REACTIONS OF AROMATIC COMPOUNDS
|
|
|
- Osborn Jennings
- 9 years ago
- Views:
Transcription
1 A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition reactions. Important reactions include: Electrophilic aromatic substitution: halogenation, sulfonation and desulfonation, nitration, Friedel-Crafts alkylation and acylation, and aryldiazonium salts Side-chain reactions: Clemmensen reduction and all reactions from previous sections including free radical halogenation, oxidations, addition and elimination reactions. Important effects include: The substituent already on the ring directs the location of the incoming group. When two or more groups are present, the strongest activating group on the ring controls the location of the incoming group. If the only groups present are deactivating, the weakest deactivating group controls the location of the incoming group. Strong activators possess a lone pair of electrons adjacent to the aromatic ring (except halogens). Moderate activators possess a lone pair adjacent to the aromatic ring that is participating in resonance outside the ring. Weak activators are typically alkyl groups. Deactivators are electron-withdrawing groups. All activating groups are ortho, para directors. Most deactivating groups are meta directors. Halogens are weak deactivators and ortho, para directors. Substitution does not occur between groups meta to one another if there are any other possibilities. Keep in mind the limitations of the Friedel-Crafts reactions: No reaction occurs with aromatic rings only containing deactivating groups or amino groups (-NH 2, - NHR, -NR 2 ), and rearrangement of side chains may occur with Friedel-Craft alkylations. 2. Predict the relative reactivity of compounds toward electrophilic aromatic substitution. 3. Determine whether a substitution will proceed by an electrophilic aromatic substitution (EAS), nucleophilic aromatic substitution (S N Ar), or an elimination-addition mechanism. If the reagent is an electrophile the reaction will be EAS. If the ring contains powerful electron withdrawing group(s) and a leaving group ortho or para to the withdrawing group, the reaction will be S N Ar. 4. Using the reactions of Objective 1, propose syntheses of substituted aromatic derivatives. The order in which reactions are performed is often important. 5. Understand and be able to draw the mechanism of an Electrophilic Aromatic Substitution (EAS) reaction, Nucleophilic Aromatic Substitution (S N Ar), and an Elimination-Addition mechanism. The mechanisms will include all intermediates and proper mechanistic arrows. Understand the chemistry dictating the observed regiochemistry.
2 To best prepare for this module, please work Chapter 19 and section Skill Builder problems in the textbook. A STUDENT WHO HAS MASTERED THE OBJECTIVES ON THE PREVIOUS PAGES SHOULD BE ABLE TO SOLVE THE FOLLOWING PROBLEMS AND RELATED ONES: 1.1 Predict the product or products of the reactions shown (if any) b) c) d) e) f) g)
3 1.1 h) i) j) k) l) 2. Rank the following compounds from fastest to slowest as they react in an EAS with Br 2 /FeBr 3. fastest > > > > > slowest
4 2. b) fastest > > > > > slowest 3. Under each reaction, circle the correct operating mechanism. EAS, S N Ar, or Elimination-Addition b) EAS, S N Ar, or Elimination-Addition c) EAS, S N Ar, or Elimination-Addition
5 4. Propose a synthesis of each of the following compounds, from the given starting material and any other needed reagents. b) c) d) e) f)
6 5.1 Draw the complete mechanism, using proper curved arrow notation, and all intermediates of both the para and meta bromination of nitrobenzene in the presence of ferric bromide. Two complete mechanisms will have to be drawn. Identify any particularly unstable intermediate with an asterisk (*). Based on this, which regiochemistry is preferred? 5.2 Below are two reaction energy coordinates for a para and meta chlorination of an aromatic substrate. Which one of the two materials below could be responsible? Explain why. 5.3 Propose a complete mechanism for the following reaction. Be sure to use correct curved arrow notation and show all intermediates.
7 SOLUTIONS TO SAMPLE PROBLEMS: 1.1 Predict the product or products of the reactions shown (if any) b) no reaction c) d) e) ( + ortho isomer as minor product, due to sterics) f) g) + ortho isomer
8 1.1 h) i) j) k) l) 2. a. fastest_iv_>_iii >_I >_V >_VI >_II_slowest b. fastest_i >_VI >_V >_IV >_III >_II slowest 3. Next to each reaction circle the correct operating mechanism. 4.
