Special cases in Transportation Problems
|
|
|
- Jade Norris
- 9 years ago
- Views:
Transcription
1 Unit 1 Lecture 18 Special cases in Transportation Problems Learning Objectives: Special cases in Transportation Problems Multiple Optimum Solution Unbalanced Transportation Problem Degeneracy in the Transportation Problem Miximisation in a Transportation Problem Special cases Some variations that often arise while solving the transportation problem could be as follows : 1.Multiple Optimum Solution 2.Unbalanced Transportation Problem 3.Degeneracy in the Transportation Problem 1.Multiple Optimum Solution This problem occurs when there are more than one optimal solutions. This would be indicated when more than one unoccupied cell have zero value for the net cost change in the optimal solution. Thus a reallocation to cell having a net cost change equal to zero will have no effect on transportation cost. This reallocation will provide another solution with same transportation cost, but the route employed will be different from those for the original optimal solution. This is important because they provide management with added flexibility in decision making. 1
2 2.Unbalanced Transportation Problem If the total supply is not equal to the total demand then the problem is known as unbalanced transportation problem. If the total supply is more than the total demand, we introduce an additional column, which will indicate the surplus supply with transportation cost zero. Similarly, if the total demand is more than the total supply, an additional row is introduced in the table, which represents unsatisfied demand with transportation cost zero. Example1 Warehouses Plant W1 W2 W3 Supply A B Demand Solution: The total demand is 1000, whereas the total supply is 800. Total demand > total supply. So, introduce an additional row with transportation cost zero indicating the unsatisfied demand. Warehouses Plant W1 W2 W3 Supply A B Unsatisfied demand Demand
3 Now, solve the above problem with any one of the following methods: North West Corner Rule Matrix Minimum Method Vogel Approximation Method Try it yourself. Degeneracy in the Transportation Problem If the basic feasible solution of a transportation problem with m origins and n destinations has fewer than m + n 1 positive x ij (occupied cells), the problem is said to be a degenerate transportation problem. Degeneracy can occur at two stages: 1. At the initial solution 2. During the testing of the optimum solution A degenerate basic feasible solution in a transportation problem exists if and only if some partial sum of availability s (row(s)) is equal to a partial sum of requirements (column(s)). Example 2 Dealers Factory Supply A B C Requirement Solution: 3
4 Here, S1 = 1000, S2 = 700, S3 = 900 R1 = 900, R2 = 800, R3 = 500, R4 = 400 Since R3 + R4 = S3 so the given problem is a degeneracy problem. Now we will solve the transportation problem by Matrix Minimum Method. To resolve degeneracy, we make use of an artificial quantity(d). The quantity d is so small that it does not affect the supply and demand constraints. Degeneracy can be avoided if we ensure that no partial sum of s i (supply) and r j (requirement) are the same. We set up a new problem where: s i = s i + d r j = r j r n = r n + md i = 1, 2,..., m Dealers Factory Supply A d d B d 4 2d d C d d 900 +d Requirement d Substituting d = 0. Dealers Factory Supply A B C Requirement d 4
5 Initial basic feasible solution: 2 * * * * * * 400 = Now degeneracy has been removed. To find the optimum solution, you can use any one of the following: Stepping Stone Method. MODI Method. Miximisation in a Transportation Problem Although transportation model is used to minimize transportation cost. However it can also be used to get a solution with an objective of maximizing the total value or returns. Since the criterion of optimality is maximization, the converse of the rule for minimization will be used. The rule is : A solution is optimal if all opportunity costs d ij for the unoccupied cell are zero or negative. Let us take an example for this: Example 3 A firm has three factories X, Y and Z. It supplies goods to four dealers spread all over the country. The production capacities of these factories are 200, 500 and 300 per month respectively. Factory A B C D Capacity X Y Z Demand
6 Determine suitable allocation to maximize the total net return. Solution: Maximization transportation problem can be converted into minimization transportation problem by subtracting each transportation cost from maximum transportation cost. Here, the maximum transportation cost is 25. So subtract each value from 25. Factory A B C D Capacity X Y Z Demand Now, solve the above problem by first finding initial solution any one of the following methods: North West Corner Rule Matrix Minimum Method Vogel Approximation Method Then, testing the initial solution for optimality using either Stepping stone method or MODI method 6
