THE DOSIMETRIC EFFECTS OF
|
|
|
- Colleen Dawson
- 9 years ago
- Views:
Transcription
1 THE DOSIMETRIC EFFECTS OF OPTIMIZATION TECHNIQUES IN IMRT/IGRT PLANNING 1 Multiple PTV Head and Neck Treatment Planning, Contouring, Data, Tips, Optimization Techniques, and algorithms AAMD 2013, San Antonio, TX
2 OUTLINE Overview of contouring techniques for IMRT Description of Head and Neck (H&N) cases Scanning Contouring Common prescriptions Treatment planning Conclusions 2
3 CONCERNS WITH MULTIPLE PTV H&N PLANNING Multiple PTV with different prescriptions but the same isocenter and very close to each other Dose to critical structures Part of parotids included in the PTV Brainstem Spinal cord Mandible Placement of beams very important Skin reactions Artifacts Lips 3
4 WELLINGTON REGIONAL CANCER CENTER H&N TREATMENT PLANNING Larynx Floor of mouth Base of tongue Tonsils Base of tongue Glottis 4
5 WELLINGTON REGIONAL CANCER CENTER SIMULATION PROCEDURES Supine Head mask Big bore CT 2 mm thickness One per each PTV Scan top of head and 3 cm below the shoulders PET registered with CT 5
6 CONTOURING STRATEGY CTV high risk: tumor + microscopic CTV intermediate risk: active nodes on PET CTV low risk: non active nodes in the same area PTV: high risk, intermediate risk, low risk, 5 mm margin to CTV PTV optimization (PTV-opt) Expand the PTV 1-2 slices sup-inf and make it type PTV One per each PTV Using the crop function move the PTV-opt 0.5 cm away from the skin inside the body PTV total optimization (PTV-tot-opt) Union of the three just for generating the ring or R90 Artifacts 6
7 7
8 CONTOURING HELPFUL STRUCTURES Ring Expand the PTV-tot-opt with cm (depending on the distance to the skin) Again crop away from the skin with 0.3 cm No dose zone (Nodose) Area surrounding the Ring a few cm sup and inf Crop away from the skin 0.2 cm inside the body Impose restriction on not exceeding 50% of the prescribed dose 8
9 CONTOURING HELPFUL STRUCTURES Subtract the Ring from Nodose structure Crop the PTV-tot-opt from Ring leaving a 2 mm space between them Organs at risk (OAR) If highly important (Parotids) and in proximal location to PTV add 2 mm margins to a OAR making a planning OAR. Make a new structure from Planning OAR subtracting the part that overlaps with the PTV (Parotid-PTV) Subtract the new structure of OAR from the Ring 9
10 PLACING THE BEAMS Dose prescribed to the PTV high Use only 6 MV For a very large and toll PTV use 9 fields Avoid an AP field to minimize the dose to the lips Use a PA field to help protecting the cord If the PTV is symmetrical in the head-neck area distribute the beams symmetrically. If the PTV is placed on one side of the head-neck region choose an area in the middle of the PTV and place one beam then distribute the rest of the 1 0 beams at equal angles every
11 PLACING THE BEAMS Dose prescribed to the PTV high Use only 6 MV Use 7-9 fields Place isocenter in the PTV-tot center Watch the shoulders Kick couch if needed 1 1
12 NINE BEAMS WITH AP EIGHT BEAMS NO AP 12
13 OPTIMIZATION GOALS No hot spot over 108% of the PTV high risk dose Minimal large areas of 105% Proper PTV high risk, PTV intermediate risk, and PTV low risk coverage Minimize parotids, brainstem, and spinal cord dose Reduce hotspots near the skin Minimize skin and mandible dose 13
14 WRCC PRACTICE GUIDELINES PLANNING MINIMUM DVH REQUIREMENTS Head & Neck radiation therapy 100 of the PTV high risk receives 95% of prescribed dose Similar for the PTV intermediate and low risk Normal structures (Quantec) Parotids Bilateral: mean dose < 25 Gy Unilateral: mean dose < 20 Gy Brainstem Maximum dose < 54 Gy D10cc < 59 Gy Larynx Mean dose < 50 Gy V50 < 27% 14
15 Trilogy machine 6 & 18 MV photons EQUIPMENT Multi-leaf collimators with 0.5 cm and 1 cm leaves Eclipse 8.6 IMRT Planning AAA algorithm for dose calculation Optimization (not used for beam placement) Fluence editing 15
16 Start by excluding all the structures that will not need constraints Change the Body s resolution to a 10 Use normal tissue objectives OPTIMIZATION 1 6
