Aromaticity and Reactions of Benzene

Size: px
Start display at page:

Download "Aromaticity and Reactions of Benzene"

Transcription

1 Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain and account for the special reactivity and stability contained within the molecule. Unlike regular alkenes, or even conjugated dienes, benzene (and its derivatives) do not undergo addition reactions; instead they undergo substitution reactions. Before we look at the reaction, we will consider some characteristics of benzene, and what makes it aromatic. Bonding and esonance Benzene exists as the amalgam of two resonance structures, shifting the position of the three pi bonds. As a result, each C-C bond is not an isolated double or single bond. The bonds all have a bond order of 1.5, as evidenced by the C-C bond length of 139 pm, which is between the bond lengths of C-C (154 pm) and C=C (133 pm). This helps explain why benzene does not react in the same way as regular alkenes. But why is benzene so stable? Let s consider some bond energies. 2 cat.! = kcal/mol 2 cat.! = kcal/mol 2 cat.! = kcal/mol 2 cat.! = -101 kcal/mol The energy released upon hydrogenating cyclohexene is 28.6 kcal/mol, which gives an indication of the relative instability of the starting alkene. From this, we should expect that 1,3,5-cyclohexatriene would release three times as much energy (3 x 28.6 kcal/mol, or 85.6 kcal/mol), or be three times as unstable. Complete hydrogenation of benzene releases only 49.8 kcal/mol, due to the increased stability of the starting material. This increased stability is referred to as the resonance energy, and describes the stability gained by having a cyclic system of alternating double and single bonds. This same resonance energy is not seen in cyclooctatetraene, which is also a cyclic system of alternating double and single bonds. Therefore, not only is the cyclic nature of the molecule necessary, but the number of pi bonds is also significant. ückel ules for Aromaticity 1. The molecule must be cyclic. 2. The molecule must be planar. 3. There must an unhybridized p orbital on each atom of the ring. 4. There must be an odd number of electron pairs; the number of pi electrons must be equal to 4n + 2, where n is an integer. Following these rules, we can see that benzene fits all rules, but cyclooctatetraene (CT) has an even number of pi bonds. As a result/consequence of not being aromatic, CT is also not planar; it takes on a boat shape. ther heterocycles can also fit within the definitions of aromaticity, if we change the hybridization. Let s consider a few different heterocycles: Chemistry of Aromatic Systems Page 1 of 10

2 ark College N N Pyridine Pyrrole Furan 1,4-Dioxin Pyridine is aromatic each atom, including the Nitrogen, is sp 2 -hybrized and there are three pi bonds. Upon initial inspection, neither pyrrole nor furan are aromatic, since the N and are sp 3 -hybridized. owever, if the N and are re-hybridized, a lone pair sits in the new unhybridized p orbital, which puts another pair of electrons into the pi system, satisfying all four of ückel s rules. If both oxygens in 1,4- dioxin are rehybridized, the resulting molecule would have 8 pi electrons, which does not satisfy the last (4n+2) rule. Aromatic molecules can also be formed from anions or cations, recognizing that a carbanion or carbocation rehybridizes to sp 2. This is the situation for the cyclopentadienyl anion, or the cyclopropyl cycloheptatienyl cations. Nomenclature of Benzene ings Because it is a common structural motif, benzene rings are typically named with benzene as the parent name. owever, the names of some common derivatives have been adopted as well. C 3 N 2 C 3 Toluene Phenol Aniline Anisole When the benzene is the predominant functional group, molecules are named by listing the substituent group as a side group, and benzene (or one of the above) as the parent name. When the benzene is a side group on a longer or more complicated linear molecule, the benzene becomes a phenyl side group (-Ph). A benzene ring attached to a longer chain through a C 2 group is often referred to as a benzyl group ( Bn or Bz). A phenyl group 2 C A benzyl group When two groups are attached to a benzene ring, they can be arranged in one of three patterns: 1,2 or ortho 1,3 or meta 1,4 or para When naming disubstituted rings, use either the numbering scheme or the ortho- (o-), meta- (m-), or para- (p-). The designations are listed in front of the names. Br o-bromochlorobenzene Chemistry of Aromatic Systems Page 2 of 10 N 2 m-nitrotoluene If more that two substituent groups are attached to the ring, then they are numbered, making sure that the lowest set of numbers are used.