7 Example 4. A product is produced at three plants and shipped to three warehouses (the transportation costs per unit are shown in the following table.) Warehouse Plant W1 W2 W3 Plant capacity P1 P2 P3 Warehouse demand a) Show a network representation of the problem. b) Solve this model to determine the minimum cost solution. c) c. Suppose that the entries in the table represent profit per unit produced at plant I and sold to warehouse j. How does the solution change from that in part (b)? Try it yourself. Example 5. Tri-county utilities, Inc.., supplies natural gas to customers in a three country area. The company purchases natural gas form two companies. Southern gas and Northwest Gas. Demand forecasts for the coming winter season are Hamilton county, 400 units; Butler county, 200 units: and Clermont county. 300 units. Contracts to provide the following quantities have been written. South Gas, 500 units; and Northwest Gas, 400 units, Distribution costs for the counties vary, depending upon the location of the suppliers. The distribution costs per unit (in thousands of dollars) are as follows: 7
8 To From Hamilton Butler Clermont Southern Gas Northwest Gas a. Develop a network representation of this problem. b. Describe the distribution plan and show the total distribution cost. c. Recent residential and industrial growth in Butter county has the potential for increasing demand by as much as 100 units. Which supplier should Tri- county contract with to supply the additional capacity? Try it yourself. 8
Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?
Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation
4 UNIT FOUR: Transportation and Assignment problems
4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Simplex method summary
Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for
MARATHWADA INSTITUTE OF TECHNOLOGY, AURANGABAD
MARATHWADA INSTITUTE OF TECHNOLOGY, AURANGABAD DEPARTMENT OF MASTER OF COMPUTER APPLICATION OPERATION RESEARCH QUESTION BANK SYMCA 2013-14 Part-II OR Assignment Questions Unit-I 1) What is OR techniques?
Linear Programming Supplement E
Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming
Standard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
Solution of the Transportation Model
B-2 Module B Transportation and Assignment Solution Methods Solution of the Transportation Model The following example was used in Chapter 6 of the text to demonstrate the formulation of the transportation
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
How to Use the Cash Flow Template
How to Use the Cash Flow Template When you fill in your cash flow you are trying to predict the timing of cash in and out of your bank account to show the affect and timing for each transaction when it
Lab 17: Consumer and Producer Surplus
Lab 17: Consumer and Producer Surplus Who benefits from rent controls? Who loses with price controls? How do taxes and subsidies affect the economy? Some of these questions can be analyzed using the concepts
Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM
Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY
CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY EXERCISES 3. A monopolist firm faces a demand with constant elasticity of -.0. It has a constant marginal cost of $0 per unit and sets a price to maximize
9.4 THE SIMPLEX METHOD: MINIMIZATION
SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to $5 What number of audits and tax returns will bring in a maximum revenue? In the simplex
Basics of Dimensional Modeling
Basics of Dimensional Modeling Data warehouse and OLAP tools are based on a dimensional data model. A dimensional model is based on dimensions, facts, cubes, and schemas such as star and snowflake. Dimensional
Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1
Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear
The Assignment Problem and the Hungarian Method
The Assignment Problem and the Hungarian Method 1 Example 1: You work as a sales manager for a toy manufacturer, and you currently have three salespeople on the road meeting buyers. Your salespeople are
3.2 Matrix Multiplication
3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract
Integer Programming Formulation
Integer Programming Formulation 1 Integer Programming Introduction When we introduced linear programs in Chapter 1, we mentioned divisibility as one of the LP assumptions. Divisibility allowed us to consider
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
Solving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
Theoretical Tools of Public Economics. Part-2
Theoretical Tools of Public Economics Part-2 Previous Lecture Definitions and Properties Utility functions Marginal utility: positive (negative) if x is a good ( bad ) Diminishing marginal utility Indifferences
Chapter 2 Solving Linear Programs
Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A
Applications of linear programming
Applications of linear programming Case study, minimizing the costs of transportation problem Denys Farnalskiy Degree Thesis International Business 2006 DEGREE THESIS Arcada Degree Programme: International
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
Business and Economic Applications
Appendi F Business and Economic Applications F1 F Business and Economic Applications Understand basic business terms and formulas, determine marginal revenues, costs and profits, find demand functions,
Optimal Scheduling for Dependent Details Processing Using MS Excel Solver
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of
Overview of Procure to Pay
This segment from our 427+ page JD Edwards Accounts Payable manual is being made available as a sample of our training manuals. Please contact [email protected] if you have any JDE training needs,
Consumers face constraints on their choices because they have limited incomes.