9 4. b) c) d) e)
10 4. f) 5.1 para:
11 5.1 meta: When a para substitution takes place on nitrobenzene, a very high energy intermediate results in which two formal positive charges are adjacent to each other (*) in one of the contributing resonance forms. The meta substitution has no particularly high energy intermediate. Based on these results, the meta substitution product would be predicted to form preferentially. 5.2 The examination of the two reaction coordinates shows that the activation energy for the meta substitution is greater than that for the para substitution. In addition, the energy of the intermediate of the para sigma complex is lower than that of the meta sigma complex. This shows that the substituent must be an activator, and ortho/para directing. Of the two choices the nitro is a very strong electron withdrawing group and a deactivator. The correct choice is aniline.
12 5.3 Propose a complete mechanism for the following. The primary carbocation complex rearranges to a more stable tertiary carbocation.
13 Name Fifth Drill Test (Sample A) Organic Chemistry 2220DR Answer All Questions 1. Which of the following reacts FASTEST with Cl 2 / FeCl 3? 2. Predict the product of each of the following reactions. b) c) d) e)
14 3. Propose a synthesis of each of the following compounds from benzene and any other needed reagents. b) c) 4. Provide a complete mechanism showing proper curved arrows and all intermediates for the reaction shown. Show the formation of the electrophile.
15 Name Fifth Drill Test (Sample B) Organic Chemistry 2220DR Answer All Questions 1. Circle the letter which correctly ranks the following compounds from fastest to slowest as they react in an EAS reaction with HNO 3 and H 2 SO 4. (if a>b, a is faster than b) I > II >III > IV b) IV > III > II > I c) III > IV> II > I d) III > II > I > IV 2. Draw the structures of all of the major organic products of each of the following reactions. If no reaction occurs, write NR. b) c)
16 d) e) f) 3. Propose a synthesis of each of the following compounds from the indicated starting materials and any other needed reagents. b) 4. Provide a complete mechanism showing proper curved arrows and all intermediates for the reaction shown.
Electrophilic Aromatic Substitution Reactions
Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic
CHEM 211 CHAPTER 16 - Homework
CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic
Electrophilic Aromatic Substitution
Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring
Benzene Benzene is best represented as a resonance hybrid:
Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as
Electrophilic Aromatic Substitution
Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.
4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions
9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene
CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds
CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,
Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6
Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula
Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes
Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial
California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30
Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions
Aromaticity and Reactions of Benzene
Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain
Chemistry Notes for class 12 Chapter 13 Amines
1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).
Chapter 11. Free Radical Reactions
hapter 11 Free Radical Reactions A free radical is a species containing one or more unpaired electrons Free radicals are electron-deficient species, but they are usually uncharged, so their chemistry is
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity
Conjugation is broken completely by the introduction of saturated (sp3) carbon:
Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.
CHE 232 - Organic Chemistry Exam 1, February 10, 2004
CE 232 - rganic Chemistry Exam 1, February 10, 2004 ame Student ID o. Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second:
Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl
Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated
Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?
Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is
Electrophilic Addition Reactions
Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,
AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:
A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:
RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS
RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly
Acids and Bases: Molecular Structure and Acidity
Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive
C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)
750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals
ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions
ORGANIC CEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions 1) Which of the following best represents the carbon-chlorine bond of methyl chloride? d d - d - d d d d - d - I II III IV V 2) Provide a detailed,
Mass Spec - Fragmentation
Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral
Writing a Correct Mechanism
Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular
Carboxylic Acid Derivatives and Nitriles
Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with
Nucleophilic Substitution and Elimination
Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution
Determining the Structure of an Organic Compound
Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th
Willem Elbers. October 9, 2015
S N 1 and S N 2 reactivity of 3 alkyl bromides Willem Elbers ctober 9, 2015 1 Abstract n this experiment, we investigate the relative reactivities of three alkyl bromides with increasing steric bulk. We
Homolytic vs. Heterolytic Fragmentation
omolytic vs. eterolytic Fragmentation Most organic transformations involve the movement of electron pairs (heterolytic reactions). There are a few important addition reactions, however, in which the electron
INTDUCTIN T LEWIS ACID-BASE CEMISTY DEINITINS Lewis acids and bases are defined in terms of electron pair transfers. A Lewis base is an electron pair donor, and a Lewis acid is an electron pair acceptor.