3 eactions of Toluene or at the Benzylic Position ark College The benzylic position of an alkyl substituted benzene ring is a special one the carbon-hydrogen bond is particularly weak due to stabilization of a carbocation or radical with resonance from the ring. As such, the position is easy to halogenate or oxidize. The benzylic position can be brominated through a radical mechanism, using NBS and an organic peroxide. The bromine is now a leaving group, so a host of substitution and elimination reaction can occur. A selection of reactions is shown below. nly one benzylic hydrogen is needed - NBS,! - Br 1) N 3 2) - N 2 NaCN CN 2, Pt C 2 N 2 A benzylic hydrogen is also susceptible for oxidation with inorganic reagents (or slowly with just air!). Phenols nly one benzylic hydrogen is needed 1) KMn 4,! 2) + -or- Na 2 Cr 2 7, + The rest of the chain gets chopped off! Phenol, or phenyl alcohol, is considerably more acidic than typical alcohols, due to the ability to delocalize the negative charge into the ring. As a result, pk a values for phenolic compounds are in the 9-10 range, rather than the typical for an aliphatic alcohol. Because of its more acidic nature, mild bases such as sodium hydroxide are all that are required to deprotonate a phenol. The result is a stronger oxygen nucleophile that can be used in an S N 2 reaction to make a phenolic ether. Na Br DMS Not only can the oxygen be used as a nucleophile! nce deprotonated, the anion can be envisioned as an enolate ion, and the carbon can be used as a nucleophile as well. This reaction is used in an industrial setting to make salicylic acid, which is a precursor to aspirin (acetylsalicylic acid), alphahydroxy acids used in cosmetics, and methyl salicylate, or oil of wintergreen (Wint--Green Lifesavers!). This reaction is the Kolbe carboxylation. Chemistry of Aromatic Systems Page 3 of 10

4 The Kolbe Carboxylation ark College Na C + keto Net eaction: 1) Na 2) C 2 3) 3 + enol NM of Aromatic ings The cyclic nature of the delocalized electrons in an aromatic ring sets up a ring current, which creates a sizeable magnetic field. This results in a downfield shift of aromatic protons that often appear in the ppm range. The delocalized nature of the electrons also sets up long-range second and third order coupling between the protons on an aromatic ring, making the splitting patterns difficult to interpret. Alkyl groups adjacent to the ring, such as the methyl group on toluene, appear around ppm. The three isomers of disubstituted benzene rings can often be differentiated in the NM. All will have an integration of 4 in the aromatic region, but will have different and distinctive splitting pattern based on the symmetry of the groups. A B A B C D A B eactions of Benzene rtho substituted rings will often display a large cluster of peaks, with no salient feature. The cluster should integrate to 4. A B C D ften, the meta substituted rings will give two peaks, with one peak, usually a singlet, that integrates to 1. The para substitution pattern is the easiest to distinguish, as the left-right symmetry results in a "doublet of doublets". Because benzene is not a pure alkene, the addition reaction studied for alkenes do not work. Instead, benzene rings undergo an addition-elimination, two-step reaction process, resulting in a substitution of a hydrogen on the ring for an electrophile. The general mechanism is shown below: + Add B lim Chemistry of Aromatic Systems Page 4 of 10

5 ark College The intermediate in the reaction is a resonance-stabilized carbocation, however since aromaticity is broken in this intermediate it is a fairly high-energy intermediate. Deprotonation at the addition site regenerates aromaticity. The net reaction is energetically favorable if the substituted electrophile is more electronegative than. We will consider 5 reactions of benzene, each involving an initial step using a Lewis acid catalyst to generate the electrophile, which then adds to the ring. ften, the base used to remove the proton in the final step also regenerates the Lewis Acid catalyst. alogenation 2 Fe 3 =, Br only I 2 N 3 alogenation reactions set up the ring as a precursor for nucleophilic Grignard reactions. The halogenated ring can be turned into a Grignard nucleophile by reaction with magnesium in ether. The full mechanism is included here, including the formation of the nucleophile and regeneration of the Lewis acid catalyst. I Fe 3 3 Fe 3 Fe Nitration Sulfonation N 3 2 S 4 2 S 4 N 2 S 3 This reaction proceeds by creating an N 2 +, or nitronium, electrophile. Sulfonated aromatic rings are often water-soluble, as the pka of the sulfonic acid group is Sulfonated molecules are often isolated as sodium salts. Friedel-Crafts Acylation 1) Al 3 2) 2 The reaction proceeds through the generation of an acylium-ion electrophile, which is a positively charged carbonyl carbon. Water is required as a work-up step to remove the aluminum chloride from the carbonyl oxygen, which is also a Lewis base. Friedel-Crafts Alkylation Al 3 The electrophile in a Friedel-Crafts alkylation is a carbocation, which is susceptible to rearrangement. This reaction is best for small alkyl chlorides, such as chloromethane or chloroethane, or for 2 or 3 chlorides; any alkyl halide where rearrangement does not occur. Chemistry of Aromatic Systems Page 5 of 10