Consumer Choice: the Demand Side of the Market Consumers face constraints on their choices because they have limited incomes. Wealthy and poor individuals have limited budgets relative to their desires.
Notes on Excel Forecasting Tools. Data Table, Scenario Manager, Goal Seek, & Solver
Notes on Excel Forecasting Tools Data Table, Scenario Manager, Goal Seek, & Solver 2001-2002 1 Contents Overview...1 Data Table Scenario Manager Goal Seek Solver Examples Data Table...2 Scenario Manager...8
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
1.1 Introduction. Chapter 1: Feasibility Studies: An Overview
Chapter 1: Introduction 1.1 Introduction Every long term decision the firm makes is a capital budgeting decision whenever it changes the company s cash flows. Consider launching a new product. This involves
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Transportation Models
Quantitative Module C Transportation Models Module Outline TRANSPORTATION MODELING DEVELOPING AN INITIAL SOLUTION The Northwest-Corner Rule The Intuitive Lowest-Cost Method THE STEPPING-STONE METHOD SPECIAL
Economics 201 Fall 2010 Introduction to Economic Analysis Problem Set #6 Due: Wednesday, November 3
Economics 201 Fall 2010 Introduction to Economic Analysis Jeffrey Parker Problem Set #6 Due: Wednesday, November 3 1. Cournot Duopoly. Bartels and Jaymes are two individuals who one day discover a stream
Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach
Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
Pre Test Chapter 3. 8.. DVD players and DVDs are: A. complementary goods. B. substitute goods. C. independent goods. D. inferior goods.
1. Graphically, the market demand curve is: A. steeper than any individual demand curve that is part of it. B. greater than the sum of the individual demand curves. C. the horizontal sum of individual
Optimization: Optimal Pricing with Elasticity
Optimization: Optimal Pricing with Elasticity Short Examples Series using Risk Simulator For more information please visit: www.realoptionsvaluation.com or contact us at: [email protected]
Solving Linear Programs in Excel
Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
COST THEORY. I What costs matter? A Opportunity Costs
COST THEORY Cost theory is related to production theory, they are often used together. However, the question is how much to produce, as opposed to which inputs to use. That is, assume that we use production
Special Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
Welcome to the topic on managing delivery issues with Goods Receipt POs.
Welcome to the topic on managing delivery issues with Goods Receipt POs. In this topic, we will explore how to receive incorrect shipments from a vendor in a goods receipt PO document. Sometimes your supplier
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
Linear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
How To Understand And Solve A Linear Programming Problem
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
FINANCIAL INTRODUCTION
FINANCIAL INTRODUCTION In earlier sections you calculated your cost of goods sold, overhead expenses and capital cost in order to help you determine the sales price of your product. In your business plan,
Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS
DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Airport Planning and Design. Excel Solver
Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of
A Dairy Supply Chain Model of the New Zealand Dairy Industry
A Dairy Supply Chain Model of the New Zealand Dairy Industry O. Montes de Oca a, C.K.G Dake a, A. E. Dooley a and D. Clark b a AgResearch Ltd, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton
Using Excel s Solver
Using Excel s Solver Contents Page Answer Complex What-If Questions Using Microsoft Excel Solver........... 1 When to Use Solver Identifying Key Cells in Your Worksheet Solver Settings are Persistent Saving
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
INVENTORY MANAGEMENT
[email protected] [email protected] Phone: 084 4 8585 4587 INVENTORY MANAGEMENT PLATINUM VERSION USER GUIDE Version 1.4 1 Table of Contents 1. INTRODUCTION... 4 2. HOW TO USE... 9 2.1. Manage Suppliers...
