Scripps Proton Therapy Center: Configuration and Implementation
|
|
|
- Nathaniel Bryan
- 9 years ago
- Views:
Transcription
1 Scripps Proton Therapy Center: Configuration and Implementation Anthony Mascia Proton Symposium 2013 Annual AAPM Meeting Indianapolis, Indiana USA
2 Facility Configuration
3 Scripps Proton Therapy Center ***All Rooms : PBS Only 360 o Gantry Fixed Horizontal Beamline Cyclotron Max E : 250 MeV
4 Scripps Proton Therapy Center Gantry-mounted dual x-ray imaging system Full CBCT function Internal and external imaging console TrueBeam-like treatment console Robotic, 6-degree of freedom patient positioner
5 Scripps Proton Therapy Center Designed treatment capacity: 2400 pts per year Planned patient mix: Prostate Cancer: 800 patients/year Lung Cancer: 200 patients/year. Head & Neck Cancers: 200 patients/year Pediatric Cancer: 100 patients/year Breast Cancer: 200 patients/year CNS Tumors: 400 patients/year Other tumor sites
6 Scripps Proton Therapy Center Physicians (4) Carl Rossi Huan Giap, Ryan Grover, Andrew Chang Physicists (7) Lei Dong Annelise Giebler, Anthony Mascia, Yongbin Zhang, Franko Piskulich, Richard LePage, Luis Perles Physicist Assistants To be hired: January 2014 Dosimetrists (2) First cohort started: July 2013 Radiation Therapists (5) First cohort started: August 2013
7 Quality Assurance
8 Daily Machine QA Duration 15 minutes; performed by RTTs In short, an end-to-end test using daily QA detector Rotate proton energy daily, Monday Through Friday PBS volumetric irradiations (i.e. not single spots) Courtesy PTW Ding X, Zheng Y, Zeidan O, Mascia A, Hsi W, Kang Y, Ramirez E, Schreuder N, Harris B. A novel daily QA system for proton therapy. J Appl Clin Med Phys Mar 4;14(2):4058
9 Weekly Machine QA Summary Comprehensive spot pattern tests Initially performed: weekly Deliver a fixed spot pattern at two gantry angles, two energies This spot pattern is benchmarked at commissioning The physical measurement results and their comparison to benchmark are recorded 30 minutes per room Test Parameters Position location of spot on Lynx versus planned location Shape ratio of x-axis and y-axis Size sigma of x-axis and y-axis Output output constancy Courtesy IBA Dosimetry
10 Monthly Machine QA The Daily + Weekly QA programs are comprehensive and reviewed daily/weekly; detailed trend analysis performed as part of monthly QA Monthly QA tests a wider spectrum of the beam delivery system in one session (e.g. more ranges, more doses, etc) Precise quantification of the treatment couch using Winston-Lutz style tests performed at cardinal gantry angles Image quality assessment of the imaging system
11 Annual QA As opposed to constancy measurements, the annual QA re-measures / re-validates baseline/commissioning data using commissioning caliber equipment Detectors: Water tank + Bragg peak chamber Water tank + Farmer chamber Lynx or Logos scintillator detectors OctaviusXDR ion chamber array Absolute Calibration: IAEA TRS 398
12 Patient Specific QA Every field for every patient undergoes quality assurance procedure prior to treatment Procedure highlights: For each field, three transverse profiles, each at different depth, measured with 2D ion chamber array; compared to calculation in Eclipse For each field, at least one point dose measurement is made using cross-calibrated ion chamber (i.e. IBA Dosimetry CC04) Measurement setup: 1. Gantry 0 degrees: all field recalculated to 0 degrees; all fields measured at 0 degrees 2. Planned Gantry Angle : all fields measured at planned gantry angles and compared to calculation Passing criteria is being developed Starting point: 3% / 3mm with 90% passing Evalute and determine during commissioning and validation
13 Novel Monthly Machine QA Technique Courtesy PTW Use OctaviusXDR or StarCheckMaxi + BQ Check phantom Using single detector, measure: spot position, dose constancy, proton range/energy, field uniformity (symmetry/flatness) Additional setup (e.g. imaging bb + Lynx mounted to gantry) required for Winston Lutz tests Testing/development with Varian, Rinecker Proton Therapy Center and Scripps Proton Therapy Center