6 ark College Also, because the addition of an alkyl group activates the ring by inductively adding electron density into the ring, polyalkylation often occurs. If the desired product is a benzene with a linear chain extending off the ring, the Friedel-Crafts alkylation will not yield the desired product- the carbocation will rearrange. To obtain this product, we can proceed via the acylation, and reduce the carbonyl group to a C 2 group. Al 3 not N 2 4,! - Wolff-Kischner eduction Al 3 Zn(g),! emmenson eduction Polysubstituted ings When one group is already on the ring, where does the second group go? What considerations must be made to determine this? The identity of the initial group on the ring, or the heteroatom in an aromatic heterocycle, has ultimate control over the position of a second group. To investigate this further, we need to consider two effects resonance and inductive effects. lectrophilic Aromatic Substitution occurs via a two-step mechanism, with a carbocation intermediate. The ability to stabilize or destabilize this intermediate is key to directing the location of the second substituent. esonance ffects Stabilizing the carbocation through resonance delocalization has a profound directing effect. Substituents that have lone pairs on them can add additional resonance structures to the carbocation intermediate. ther groups that have partial positive charge next to the ring destabilize the carbocation intermediate. Let s consider electrophilic addition to two different rings: aniline and nitrobenzene. Chemistry of Aromatic Systems Page 6 of 10

7 ark College N 2 N 2 N2 N B 2 N 2 ortho + meta N 2 N 2 N 2 N 2 N 2 N 2 N 2 para When the amine is the first substituent on the ring, the lone pair on the nitrogen can be utilized for a fourth resonance structure when the second substituent is added to the ortho or para positions. Therefore, all subsituents with a lone pair right next to the ring direct the second group to the ortho and para positions. Substitution at either position can occur, with the para position preferred when either group (the original or the second) is sterically bulky. N N 2 N2 N B 2 + ortho meta para N 2 N 2 N 2 N 2 N 2 N 2 The structures in boxes are not stabletwo positive charges are next to each other. When a nitro group is on the ring, the ortho and para positions are destabilized by resonance structures that place the ring carbocation next to the positive charge on the nitro group. The meta substituted ring avoids these structures and is therefore preferred. All substituents that have full or partial positive charge next to the ring are meta directors because they avoid unstable resonance structures. Chemistry of Aromatic Systems Page 7 of 10

8 Inductive ffects ark College Inductive effects occur when a side group either donates or withdraws electron density through bonds, by bond dipoles. The carbons in the benzene ring are sp 2 -hybridized and the electronegativity of the carbons are slightly elevated because of this increased electronegativity. Therefore, other carbon groups attached to the ring are slightly electron donating, and cause a second group to add in the ortho and para positions. ther electron-withdrawing groups, such as carbonyls and sulfonates, cause a second group to add to the meta position, as the dipoles pull electron density from the ring, further destabilizing the carbocation. Activation of the ing Activating the benzene ring sets the ring up for further addition. Since this addition occurs via the carbocation intermediate (which is also the slow step of the reaction), groups that stabilize that carbocation through resonance and/or induction have a greater activating effect than groups that withdraw electron density from the ring. The ramifications of these activating effects come into play when a third group is added to the ring. If there are competing directing effects between substituents on the ring, groups that are more activating (typically electron-donating o/p directors) influence the directing effects and the only products reflect the direction of the more stongly-activating group. rtho/para Directors Strongly Activating: Alcohols (-), ethers (-) and amines (-N 1 2 ) Meta Directors Moderately Deactivating: Aldehydes and ketones, Moderately Activating: sters and Amides (bonded thru, N) N Weakly Activating: Aliphatic groups (alkanes) Weakly Deactivating: alogens (-) acid derivatives (bonded thru carbonyls) N Strongly Deactivating: Nitro groups (-N 2 ), nitriles (-CN), trifluoromethyl groups (-CF 3 ) Synthesis Flexibility and the Sandmeyer eaction The discussions of directing and activating effects provide ammunition for flexibility in synthesis and specifying a particular substituent pattern. Nitrogen substituted benzene rings illustrate the ability to control placement beautifully, which we will investigate further in this section. A benzene ring can be directly nitrated with a mixture of nitric and sulfuric acids. The addition of a nitro group places a meta director on the ring. This nitro group can then be reduced to an amine by hydrogenation with a metal catalyst, resulting in an ortho/para directing group. The addition of a second or third group can occur at any step, controlling the regiochemistry of the synthesis. N 2 N 2 N 3 2 S 4 2 /Ni meta director ortho/para director Chemistry of Aromatic Systems Page 8 of 10