Elasticities of Demand
rice Elasticity of Demand 4.0 rinciples of Microeconomics, Fall 007 Chia-Hui Chen September 0, 007 Lecture 3 Elasticities of Demand Elasticity. Elasticity measures how one variable responds to a change
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Using the Solver add-in in MS Excel 2007
First version: April 21, 2008 Last revision: February 22, 2011 ANDREI JIRNYI, KELLOGG OFFICE OF RESEARCH Using the Solver add-in in MS Excel 2007 The Excel Solver add-in is a tool that allows you to perform
Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras
Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 36 Location Problems In this lecture, we continue the discussion
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
Effective Replenishment Parameters. By Jon Schreibfeder EIM. Effective Inventory Management, Inc.
Effective Replenishment Parameters By Jon Schreibfeder EIM Effective Inventory Management, Inc. This report is the fourth in a series of white papers designed to help forward-thinking distributors increase
56:171 Operations Research Midterm Exam Solutions Fall 2001
56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the
MULTIPLE REGRESSION WITH CATEGORICAL DATA
DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting
A Detailed Price Discrimination Example
A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include
v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
Regional Economic Impact Analysis
Section III: Applying Knowledge Regional Economic Impact Analysis Summary In this activity, teachers present a lecture related to assessing regional economic impacts and students use this knowledge to
Logistics Management Customer Service. Özgür Kabak, Ph.D.
Logistics Management Customer Service Özgür Kabak, Ph.D. Customer Service Defined Customer service is generally presumed to be a means by which companies attempt to differentiate their product, keep customers
Check Digits for Detecting Recording Errors in Horticultural Research: Theory and Examples
HORTSCIENCE 40(7):1956 1962. 2005. Check Digits for Detecting Recording Errors in Horticultural Research: Theory and Examples W.R. Okie U.S. Department of Agriculture, Agricultural Research Service, Southeastern
STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239
STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent
Learning Objectives. After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to:
Learning Objectives After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to: Discuss three characteristics of perfectly competitive
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
1 Mathematical Models of Cost, Revenue and Profit
Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling
Primary Logistics Activities
1 TOPIC 1: OVERVIEW OF BUSINESS LOGISTICS AND PLANNING Topic Outcomes: You should be able: 1. Define logistics 2. Define activity mix in logistics business 3. Determine the importance of business logistics
FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver
FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Fuqua School of Business, Duke University ACCOUNTG 510: Foundations of Financial Accounting
Fuqua School of Business, Duke University ACCOUNTG 510: Foundations of Financial Accounting Lecture Note: Financial Statement Basics, Transaction Recording, and Terminology I. The Financial Reporting Package
Fixed Cost. Marginal Cost. Fixed Cost. Marginal Cost
1. Complete the following table (round each answer to the nearest whole number): Output Total Variable Fixed Marginal Average Avg. Var. Avg. Fixed 0 30 1 35 60 3 110 4 00 5 30 6 600 Output Total Variable
Linear Programming Sensitivity Analysis
Linear Programming Sensitivity Analysis Massachusetts Institute of Technology LP Sensitivity Analysis Slide 1 of 22 Sensitivity Analysis Rationale Shadow Prices Definition Use Sign Range of Validity Opportunity
Lecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
Offered to MAN ECN IRL THM IBT Elective. Course Level Course Code Year Semester ECTS Weekly Course Hours
Offered by Department of Business Administration Course Status Offered to MAN ECN IRL THM IBT Compulsory Offered to MAN ECN IRL THM IBT Elective Course Title Management Science Course Level Course Code
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
GENERALIZED INTEGER PROGRAMMING
Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: [email protected] Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: [email protected] GENERALIZED INTEGER
Effective Replenishment Parameters By Jon Schreibfeder
WINNING STRATEGIES FOR THE DISTRIBUTION INDUSTRY Effective Replenishment Parameters By Jon Schreibfeder >> Compliments of Microsoft Business Solutions Effective Replenishment Parameters By Jon Schreibfeder
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 11 Monopoly practice Davidson spring2007 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A monopoly industry is characterized by 1) A)
Econ 202 Section 4 Final Exam
Douglas, Fall 2009 December 15, 2009 A: Special Code 00004 PLEDGE: I have neither given nor received unauthorized help on this exam. SIGNED: PRINT NAME: Econ 202 Section 4 Final Exam 1. Oceania buys $40
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