17 OPTIMIZATION Each of the PTV-opt will receive 2 upper and 2 lower constraints Ring will receive one upper constraint: 0.1% of the volume to receive maximum 90% of the PTV intermed risk dose Nodose will receive one upper constraint: 0.1% of the volume to receive a maximum of 50% of the prescribed dose 1 7
18 DOSE DISTRIBUTION 18
19 RESULTS 1 9
20 DVH ANALYSIS 2 0
21 IMRT planning CONCLUSIONS Is as good as the segmentation is As good as the beam placement As good as the dosimetrist talents in optimization Can take a long time for complex treatments Fluence editing is required in the majority of the plans It will be great if we could find the perfect algorithm to place the beams according to the constraints and to optimize the plan such that no fluence editing is needed 21
22 TUMOR CONTROL OR TISSUE COMPLICATIONS? Tissue Control Probability (TCP) increases with dose, while Normal Tissue Complication Probability (NTCP) also increases with dose. 2
23 ALGORITHMS CURRENTLY USED IN ECLIPSE Anisotropic Analytical Algorithm (AAA) 3D pencil beam that calculates dose from primary and scattered photons Plan Geometry Optimization (PGO) Selects the best beams to use for Beam Angle Optimization (BAO) using the same algorithm as the Dose Volume Optimization (DVO) DVO is an iterative process to shape the beam based on constraints 23
24 ANISOTROPIC ANALYTICAL ALGORITHM (AAA) Calculate the dose at a point Uses pencil beams of the energy spectrum to determine primary and scatter dose Can use heterogeneity corrections 24 Source: Varian Eclipse Algorithm Reference Guide
25 25
26 1 26
27 CONSTRAINTS Dose constraints PTV constraints Penalize if dose is above or below 100% of the prescription OAR constraints Penalize if dose is above tissue toxicity levels Normal tissue constraints Minimize dose to normal tissue Minimize scoring function 27
28 SCORING FUNCTION 28
29 SCORING FUNCTION 2
30 SCORING FUNCTION Advantage of this: Easy to implement Simple parameter S to evaluate a plan Disadvantages: Does not try to do better than constraints Optimization may not be biologically effective
31 MODIFICATION TO SCORING FUNCTION Exponentially decaying
32 MODIFICATION TO SCORING FUNCTION The exponential decay gives the plan the ability to do better than what is set Decay can be adjusted to have a sharp or slow drop Has not been implemented yet 3
33 BEAM ANGLE OPTIMIZATION Beam Angle Optimization is currently employed in Eclipse, although the feature is rarely used at our center due to poor results. The method places between 71 and 400 beams uniformly around the patient. The beams are selectively chosen based an iterative process known as Plan Geometry Optimization (PGO) that evaluates the plan and deletes the lowest weighted beam. The plan is then evaluated again and the process continues until a minimum of beams is reached. 3
34 BEAM ANGLE OPTIMIZATION 34
35 FACTORS TO CONSIDER Gantry angle separation should be >25 0 Collimator angle Increases treatment time for more angles used Monitor Units (MU) Dose to OAR, PTV and normal tissue Number of beams Couch angles 3
36 SIMULATED ANNEALING Ability to minimize a function Can escape a local minimum and search for absolute minimum. Each iteration is evaluated against the previous. If it is lower, it is accepted with probability 1. If it is higher, it is accepted with an exponential probability. Source: Institut fur Angewandte Stochastik und Operations Research
37 MONTE CARLO At least 2000 points are placed in each ROI A monte carlo simulation of the beams is run and dose at each point is calculated A change in a beam will affect every voxel Leakage is taken into consideration 3
38 BEAM ANGLES Automatic Manual 38
39 3
40 DOSE VOLUME HISTOGRAM End result will be a Dose Volume Histogram that can be evaluated by the dosimetrist, physicist and physician. The DVH shows the corresponding dose to the structures that were contoured. An ideal case will have the tumor site receive a uniform prescribed dose (100% of the dose to 100% of the volume) while the dose to organs and normal tissue be minimized. 4
41 AUTOMATED PLANNING WITH BAO AND DVO 4
42 MANUAL PLANNING 4
43 COMPARISON 4
44 CONCLUSIONS Optimization algorithms hold the key to improved dosimetry Faster planning times Better coverage Less dose to organs at risk Using existing plans can be implemented to algorithms to look for solutions 44