Chapter 6 An Overview of Organic Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and
Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by
Chapter 15 Radical Reactions Radicals are reactive species with a single unpaired electron, formed by homolysis of a covalent bond; a radical contains an atom that does not have an octet of electrons,
Physicochemical Properties of Drugs
Therapeutics I Michael B. Bolger 1/3/02 bjectives: At the end of the next hour: Physicochemical Properties of Drugs 1. The student should be able to calculate the degree of ionization for an acidic or
ALKENES AND ALKYNES REACTIONS
A STUDENT SHULD BE ABLE T: ALKENES AND ALKYNES REACTINS 1. Given the starting materials and reaction conditions, predict the products of the following reactions of alkenes and alkynes. Regioselective Markovnikov
ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:
ALKENES AND ALKYNES REACTINS A STUDENT W AS MASTERED TE MATERIAL IN TIS SECTIN SULD BE ABLE T: 1. Given the starting materials and reaction conditions, predict the products of the following reactions of
Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name
Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol
Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations SHORT ANSWER Exhibit 11-1 Circle your response in each set below. 1. Circle the least
Chapter 10 Conjugation in Alkadienes and Allylic Systems
. 0 onjugated Systems hapter 0 onjugation in Alkadienes and Allylic Systems onjugated systems are those in which a π-bond is connected or conjugated (from the Latin conjugare which means to link r yoke
ammonium salt (acidic)
Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse
ORGANIC CHEM I Practice Questions for Ch. 4
ORGANIC CHEM I Practice Questions for Ch. 4 1) Write an equation to describe the initiation step in the chlorination of methane. 2) Reaction intermediates that have unpaired electrons are called. 3) When
Lewis Dot Structures of Atoms and Ions
Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron
Chapter 22 Carbonyl Alpha-Substitution Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic
17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS
17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic
ORGANIC COMPOUNDS IN THREE DIMENSIONS
(adapted from Blackburn et al., Laboratory Manual to Accompany World of hemistry, 2 nd ed., (1996) Saunders ollege Publishing: Fort Worth) Purpose: To become familiar with organic molecules in three dimensions
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch 13_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In organic chemistry, the term unsaturated means a molecule A) which contains one or more
Chapter 2 - Polar Covalent Bonds; Acids and Bases
Chapter 2 - Polar Covalent Bonds; Acids and Bases For questions 1-10 give the letter of the term that best matches the given definition. a. Brønsted-Lowry Acid f. Ionic Bond b. Brønsted-Lowry Base g. Covalent
Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture
Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Instructor: Professor Wolf D. Habicher, Professor Claus Rüger Meeting Times Lectures: twice a week at 90 minutes each Discussions:
14 Friedel-Crafts Alkylation
14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is
SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics
SUBSTITUTION EATION AATEISTIS Sn2: Substitution cleophilic, Bimolecular: haracteristics 1) The 2 means Bimolecular (or 2 nd order) in the rate-determining (slow) step: rate = k [: - ] [-X] or rate = k
ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY
RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.
methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example
ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium
Chapter 2 Polar Covalent Bonds; Acids and Bases
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity
Carboxylic Acid Structure and Chemistry: Part 2
Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,
NMR Spectroscopy of Aromatic Compounds (#1e)
NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.
Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond
Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,
MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY
MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples
But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).
Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation
Chapter 7 Substitution Reactions
Chapter 7 Substitution Reactions Review of Concepts Fill in the blanks below. To verify that your answers are correct, look in your textbook at the end of Chapter 7. Each of the sentences below appears
CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
CHEM 203 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _D C 1. Which of the following elements is a large percentage of both
1. What is the hybridization of the indicated atom in the following molecule?
Practice Final Exam, Chemistry 2210, rganic Chem I 1. What is the hybridization of the indicated atom in the following molecule? A. sp 3 B. sp 2 C. sp D. not hybridized 2. Name the functional groups in
Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS
Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice
ALCOHOLS: Properties & Preparation
ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.
A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES
A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular
Survival Organic Chemistry Part I: Molecular Models
Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,
Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.
BENZENE NAMING EXPLAINED. This was excerpted from CHEM WIKI and is used with appreciation to the authors. http://chemwiki.ucdavis.edu/organic_chemistry/hydrocarbons/aromatics/naming_the_benzenes. Simple
Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle
EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination
FREE RADICAL REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:
FREE RADICAL REACTIONS A STUDENT WO AS MASTERED TE MATERIAL IN TIS SECTION SOULD BE ABLE TO: 1. Define, recognize, and give examples of: homolytic cleavage (homolysis), heterolytic cleavage, free radical,
3.4 BRØNSTED LOWRY ACIDS AND BASES
96 CAPTER 3 ACIDS AND BASES. TE CURVED-ARROW NOTATION and that the unshared electron pair (and negative charge) is shared equally by the two terminal carbons. C L C A C 1 allyl anion (c) Using the curved-arrow
Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons
Everything You eed to Know About Mechanisms A) The orrect Use of Arrows to Indicate Electron Movement The ability to write an organic reaction mechanism properly is key to success in organic chemistry
CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*
CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity
SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS
0. ULFNATE AND INRGANIC ETER DERIVATIVE F ALCL 44 R 2 C L CR 2 carbocation Lewis acid base association X (halide ion) 2 $ R 2 C L CR 2 R R X C A C $ alkyl halide R R alkene $ $ Brønsted acid base reaction
CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami. Tel: (618)545-3361. Email: [email protected]. Web: www.kc.cc.il.
CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami Tel: (618)545-3361 Email: [email protected] Web: www.kc.cc.il.us/ngoswami CHEM 208 COURSE SYLLABUS KASKASKIA COLLEGE NAME TERM YEAR TEXT:
Identification of Unknown Organic Compounds
Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
Double Bonds. Hydration Rxns. Hydrogenation Rxns. Halogenation. Formation of epoxides. Syn addition of 2 OH. Ozonolysis
Double Bonds What do we do with double bonds? We do addition reactions. In an addition reaction, something is added to both carbons involved in a double bond (or not involved in the double bond, in the
Benzene and Aromatic Compounds
Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated
SN2 Ionic Substitution Reactions
SN2 Ionic Substitution Reactions Chem 14D Winter 2005 SN2 Ionic Substitution Reactions Substitution can occur in organic compounds that have an electronegative atom or group bonded to an sp 3 hybridized
2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2
1. To convert a nitrile to a primary amine you must: A) hydrolyze it with water. B) oxidize it with chromic acid. C) reduce it with hydrogen or lithium aluminum hydride. D) substitute it with an alkyl
Chemistry 5.12 Spring 2003 Lectures #1 & 2, 2/5,7/03. Outline
hemistry 5.12 Spring 2003 Lectures #1 & 2, 2/5,7/03 utline Discuss General lass Information (Professor Imperiali) General Introduction to rganic hemistry I. Review of Lewis Bonding Theory (Read hapter
17.5 ALLYLIC AND BENZYLIC OXIDATION
17.5 ALLYLI AND BENZYLI XIDATIN 803 Nuc d d Nuc d 2 3 2 overlap of 2p orbitals X d no p-orbital overlap X d (a) (b) Figure 17.2 Transition states for N 2 reactions at (a) an allylic carbon and (b) a nonallylic
STANDARD ANSWERS AND DEFINITIONS
Evidence for Kekule s model to be wrong: STANDARD ANSWERS AND DEFINITIONS All C-C bond lengths are the same length, between C-C and C=C. Only reacts with Br2 with a halogen carrier Benzene is lower in
ACID and BASES - a Summary
AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3
GCE AS and A Level. Chemistry. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Specimen mark scheme. Version 1.1
GCE AS and A Level Chemistry AS exams 2009 onwards A2 exams 2010 onwards Unit 2: Specimen mark scheme Version 1.1 Version 1.1: 07/07 abc General Certificate of Education Chemistry 2420 CHEM2 Chemistry
Mt. San Antonio College
Green Organic Chemistry @ Mt. SAC Mt. San Antonio College Walnut, California Iraj B. Nejad [email protected] 210 th 2YC3 Conference Chemistry for a Sustainable Future Kaneohe, Hawaii May 22-23, 2015 Mt.
Properties of Alcohols and Phenols Experiment #3
Properties of Alcohols and Phenols Experiment #3 Objectives: To observe the solubility of alcohols relative to their chemical structure, to perform chemical tests to distinguish primary, secondary and
Conjugation is broken completely by the introduction of saturated (sp 3 ) carbon:
Conjugation. Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. ne of the simplest conjugated molecules is 1,3-butadiene. Conjugation comes in three flavors, the
IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1
Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,
Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter
I. Introduction YDOABON STUTUE AND EMISTY: AOMATIS Jack Deuiter ydrocarbons are organic compounds consisting of - and - bonds. arbon has a valence of four and thus requires four electrons or bonds to complete
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural
CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*
CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction
Avg. 16.4 / 25 Stnd. Dev. 8.2
QUIZ TREE Avg. 16.4 / 25 Stnd. Dev. 8.2 xidation of Alcohols with Chromium (VI): Jones xidation 2 Alcohols are oxidized by a solution of chromium trioxide in aqueous acetone (2), in the presence of an
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration
Syllabus for General Organic Chemistry M07A- Fall 2013 Prof. Robert Keil
Syllabus for General Organic Chemistry M07A- Fall 2013 Prof. Robert Keil Textbook and Materials What you must buy: Organic Chemistry 4 th Ed. Janice G. Smith, McGraw Hill. (Older edition is fine) Chem
Resonance Structures Arrow Pushing Practice
Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized
Unit 2 Review: Answers: Review for Organic Chemistry Unit Test
Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)
13C NMR Spectroscopy
13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