14 Novel QA Implementation Logos Systems Inc XRV device: Conical scintillator-based detector Alignment: laser, imaging device, and beam isocenter. Isofocus Beam Summary Beam Center X Y Z Average: Max: Min: StDev: FD= FE= of DE: X (mm) Y (mm) Z (mm) Laser Error
15 Novel Patient QA Technique Aluminum mount interfaces to Varian nozzle OctaviusXDR array rigidly held in place 4 x Slide Nuts securely hold up to 25.0cm of solid water in front of the ion chamber array Allows transverse plane at any water equivalent depth (up to 25.0cm) Because Varian nozzle holder translates, also allows measurements upstream and down stream of isocenter Thanks to Glen Mounce, machinist
16 Acknowledgements SPTC Colleagues, especially the physics group: Lei Dong Franko Piskulich Richard LePage Annelise Giebler Yongbin Zhang Luis Perles Our partners at Advanced Particle Therapy (APT) Our partners at Varian Medical Systems, Particle Therapy Group
17 Thank you!
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations Moyed Miften, PhD Dept of Radiation Oncology University of Colorado Denver Questions Disease Stage (local, regional,
IBA Proton Therapy. Biomed days 2015. Vincent Bossier. System Architect [email protected]. Protect, Enhance and Save Lives
Vincent Bossier System Architect [email protected] IBA Proton Therapy Biomed days 2015 Protect, Enhance and Save Lives 1 Agenda AN INTRODUCTION TO IBA WHY PROTON THERAPY CLINICAL WORKFLOW TREATMENT
ADROTERAPIA A MEDAUSTRON
ADROTERAPIA A MEDAUSTRON Antonio Carlino Qualified Medical Physicist EBG MedAustron GmbH, Wiener Neustadt, Austria Outline Introduction and milestones Building and construction Treatment beam lines and
Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study
Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study Jin Sung Kim, Jung Suk Shin, Daehyun Kim, EunHyuk Shin, Kwangzoo Chung, Sungkoo Cho, Sung Hwan Ahn, Sanggyu
Performance evaluation and quality assurance of Varian enhanced dynamic wedges
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 1, WINTER 2006 Performance evaluation and quality assurance of Varian enhanced dynamic wedges Parham Alaei and Patrick D. Higgins Department
Quality Assurance in Stereotactic. Radiotherapy
Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy David Shepard, Ph.D. Swedish Cancer Institute Seattle, WA Timothy D. Solberg, Ph.D. University of Texas Southwestern
RapidArc QA Program in Prince of Wales Hospital. Michael L. M. Cheung, Physicist Prince of Wales Hospital Hong Kong
RapidArc QA Program in Prince of Wales Hospital Michael L. M. Cheung, Physicist Prince of Wales Hospital Hong Kong Hardware and Software 3 out of 5 Linacs capable of delivering RapidArc: 2 Varian Clinac
Post Treatment Log File Based QA Varian. Krishni Wijesooriya, PhD University of Virginia. D e p a r t m e n t of R a d i a t i o n O n c o l o g y
Post Treatment Log File Based QA Varian Krishni Wijesooriya, PhD University of Virginia Learning Objectives What information could be accessed via log files Scenarios where Log files could be used. How
HADRON THERAPY FOR CANCER TREATMENT
HADRON THERAPY FOR CANCER TREATMENT Seminar presented by Arlene Lennox at Fermilab on Nov 21, 2003 CANCER STAGES LOCAL TUMOR REGIONAL METASTASIS SYSTEMIC DISEASE CANCER TREATMENT SURGERY RADIATION THERAPY
Proton Therapy - Frequently Asked Questions For Clinicians
Proton Therapy - Frequently Asked Questions For Clinicians Background on Proton Therapy What is proton therapy? Proton therapy is a major technological advance in cancer care. It uses protons, accelerated
World-first Proton Pencil Beam Scanning System with FDA Clearance
Hitachi Review Vol. 58 (29), No.5 225 World-first Proton Pencil Beam Scanning System with FDA Clearance Completion of Proton Therapy System for MDACC Koji Matsuda Hiroyuki Itami Daishun Chiba Kazuyoshi
QA of intensity-modulated beams using dynamic MLC log files
