of the requirements for the Degree

More information

Back Propagation Neural Network for Wireless Networking

Back Propagation Neural Network for Wireless Networking International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693 Back Propagation Neural Network for Wireless Networking Menal Dahiya Maharaja Surajmal

More information

BACK CALCULATION PROCEDURE FOR THE STIFFNESS MODULUS OF CEMENT TREATED BASE LAYERS USING COMPUTATIONAL INTELLIGENCE BASED MODELS

BACK CALCULATION PROCEDURE FOR THE STIFFNESS MODULUS OF CEMENT TREATED BASE LAYERS USING COMPUTATIONAL INTELLIGENCE BASED MODELS BACK CALCULATION PROCEDURE FOR THE STIFFNESS MODULUS OF CEMENT TREATED BASE LAYERS USING COMPUTATIONAL INTELLIGENCE BASED MODELS Maryam Miradi m.miradi@tudelft.nl André.A. A. Molenaar * a.a.a.molenaar@tudelft.nl

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information