9 Although this route gives some flexibility, it doesn t allow for much choice in the side group. Fortunately, the amino group can be converted in a variety of things through the formation of a diazonium salt. This new collection of reactions adds additional flexibility for synthesis. Cu =, Br CuCN CN ark College N 2 N 2 BF 4,! F NaN 2, 0 C KI 3 + I +, 3 P 2 A few example syntheses are given to show the capabilities of this synthetic tool. Prepare m-chlorophenol from benzene. Both groups are o/p directors, so we can't just directly add the groups to the ring, as we will not get the correct subsitution pattern. owever, the alcohol is made via the diazonium salt, which starts as the meta directing nitro group. N 2 N 2 N 2 N 3 2 S 4 2 Fe 3 2 /Ni 1) NaN 2, 0 C 2) 3 + Chemistry of Aromatic Systems Page 9 of 10

10 S 3 Prepare this compound. Both side groups are meta directors, and neither is made from the diazonium salt. owever, we can still use the directing powers of the nitro and amine groups, and then convert the amine back to a hydrogen. ark College N 2 N 2 N 2 N 3 2 S 4 2 S 4 2 /Ni S 3 S 3 1) NaN 2, 0 C N 2 1) Al 3, 2) 2 2) 3 P 2 S 3 S 3 Chemistry of Aromatic Systems Page 10 of 10

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

CHEM 211 CHAPTER 16 - Homework

CHEM 211 CHAPTER 16 - Homework CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'RN, 4 o (salt) RR'RR'N + R = alkyl or aryl Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated

More information

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

Carboxylic Acid Structure and Chemistry: Part 2

Carboxylic Acid Structure and Chemistry: Part 2 Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,

More information

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1 Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Resonance Structures Arrow Pushing Practice

Resonance Structures Arrow Pushing Practice Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly

More information

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base INTRDUCTIN T INIC MECANISMS PART I: FUNDAMENTALS F BRNSTED-LWRY ACID-BASE CEMISTRY YDRGEN ATMS AND PRTNS IN RGANIC MLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

INTDUCTIN T LEWIS ACID-BASE CEMISTY DEINITINS Lewis acids and bases are defined in terms of electron pair transfers. A Lewis base is an electron pair donor, and a Lewis acid is an electron pair acceptor.

More information

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons Everything You eed to Know About Mechanisms A) The orrect Use of Arrows to Indicate Electron Movement The ability to write an organic reaction mechanism properly is key to success in organic chemistry

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

ACID and BASES - a Summary

ACID and BASES - a Summary AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3

More information

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

Physicochemical Properties of Drugs

Physicochemical Properties of Drugs Therapeutics I Michael B. Bolger 1/3/02 bjectives: At the end of the next hour: Physicochemical Properties of Drugs 1. The student should be able to calculate the degree of ionization for an acidic or

More information

Chapter 10 Conjugation in Alkadienes and Allylic Systems

Chapter 10 Conjugation in Alkadienes and Allylic Systems . 0 onjugated Systems hapter 0 onjugation in Alkadienes and Allylic Systems onjugated systems are those in which a π-bond is connected or conjugated (from the Latin conjugare which means to link r yoke

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes + Answers. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation)

More information

Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by

Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by Chapter 15 Radical Reactions Radicals are reactive species with a single unpaired electron, formed by homolysis of a covalent bond; a radical contains an atom that does not have an octet of electrons,

More information

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,

More information

Reactions of Fats and Fatty Acids

Reactions of Fats and Fatty Acids Reactions of Fats and Fatty Acids Outline Fats and Oils Fatty Acid Biosynthesis Biodiesel Homework We hear quite a lot about the place of fats and oils in human nutrition. Foods high in fat are at the

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES 10 APTER 1 TE EMITRY F ARBXYLI AID DERIVATIVE TUDY GUIDE LIK 1.5 Esters and ucleophiles 1.17 Give the structure of the product in the reaction of each of the following esters with isotopically labeled

More information

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter I. Introduction YDOABON STUTUE AND EMISTY: AOMATIS Jack Deuiter ydrocarbons are organic compounds consisting of - and - bonds. arbon has a valence of four and thus requires four electrons or bonds to complete