45 REFERENCES Advance Radiation Physics Inc. FL, Boca Raton. Performance. Varian. Eclipse Algorithms Refence Guide. N.p.: n.p., July-Aug PDF. Mills, Albert. "Algorithm for Correcting Optimization Convergence Errors in Eclipse." Journal of Applied Clinical Medical Physics 10.4 (2009):
Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT Rapid Arc Tomotherapy HD
Good Morning Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT Rapid Arc Tomotherapy HD Barbara Agrimson, BS RT(T)(R), CMD Steve Rhodes, BS RT(T), CMD Disclaimer This presentation
Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021
Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021 Introduction Prostate is one of the treatment sites that is well suited for IMRT. For
Dosimetric impact of the 160 MLC on head and neck IMRT treatments
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Dosimetric impact of the 160 MLC on head and neck IMRT treatments Prema Rassiah-Szegedi, a Martin Szegedi, Vikren Sarkar, Seth Streitmatter,
Manual VIRTUAL RADIATION ONCOLOGY CLINIC (VROC) (1.1) Radiation Oncology Training. Director User Manual (1.1)
Manual 1 VIRTUAL RADIATION ONCOLOGY CLINIC (VROC) (1.1) Radiation Oncology Training Director User Manual (1.1) Virtual Radiation Oncology Clinic Resident User manual Chapter 1 Creating the Virtual Patient
Evolution of Head and Neck Treatment Using Protons. Mayank Amin, M.Sc,CMD
Evolution of Head and Neck Treatment Using Protons Mayank Amin, M.Sc,CMD Facility Layout Gantry Room 3 Fixed Beams Room 4 HEBT Gantry Room 2 Gantry Room 1 Synchrotron Linac Treatment Planning Imaging Area
Acknowledgement. Prerequisites: Basic Concepts of IMRT. Overview. Therapy Continuing Education Course Clinical Implementation of IMRT for Lung Cancers
Therapy Continuing Education Course Clinical Implementation of IMRT for Lung Cancers H. Helen Liu, PhD Department of Radiation Physics, U.T. MD Anderson Cancer Center, Houston, TX AAPM, Seattle, 2005 Acknowledgement
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations Moyed Miften, PhD Dept of Radiation Oncology University of Colorado Denver Questions Disease Stage (local, regional,
Target Volumes for Anal Carcinoma For RTOG 0529
Target Volumes for Anal Carcinoma For RTOG 0529 Robert Myerson, M.D. Ph.D.*, Lisa Kachnic, M.D.**, Jacqueline Esthappan, Ph.D.*,Parag Parikh M.D.*William Straube M.S.*, John Willins, Ph.D.** *Washington
Proton Therapy for Head & Neck Cancers
Proton Therapy for Head & Neck Cancers Robert S Malyapa, MD, PhD and William M Mendenhall, MD University of Florida Proton Therapy Institute, Jacksonville, USA Carmen Ares, MD and Ralf Schneider, MD Paul
Key words: treatment planning, quality assurance, 3D treatment planning
American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning Benedick Fraass a) University of Michigan Medical
Corporate Medical Policy
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Head and Neck File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_head_and_neck
Department of Radiation Oncology H. Lee Moffitt Cancer Center Khosrow Javedan M.S, Craig Stevens MD, Ph.D., Ken Forster Ph.D.
Efficacy of IMRT with dot decimal compensators for radiotherapy of malignant pleural mesothelioma post extrapleural pneumonectomy Department of Radiation Oncology H. Lee Moffitt Cancer Center Khosrow Javedan
IBA Proton Therapy. Biomed days 2015. Vincent Bossier. System Architect [email protected]. Protect, Enhance and Save Lives
Vincent Bossier System Architect [email protected] IBA Proton Therapy Biomed days 2015 Protect, Enhance and Save Lives 1 Agenda AN INTRODUCTION TO IBA WHY PROTON THERAPY CLINICAL WORKFLOW TREATMENT
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT Wen Li, Andrew Vassil, Lama Mossolly, Qingyang Shang, Ping Xia Department of Radiation Oncology Why
Automated Treatment Planning Using a Database of Prior Patient Treatment Plans
Automated Treatment Planning Using a Database of Prior Patient Treatment Plans Todd McNutt PhD, Binbin Wu PhD, Joseph Moore PhD, Steven Petit PhD, Misha Kazhdan PhD, Russell Taylor PhD Shape DB work funded
Proton Therapy. What is proton therapy and how is it used?