36 Original Article QA of intensity-modulated beams using dynamic MLC log files M. Dinesh Kumar, N. Thirumavalavan, D. Venugopal Krishna, M. Babaiah Department of Radiation Oncology, Yashoda Cancer Institute,
How To Treat Cancer With Proton Therapy
Scripps Proton Therapy Center Advanced Cancer Treatment Compassionate, Personal Care Scripps Proton Therapy Center Advanced Cancer Treatment. Compassionate, Personal Care. When you or someone you love
Use of 3D Printers in Proton Therapy
Use of 3D Printers in Proton Therapy Nicholas Remmes, PhD Mayo Clinic, Rochester, MN Department of Radiation Oncology [email protected] 2015 MFMER slide-1 Disclosures/Confessions My 3D Printing
Worldwide Quality Assurance networks for radiotherapy dosimetry
Worldwide Quality Assurance networks for radiotherapy dosimetry Joanna Izewska Dosimetry and Medical Radiation Physics Section [email protected] Audit in radiotherapy dosimetry Objectives to enhance confidence
HITACHI Proton Beam Therapy System
HITACHI Proton Beam Therapy System Masumi Umezawa, M.S. Hitachi, Ltd., Hitachi Research Laboratory HITACHI Proton Beam Therapy System Contents 1. Overview of HITACHI 2. HITACHI Proton Beam Therapy and
Quality Assurance of Radiotherapy Equipment
Clinical Implementation of Technology & Quality Assurance in Radiation Oncology For the course: Survey of Clinical Radiation Oncology 1 Quality Assurance of Radiotherapy Equipment Outline: A. Criteria
THE DOSIMETRIC EFFECTS OF
THE DOSIMETRIC EFFECTS OF OPTIMIZATION TECHNIQUES IN IMRT/IGRT PLANNING 1 Multiple PTV Head and Neck Treatment Planning, Contouring, Data, Tips, Optimization Techniques, and algorithms AAMD 2013, San Antonio,
Radiotherapy in Hungary: present status and future needs. Tibor Major, PhD National Institute of Oncology Radiotherapy Department Budapest, Hungary
Radiotherapy in Hungary: present status and future needs Tibor Major, PhD National Institute of Oncology Radiotherapy Department Budapest, Hungary Academia Europaea Section Workshops, Bergen, 10 September,
Cyclotron Centre in Poland and 2D thermoluminescence dosimetry
Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Jan Gajewski Institute of Nuclear Physics, Kraków, Poland Department of Radiation Dosimetry Nuclear Physics Institute Academy of Science of
Secondary Neutrons in Proton and Ion Therapy
Secondary Neutrons in Proton and Ion Therapy L. Stolarczyk Institute of Nuclear Physics PAN, Poland on behalf of WG9 EURADOS Acknowledgments EURADOS Workig Group 9 Roger Harrison Jean Marc Bordy Carles
2015 ASTRO INVESTOR MEETING. October 20, 2015
2015 ASTRO INVESTOR MEETING October 20, 2015 Agenda 7:30AM Welcome Dow Wilson Our Cancer Care Vision: The Next Big Advances Kolleen Kennedy Particle Therapy: Building Momentum Dow Wilson Q & A 9:00AM Booth
Current Status of Proton Clinical Activities at PTC H
Current Status of Proton Clinical Activities at PTC H Michael Gillin, PhD, Professor, Chief of Clinical Services Department of Radiation Physics, UT MDACC The University of Texas M.D. Anderson Cancer Center
Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015
INDUSTRIAL DESIGN Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG VARIAN ONCOLOGY SYSTEMS 1 VARIAN ONCOLOGY SYSTEMS CERN Accelerator, May 2015 Industrial Design
3D SCANNER. 3D Scanning Comes Full Circle. Your Most Valuable QA and Dosimetry Tools
3D SCANNER 3D Scanning Comes Full Circle Your Most Valuable QA and Dosimetry Tools BETTER OUTCOMES THROUGH TECHNOLOGY The 3D SCANNER is different by design. 3D SCANNER has been developed from the ground
Status and perspective of emission imaging techniques for ion beam therapy in Lyon
14th International Conference on Nuclear Reaction Mechanisms, Varenna 18th June 2015 Status and perspective of emission imaging techniques for ion beam therapy in Lyon on behalf of the CAS-PHABIO group
MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline
Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues Timothy D. Solberg David Geffen School of Medicine at UCLA TU-A-517A-1 Presentation Outline MLC Characteristics TG-50
IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.
DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering
1. Provide clinical training in radiation oncology physics within a structured clinical environment.
Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible
Overview of Proton Beam Cancer Therapy with Basic Economic Considerations
Overview of Proton Beam Cancer Therapy with Basic Economic Considerations Wayne Newhauser, Ph.D. Proton Therapy Project, Houston Cyclotron 235 MeV 300 na Extraction Channel Radial Probe Energy Degrader
MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM
MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, [email protected] Pontifícia Universidade Católica do Paraná / Rua Imaculada
The Science behind Proton Beam Therapy
The Science behind Proton Beam Therapy Anthony Zietman MD Shipley Professor of Radiation Oncology Massachusetts General Hospital Harvard Medical School Principles underlying Radiotherapy Radiation related
First Three Years After Project Proton Therapy Facility:
39. Project Related Utilization and Financial Information. Proton Therapy Facility: Unit of Service Delivery Projected Utilization FY2017 FY2018 FY2019 Estimated Patients 448 670 808 Average Revenue Per
Proton Therapy. What is proton therapy and how is it used?
Scan for mobile link. Proton Therapy Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater
Development of on line monitor detectors used for clinical routine in proton and ion therapy
Development of on line monitor detectors used for clinical routine in proton and ion therapy A. Ansarinejad Torino, february 8 th, 2010 Overview Hadrontherapy CNAO Project Monitor system: Part1:preliminary
Proton Therapy Essentials
Proton Therapy Essentials An Architect s Perspective Presented By: Tsoi/Kobus & Associates Architects: Erik Mollo-Christensen, AIA Principal Jonathan Cohen, AIA Associate Principal Proton Therapy Essentials
Current Status and Future Direction of Proton Beam Therapy
Current Status and Future Direction of Proton Beam Therapy National Cancer Center Hospital East Division of Radiation Oncology and Particle Therapy Tetsuo Akimoto Comparison of status of particle therapy
Quality Assurance for Treatment Planning Systems
Quality Assurance for Treatment Planning Systems PTCOG Educational Session May 19 th 2010 Oliver Jäkel Heidelberg Ion Beam Therapy Center and German Cancer Research Center, Heidelberg Introduction Outline
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy Katja Langen, PhD Research supported by TomoTherapy Inc. Today s Lecture Introduction to helical
THE POWER AND PRECISION OF PROTON BEAM THERAPY IS WITHIN REACH
THE POWER AND PRECISION OF PROTON BEAM THERAPY IS WITHIN REACH PROTON THERAPY OVERVIEW The American Cancer Society estimates 1.6 million new cancer cases in the United States this year. Approximately two
CHAPTER 10. ACCEPTANCE TESTS AND COMMISSIONING MEASUREMENTS
Review of Radiation Oncology Physics: A Handbook for Teachers and Students CHAPTER 10. ACCEPTANCE TESTS AND COMMISSIONING MEASUREMENTS JOHN L. HORTON Department of Radiation Physics University of Texas
In 1946 Harvard physicist Robert Wilson (1914-2000) suggested:
In 1946 Harvard physicist Robert Wilson (1914-2000) suggested: Protons can be used clinically Accelerators are available Maximum radiation dose can be placed into the tumor Proton therapy provides sparing
Digital vs. Analogue Control Systems
Digital vs. Analogue Control Systems Presented at the 2011 Annual Meeting of the American College of Medical Physics, Chattanooga, TN, May 1, 2011 Ivan A. Brezovich, PhD, Dept. of Rad Onc, Univ of Alabama
Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation.
Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Andrew Bridges Clinical Scientist Diagnostic Radiology & Radiation Protection Physics Overview What is CBCT? Use of CBCT
3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage
3D SCANNERTM 3D Scanning Comes Full Circle Relative 3D Dosimetry offering the easiest setup, most objectivity, and best consistency available The 3D SCANNER Advantage Advanced Design Ring and diameter
Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy
Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.176-180 (2011) ARTICLE Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy Fada
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT Wen Li, Andrew Vassil, Lama Mossolly, Qingyang Shang, Ping Xia Department of Radiation Oncology Why
Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University
Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually
Acknowledgements. PMH, Toronto David Jaffray Doug Moseley Jeffrey Siewerdsen. Beaumont Hospital Di Yan Alvaro Martinez. Elekta Synergy Research Group
Cone Beam CT guided Radiotherapy Jan-Jakob Sonke Acknowledgements NKI-AVL: Marcel van Herk, Jose Belderbos, Suzanne van Beek, Anja Betgen, Josien de Bois, ~Rianne de Jong, Michel Frenay, Danny Minkema,
Quality Assurance of accelerators; the technologists responsibility
Quality Assurance of accelerators; the technologists responsibility Christa Timmermans Radiation Technologist, Erasmus MC- Daniel den Hoed, Rotterdam, The Netherlands EORTC-ROG RT technologists Section
Proton beam. Medical Technical Complex Joint Institute for Nuclear Research, Dubna, Russia
Proton beam Medical Technical Complex Joint Institute for Nuclear Research, Dubna, Russia Egyptian Candidates Proton therapy It can do more!!! Effectiveness of the proton therapy in targeting and curing
A Thesis. entitled. Retrofitted Micro-MLC SRS System. George H. Hancock
A Thesis entitled Development of a Comprehensive Linac-based Quality Assurance Program for a Retrofitted Micro-MLC SRS System. by George H. Hancock Submitted to the Graduate Faculty as partial fulfillment
Clinical Education A comprehensive and specific training program. carry out effective treatments from day one
Proton Therapy Clinical Education A comprehensive and specific training program carry out effective treatments from day one Forewarned is forearmed Although over 100,000 patients have been treated in proton
Proton therapy, yesterday, today and tomorrow
Proton therapy, yesterday, today and tomorrow Opening of the BNEN 14th Academic Year 2015-2016 Mol, September 21 2015 Yves Jongen (Founder, CRO) IBA Group [email protected] Protect, Enhance and
NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning
NIA RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed Date: November,
Proton tracking for medical imaging and dosimetry
Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4
QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET
Centers for Quantitative Imaging Excellence (CQIE) LEARNING MODULE QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET American College of Radiology Clinical Research Center v.1 Centers for Quantitative
RADIATION THERAPY. Dosimetry Pioneers since 1922 NEW
RADIATION THERAPY Dosimetry Pioneers since 1922 NEW New Product Releases 2015 One phantom multiple options 4D Patient and Machine QA Modular Phantom for Stay flexible. Go modular. } Revolutionary new modular
Proton therapy out of reach? Think again!