More information

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Chapter 11. Free Radical Reactions

Chapter 11. Free Radical Reactions hapter 11 Free Radical Reactions A free radical is a species containing one or more unpaired electrons Free radicals are electron-deficient species, but they are usually uncharged, so their chemistry is

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

The dipolar nature of acids

The dipolar nature of acids I. Introduction arboxylic Acid Structure and hemistry: Part 1 Jack Deuiter arboxylic acids are hydrocarbon derivatives containing a carboxyl () moiety. ecall that carbon has four valence electrons and

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

Carbonyl Chemistry (12 Lectures)

Carbonyl Chemistry (12 Lectures) arbonyl hemistry (12 Lectures) Aim of ourse Professor Donna G. Blackmond d.blackmond@imperial.ac.uk tel. 41193 oom 639 1 To build upon elements of Dr E.. Smith s and Dr. D.. Braddocks s course. To introduce

More information

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, I of Unknown In this experiment you are going to do a series of tests in order to determine whether or not an alcohol is a primary (1 ), secondary

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

CHE 232 - Organic Chemistry Exam 1, February 10, 2004

CHE 232 - Organic Chemistry Exam 1, February 10, 2004 CE 232 - rganic Chemistry Exam 1, February 10, 2004 ame Student ID o. Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second:

More information

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30 Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions

More information

Avg. 16.4 / 25 Stnd. Dev. 8.2

Avg. 16.4 / 25 Stnd. Dev. 8.2 QUIZ TREE Avg. 16.4 / 25 Stnd. Dev. 8.2 xidation of Alcohols with Chromium (VI): Jones xidation 2 Alcohols are oxidized by a solution of chromium trioxide in aqueous acetone (2), in the presence of an

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi rganic Chemistry Jasperse Acid- Practice Problems A. Identify each chemical as either an acid or a base in the following reactions, and identify conjugate relationships. -You should have one acid and one

More information

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics SUBSTITUTION EATION AATEISTIS Sn2: Substitution cleophilic, Bimolecular: haracteristics 1) The 2 means Bimolecular (or 2 nd order) in the rate-determining (slow) step: rate = k [: - ] [-X] or rate = k

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

Final Examination, Organic Chemistry 1 (CHEM 2210) December 2000 Version *A* A. B. C. D.

Final Examination, Organic Chemistry 1 (CHEM 2210) December 2000 Version *A* A. B. C. D. Final Examination, rganic hemistry 1 (EM 2210) December 2000 Version *A* 1. What are the hybridization of, and the geometrical shape around, the nitrogen atom in the following molecule? N 3 3 A. sp, linear

More information

Experiment #8 properties of Alcohols and Phenols

Experiment #8 properties of Alcohols and Phenols Introduction Experiment #8 properties of Alcohols and Phenols As has been mentioned before, over 20 million organic compounds have been identified. If each substance had to be studied as an entity completely

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

CH 3 Addition to an alkene with Br 2. No reaction when an aromatic molecule is mixed with Br 2. No Reaction. + H Br

CH 3 Addition to an alkene with Br 2. No reaction when an aromatic molecule is mixed with Br 2. No Reaction. + H Br RADIALS Reactions with 2 : 2 3 Addition to an alkene with 2 2 No reaction when an aromatic molecule is mixed with 2 2 (in the dark) No Reaction 2 h (in the light) During a demonstration by Dr., the reactants

More information

Addition Reactions of Carbon-Carbon Pi Bonds - Part 1

Addition Reactions of Carbon-Carbon Pi Bonds - Part 1 Addition eactions of arbon-arbon Pi Bonds - Part 1 3 δ+ 2 δ 3 3 3 + 2 3 2 3 What Is an Addition eaction? Addition reaction: Atoms or groups are added to opposite ends of a pi bond. X Y Why should I study

More information

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: ALKENES AND ALKYNES REACTINS A STUDENT W AS MASTERED TE MATERIAL IN TIS SECTIN SULD BE ABLE T: 1. Given the starting materials and reaction conditions, predict the products of the following reactions of

More information

Suggested solutions for Chapter 7

Suggested solutions for Chapter 7 s for Chapter 7 7 PRBLEM 1 Are these molecules conjugated? Explain your answer in any reasonable way. C Et C Et C Et Revision of the basic kinds of conjugation and how to show conjugation with curly arrows.