Scan for mobile link. Proton Therapy Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater
Evaluation of complexity and deliverability of IMRT- treatment plans. Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer
Evaluation of complexity and deliverability of IMRT- treatment plans Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer June 11 Abstract Background: Intensity modulated beams are used
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy Katja Langen, PhD Research supported by TomoTherapy Inc. Today s Lecture Introduction to helical
intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis 11/2009 5/2016 5/2017 5/2016
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis
Precise Treatment System Clinically Flexible Digital Linear Accelerator. Personalized radiotherapy solutions for everyday treatment care
Precise Treatment System Clinically Flexible Digital Linear Accelerator Personalized radiotherapy solutions for everyday treatment care Can you offer personalized cancer care? As more and more people require
QA of intensity-modulated beams using dynamic MLC log files
36 Original Article QA of intensity-modulated beams using dynamic MLC log files M. Dinesh Kumar, N. Thirumavalavan, D. Venugopal Krishna, M. Babaiah Department of Radiation Oncology, Yashoda Cancer Institute,
IMRT for Prostate Cancer. Robert A. Price Jr., Ph.D. Philadelphia, PA
IMRT for Prostate Cancer Robert A. Price Jr., Ph.D. Philadelphia, PA Number of Patients 16 14 12 1 8 6 4 1481 IMRT Patients at FCCC 293 97 Prostate Breast H&N Other 64 Approximately 13-15 patients per
NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning
NIA RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed Date: November,
Radiation Protection in Radiotherapy
Radiation Protection in Radiotherapy Albert Lisbona Medical Physics Department CLCC Nantes Atlantique 44805 Saint-Herblain France [email protected] Radiation therapy The lecture is oriented to
An Integer Programming Approach to Conversion from Static to Continuous Delivery of Intensity Modulated Radiation Therapy
Elin Hynning An Integer Programming Approach to Conversion from Static to Continuous Delivery of Intensity Modulated Radiation Therapy Master Thesis November, 2011 Division of Optimization and Systems
Advanced variance reduction techniques applied to Monte Carlo simulation of linacs
MAESTRO Advanced variance reduction techniques applied to Monte Carlo simulation of linacs Llorenç Brualla, Francesc Salvat, Eric Franchisseur, Salvador García-Pareja, Antonio Lallena Institut Gustave
Intensity-Modulated Radiation Therapy (IMRT)
Scan for mobile link. Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear accelerators to safely and painlessly deliver precise radiation doses to a tumor while
IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.
DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS HOW DOES RADIATION THERAPY WORK? Cancer is the unrestrained growth of abnormal cells within the body. Radiation therapy kills both
Calculation of Contra-lateral Lung Doses in Thoracic IMRT: An Experimental Evaluation
Calculation of Contra-lateral Lung Doses in Thoracic IMRT: An Experimental Evaluation Deborah Schofield, Laurence Court, Aaron Allen, Fred Hacker, Maria Czerminska Department of Radiation Oncology Dana
External dosimetry Dosimetry in new radiotherapeutic techniques
External dosimetry Dosimetry in new radiotherapeutic techniques Albert Lisbona Medical Physics Department CLCC René Gauducheau 44805 Saint-Herblain France [email protected] Objective : To describe
Clinical Study Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy: A Pilot Study
Radiotherapy Volume 215, Article ID 682463, 6 pages http://dx.doi.org/1.1155/215/682463 Clinical Study Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy:
1. Provide clinical training in radiation oncology physics within a structured clinical environment.
Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible
Failure Modes and Effects Analysis (FMEA)
Failure Modes and Effects Analysis (FMEA) Sasa Mutic Washington University School of Medicine St. Louis Missouri Failure Modes and Effects Analysis Objectives: To motivate the use of FMEA and to provide
Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study
Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study Jin Sung Kim, Jung Suk Shin, Daehyun Kim, EunHyuk Shin, Kwangzoo Chung, Sungkoo Cho, Sung Hwan Ahn, Sanggyu
ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS. Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic
ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic Disclosure I have received research grants from Siemens
Clinical Education A comprehensive and specific training program. carry out effective treatments from day one
Proton Therapy Clinical Education A comprehensive and specific training program carry out effective treatments from day one Forewarned is forearmed Although over 100,000 patients have been treated in proton
Innovative RT SBRT. The variables with REQ in superscript are required.