FINANCING STRATEGIES In-depth exploration Proton therapy out of reach? Think again! The role of the Financial Solutions team within IBA s Treasury and Financing group is twofold. The Financial Solutions
ACCELERATORS AND MEDICAL PHYSICS 2
ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.
CONQUERING CANCER SAVING LIVES. Mayo Clinic Proton Beam Therapy Program
CONQUERING CANCER SAVING LIVES Mayo Clinic Proton Beam Therapy Program A MALIGNANT TUMOR IS A TYRANT Cancer takes all the body s resources for itself invading and displacing surrounding tissues. Abolishing
ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS. Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic
ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic Disclosure I have received research grants from Siemens
Northern Illinois. proton therapy facility
Northern Illinois proton therapy facility February, 2007 Northern Illinois proton therapy facility 2 Projected 16-State Service Area The Need Scale Legend Potential service region Existing proton therapy
Intensity-Modulated Radiation Therapy (IMRT)
Scan for mobile link. Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear accelerators to safely and painlessly deliver precise radiation doses to a tumor while
Proton Radiotherapy. Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute. Lead Virginia.
Proton Radiotherapy Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute Lead Virginia g October 16, 2009 About Proton Therapy Cancer is the (2nd) largest cause
Proton Therapy Center at the Institute of Nuclear Physics in Kraków - from the Eye Treatment to the Scanning Gantry
Proton Therapy Center at the Institute of Nuclear Physics in Kraków - from the Eye Treatment to the Scanning Gantry Teresa Cywicka - Jakiel Institute of Nuclear Physics (IFJ PAN), Kraków, POLAND National
PROTON THERAPY FREQUENTLY ASKED QUESTIONS
PROTON THERAPY FREQUENTLY ASKED QUESTIONS Table of contents 1. What is cancer?... 2 2. How is cancer treated?... 3 3. What is proton therapy?... 4 4. What are the clinical benefits of proton therapy?...
Challenges in small field MV photon dosimetry
Challenges in small field MV photon dosimetry Maria Mania Aspradakis Cantonal Hospital of Lucerne, Lucerne, Switzerland Cantonal Hospital of Lucerne, Lucerne, Switzerland [email protected] Why are
CBCT for Prone Breast. Todd Jenkins, MS, DABR Nash Cancer Treatment Center
CBCT for Prone Breast Todd Jenkins, MS, DABR Nash Cancer Treatment Center Disclosures No outside funding or support Disclosures Techniques likely apply across vendors Prone Breast Technique Rationale
Protons vs. CyberKnife. Protons vs. CyberKnife. Page 1 UC SF. What are. Alexander R. Gottschalk, M.D., Ph.D.
Protons vs. CyberKnife UC SF Protons vs. CyberKnife UC SF Alexander R. Gottschalk, M.D., Ph.D. Associate Professor and Director of the CyberKnife Radiosurgery Program Department of Radiation Oncology University
Failure Modes and Effects Analysis (FMEA)
Failure Modes and Effects Analysis (FMEA) Sasa Mutic Washington University School of Medicine St. Louis Missouri Failure Modes and Effects Analysis Objectives: To motivate the use of FMEA and to provide
Our Department: structure and organization
EORTC meeting for Radiation Therapy Technologists: RTT s role in the modernization of radiotherapy 10th October 2014, Villejuif (Grand Paris), France Elekta Stereotactic Body Frame: transmission modelled
Design and Scheduling of Proton Therapy Treatment Centers
Design and Scheduling of Proton Therapy Treatment Centers Stuart Price, University of Maryland Bruce Golden, University of Maryland Edward Wasil, American University Howard Zhang, University of Maryland
Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter
Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter T.M.Taha Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo.P.O.13759 Egypt.