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen 340 14. Nucleophilic substitution at C= with loss of carbonyl oxygen Ph In Chapter 13 we saw this way of making a reaction go faster by raising the energy of the starting material. We also saw that the

More information

Chapter 2 - Polar Covalent Bonds; Acids and Bases

Chapter 2 - Polar Covalent Bonds; Acids and Bases Chapter 2 - Polar Covalent Bonds; Acids and Bases For questions 1-10 give the letter of the term that best matches the given definition. a. Brønsted-Lowry Acid f. Ionic Bond b. Brønsted-Lowry Base g. Covalent

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

2814 hains, Rings and Spectroscopy June 2003 Mark Scheme 2814 Mark Scheme June 2003 The following annotations may be used when marking: X = incorrect response (errors may also be underlined) ^ = omission

More information

IDENTIFICATION OF ALCOHOLS

IDENTIFICATION OF ALCOHOLS IDENTIFICATION OF ALCOHOLS Alcohols are organic compounds that which considered as derivatives of water. One of the hydrogen atoms of water molecule (H-O-H) has been replaced by an alkyl or substituted

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Experiment 11. Infrared Spectroscopy

Experiment 11. Infrared Spectroscopy Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

More information

Q.1 Carbonyl compounds are formed by oxidation of alcohols;

Q.1 Carbonyl compounds are formed by oxidation of alcohols; arbonyl compounds 814 1 ARBYL MPUDS - Aldehydes and Ketones Q.1 arbonyl compounds are formed by oxidation of alcohols; a) Which type of alcohol is oxidised to an aldehyde? b) Which type of alcohol is oxidised

More information

1. What is the hybridization of the indicated atom in the following molecule?

1. What is the hybridization of the indicated atom in the following molecule? Practice Final Exam, Chemistry 2210, rganic Chem I 1. What is the hybridization of the indicated atom in the following molecule? A. sp 3 B. sp 2 C. sp D. not hybridized 2. Name the functional groups in

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000

More information

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group.

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. Name: Date: 1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. 2. Which of the following statements concerning

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami. Tel: (618)545-3361. Email: Ngoswami@kaskaskia.edu. Web: www.kc.cc.il.

CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami. Tel: (618)545-3361. Email: Ngoswami@kaskaskia.edu. Web: www.kc.cc.il. CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami Tel: (618)545-3361 Email: Ngoswami@kaskaskia.edu Web: www.kc.cc.il.us/ngoswami CHEM 208 COURSE SYLLABUS KASKASKIA COLLEGE NAME TERM YEAR TEXT:

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Instructor: Professor Wolf D. Habicher, Professor Claus Rüger Meeting Times Lectures: twice a week at 90 minutes each Discussions:

More information

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS 0. ULFNATE AND INRGANIC ETER DERIVATIVE F ALCL 44 R 2 C L CR 2 carbocation Lewis acid base association X (halide ion) 2 $ R 2 C L CR 2 R R X C A C $ alkyl halide R R alkene $ $ Brønsted acid base reaction

More information

These instructions are for a classroom activity which supports OCR A Level Chemistry A.

These instructions are for a classroom activity which supports OCR A Level Chemistry A. Lesson Element Keyword activities Instructions for teachers These instructions are for a classroom activity which supports OCR A Level Chemistry A. Just a minute! To run this activity you will need a set

More information

pk a Values for Selected Compounds

pk a Values for Selected Compounds Appendix A pk a Values for Selected ompounds ompound pk a ompound pk a I 10 Br 9 2 S 4 9 + 3 3 7.3 3 S 3 7 Br 4.0 4.2 3 4.3 2 N l 7 [( 3 ) 2 ] + 3.8 [ 3 2 ] + 2.5 3 + 1.7 3 S 3 1.2 + 3 N2 0.0 F 3 0.2 l

More information

Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds

Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds Contents 1. Carbene Complexes 2. Silylene Complexes 3. Metal-Heteroatom Multiple Bonds 1. Carbene Complexes 1.1 Classes of Carbene

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

The Aldol Condensation

The Aldol Condensation The Aldol ondensation Synthesis and Analysis of 2,3,4,5-Tetraphenylcyclopentadienone Yakety Sax Bennie ill theme song TPP eactions of Aldehydes and Ketones ' 1. Nucleophilic Addition. 2. Substitution at

More information

Conjugation is broken completely by the introduction of saturated (sp 3 ) carbon:

Conjugation is broken completely by the introduction of saturated (sp 3 ) carbon: Conjugation. Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. ne of the simplest conjugated molecules is 1,3-butadiene. Conjugation comes in three flavors, the

More information