The variables with REQ in superscript are required. The variables with a are single-select variables; only one answer can be selected. The variables with a are multi-select variables; multiple answers
Post Treatment Log File Based QA Varian. Krishni Wijesooriya, PhD University of Virginia. D e p a r t m e n t of R a d i a t i o n O n c o l o g y
Post Treatment Log File Based QA Varian Krishni Wijesooriya, PhD University of Virginia Learning Objectives What information could be accessed via log files Scenarios where Log files could be used. How
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_the_prostate
VOLUMETRIC INTENSITY-MODULATED ARC THERAPY VS. CONVENTIONAL IMRT IN HEAD-AND-NECK CANCER: A COMPARATIVE PLANNING AND DOSIMETRIC STUDY
doi:10.1016/j.ijrobp.2008.12.033 Int. J. Radiation Oncology Biol. Phys., Vol. 74, No. 1, pp. 252 259, 2009 Copyright Ó 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/$ see front
Evaluation of an automated knowledge based treatment planning system for head and neck
Krayenbuehl et al. Radiation Oncology (2015) 10:226 DOI 10.1186/s13014-015-0533-2 RESEARCH Open Access Evaluation of an automated knowledge based treatment planning system for head and neck Jerome Krayenbuehl
Quality Assurance of Radiotherapy Equipment
Clinical Implementation of Technology & Quality Assurance in Radiation Oncology For the course: Survey of Clinical Radiation Oncology 1 Quality Assurance of Radiotherapy Equipment Outline: A. Criteria
MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline
Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues Timothy D. Solberg David Geffen School of Medicine at UCLA TU-A-517A-1 Presentation Outline MLC Characteristics TG-50
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2 Taxonomy Data Category Number Description Data Fields and Menu Choices 1. Impact 1.1 Incident
Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 4, 2013 Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy
Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy
Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy Set of 232 slides based on the chapter authored by W. Parker, H. Patrocinio of the IAEA publication (ISBN 92-0-107304-6): Review
Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015
INDUSTRIAL DESIGN Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG VARIAN ONCOLOGY SYSTEMS 1 VARIAN ONCOLOGY SYSTEMS CERN Accelerator, May 2015 Industrial Design
Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra
Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Humberto Rocha Brígida da Costa Ferreira Joana Matos Dias Maria do Carmo Lopes
Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment.
Dictionary Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Applicator A device used to hold a radioactive source
Proton Therapy for Prostate Cancer
Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Director, Proton Therapy Center Associate Professor Department of Radiation Oncology M.D. Anderson Cancer Center Randomized studies showing benefit
Quality Assurance of accelerators; the technologists responsibility
Quality Assurance of accelerators; the technologists responsibility Christa Timmermans Radiation Technologist, Erasmus MC- Daniel den Hoed, Rotterdam, The Netherlands EORTC-ROG RT technologists Section
RADIATION THERAPY guide. Guiding you through your treatment
RADIATION THERAPY guide Guiding you through your treatment 2013_RADIATION_GUIDE_6PG.indd 1 Before Treatment Consultation with the Radiation Oncologist During your first visit with the radiation oncologist,
Accreditation Is Coming
Accreditation Is Coming Accreditation Is Coming Accreditation Is Coming Yes, It Is! Currently, Accreditation is Voluntary However, Some of the Accrediting Organizations Are Lobbying the Congress to Adopt
Monte Carlo Simulations in Proton Dosimetry with Geant4
Monte Carlo Simulations in Proton Dosimetry with Geant4 Zdenek Moravek, Ludwig Bogner Klinik und Poliklinik für Strahlentherapie Universität Regensburg Objectives of the Study what particles and how much
A Revolution in the Fight Against Cancer. What TomoTherapy Technology Means to You
A Revolution in the Fight Against Cancer What TomoTherapy Technology Means to You Cancer Treatment that Revolves Around You When it comes to choosing the right treatment for your cancer, your team of healthcare
Our Department: structure and organization
EORTC meeting for Radiation Therapy Technologists: RTT s role in the modernization of radiotherapy 10th October 2014, Villejuif (Grand Paris), France Elekta Stereotactic Body Frame: transmission modelled
Project Management Triangle
Session: Optimizing the Treatment Planning Process Maintain the Quality of Treatment Planning for Time-Constraint Cases Jenghwa Chang, Ph.D. Radiation Oncology, NewYork-Presbyterian Hospital/Weill Cornell
Total Solutions. Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA phone 412 312 6700 800 70 NOMOS www.nomos.com