HDR Brachytherapy 1: Overview of QA. Disclosures: Learning Objectives 7/23/2014
HDR Brachytherapy 1: Overview of QA Bruce Libby Department of Radiation Oncology University of Virginia Health System Disclosures: Nondisclosure agreement with Varian Brachytherapy Shareholder- Varian,
Evaluation of complexity and deliverability of IMRT- treatment plans. Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer
Evaluation of complexity and deliverability of IMRT- treatment plans Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer June 11 Abstract Background: Intensity modulated beams are used
Proton therapy at Kraków, Poland: Fighting cancer with accelerator technologies
Proton therapy at Kraków, Poland: Fighting cancer with accelerator technologies Pawel Olko Institute of Nuclear Physics Krakow Poland Democritus 460 350 BC Outline 1. Rationale for hadron therapy 2. We
Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm
Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 200-22, p.5-8 MONTE CARLO SIMULATION ANALYSIS OF BACKSCATTER FACTOR FOR LOW-ENERGY X-RAY K. Shimizu, K. Koshida and T. Miyati Department
AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams
AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Peter R. Almond Brown Cancer Center, Louisville, Kentucky 40202 Peter J. Biggs Department of Radiation Oncology,
Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13
Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer
Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques
Recognition I will take this opportunity to recognize and thank the following people s contributions to this presentation. Considerations for: Diagnostic Radiology, Nuclear Medicine and, Oncology M. S.
Therapy with protons and ion beams
Therapy with protons and ion beams Biomedical Physics Lecture WiSe 2012/13 many slides from J. Willkens (TUM) Key quesions: How does ion cancer therapy work? What is the physics behind it? How can physics
Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators
Technical Note: 9 Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators 1- Introduction The VALIDATOR, model TN-ID-60, is a compact, and stand-alone dosimetry
The feasibility of a QA program for ISIORT Trials
Baveno, Italy June 22-24, 2012 The feasibility of a QA program for ISIORT Trials Frank W. Hensley 1, Don A. Goer 2, Sebastian Adamczyk 3, Falk Roeder 1, Felix Sedlmayer 4, Peter Kopp 4 1 University Clinics
Total Solutions. Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA phone 412 312 6700 800 70 NOMOS www.nomos.com
Serial Tomotherapy IGRT Total Solutions Treatment Planning Brachytherapy Imaging Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA BMI.v.08.2010 Best NOMOS Your Single Source Oncology Solutions Provider
Medical Physics Residency Program Department of Radiation and Cellular Oncology The University of Chicago Chicago, IL 60637
Medical Physics Residency Program Department of Radiation and Cellular Oncology The University of Chicago Chicago, IL 60637 Program Overview: The Medical Physics Residency Training Program in Radiation
Key words: treatment planning, quality assurance, 3D treatment planning
American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning Benedick Fraass a) University of Michigan Medical
Proton Therapy: Cutting Edge Treatment for Cancerous Tumors. By: Cherilyn G. Murer, JD, CRA
Proton Therapy: Cutting Edge Treatment for Cancerous Tumors By: Cherilyn G. Murer, JD, CRA Introduction Put simply, proton therapy is a new cutting edge cancer treatment that promises better outcomes for
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS HOW DOES RADIATION THERAPY WORK? Cancer is the unrestrained growth of abnormal cells within the body. Radiation therapy kills both
Safety Risk Management in RT: A Software Manufacturer Perspective
Safety Risk Management in RT: A Software Manufacturer Perspective Jim Schewe, Ph.D. Philips Radiation Oncology Systems AAPM Spring Clinical Meeting March 16, 2014 1 Learning Objectives For the session
RADIATION THERAPY guide. Guiding you through your treatment
RADIATION THERAPY guide Guiding you through your treatment 2013_RADIATION_GUIDE_6PG.indd 1 Before Treatment Consultation with the Radiation Oncologist During your first visit with the radiation oncologist,
How To Use A Proton For Radiation Therapy
Proton Cancer Therapy: Using Laser Accelerate Protons for Radiation Therapy A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics
How To Treat Cancer With Proton Therapy
Proton therapy at the Paul Scherrer Institute PSI proton therapy for tumours of the eye (OPTIS). The patient s head is fixed using a mask and a bite block. Actual irradiation of the eye tumour lasts less