Serial Tomotherapy IGRT Total Solutions Treatment Planning Brachytherapy Imaging Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA BMI.v.08.2010 Best NOMOS Your Single Source Oncology Solutions Provider
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of the Chest
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of the Chest File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_the_chest
Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago
Role of IMRT in the Treatment of Gynecologic Malignancies John C. Roeske, PhD Associate Professor The University of Chicago Acknowledgements B Aydogan, PhD Univ of Chicago P Chan, MD Princess Margaret
Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2012 Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file
Department of Radiation Oncology
Department of Radiation Oncology Welcome to Radiation Oncology at Emory Clinic Every member of Emory Clinic Department of Radiation Oncology strives to provide the highest quality of care for you as our
IAEA-TECDOC-1540. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems
IAEA-TECDOC-1540 Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems April 2007 IAEA-TECDOC-1540 Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems
Radiation Therapy in Prostate Cancer Current Status and New Advances
Radiation Therapy in Prostate Cancer Current Status and New Advances Arno J. Mundt MD Professor and Chairman Dept Radiation Oncology Moores Cancer Center UCSD Radiation Therapy Wilhelm Roentgen (1845-1923)
In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers
In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers : Chris Bakker Boxue Liu Alexander Raaijmakers Rajko Topolnjak Richard van de Put Uulke van der
Goals and Objectives: Breast Cancer Service Department of Radiation Oncology
Goals and Objectives: Breast Cancer Service Department of Radiation Oncology The breast cancer service provides training in the diagnosis, management, treatment, and follow-up of breast malignancies, including
Quality Reports With. PlanIQ. *Export only. 510(k) pending. Patent pending. Your Most Valuable QA and Dosimetry Tools
Quality Reports With PlanIQ * *Export only. 510(k) pending. Patent pending. Your Most Valuable QA and Dosimetry Tools Objective Plan Assessment? How good are my treatment plans? Quality assurance of radiation
MEDICAL DOSIMETRY. COLLEGE OF APPLIED SCIENCES AND ARTS Graduate Faculty: therapy.
Graduate Catalog 2012-2013 Medical Dosimetry / 339 MEDICAL DOSIMETRY COLLEGE OF APPLIED SCIENCES AND ARTS Graduate Faculty: Collins, Kevin Scott, Associate Professor, Ph.D., Jensen, Steve, Emeritus Professor,
Intensity-Modulated Proton Therapy for prostate cancer:
Delft University of Technology Intensity-Modulated Proton Therapy for prostate cancer: Evaluating strategies to account for interfraction organ motion Christiana Balta 2 Intensity-Modulated Proton Therapy
Scripps Proton Therapy Center: Configuration and Implementation
Scripps Proton Therapy Center: Configuration and Implementation Anthony Mascia Proton Symposium 2013 Annual AAPM Meeting Indianapolis, Indiana USA Facility Configuration Scripps Proton Therapy Center ***All
Übersicht von IMRT Konzepten bei CMS. Norbert Steinhöfel DGMP AK IMRT 19.-20.2.2002
Übersicht von IMRT Konzepten bei CMS Norbert Steinhöfel DGMP AK IMRT 19.-20.2.2002 1 CMS: Radiation Oncology Software An Integrated Department From Start to Finish CMS provides integration from CT simulation
In 1946 Harvard physicist Robert Wilson (1914-2000) suggested:
In 1946 Harvard physicist Robert Wilson (1914-2000) suggested: Protons can be used clinically Accelerators are available Maximum radiation dose can be placed into the tumor Proton therapy provides sparing
TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software.
SAMPLE CLINICAL RESEARCH APPLICATION ABSTRACT: TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software. Hypothesis:
Esophageal Cancer Treatment
Scan for mobile link. Esophageal Cancer Treatment What is Esophageal Cancer? Esophageal cancer occurs when cancer cells develop in the esophagus, a long, tube-like structure that connects the throat and
Variance reduction techniques used in BEAMnrc
Variance reduction techniques used in BEAMnrc D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers ICTP,Trieste,
MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM
MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, [email protected] Pontifícia Universidade Católica do Paraná / Rua Imaculada
Treatment Volume and Technique
RADIATION THERAPY The standard of care for early lesions is surgical resection; however, selected patients with small central lesions may be considered for definitive radiation, particularly when the lesions
Chapter 11 Computerized Treatment Planning Systems for External Photon Beam Radiotherapy
Chapter 11 Computerized Treatment Planning Systems for External Photon Beam Radiotherapy This set of 117 slides is based on Chapter 11 authored by M.D.C. Evans of the IAEA publication (ISBN 92-0-107304-6):
4D Scanning. Image Guided Radiation Therapy. Outline. A Simplified View of the RT Process. Outline. Steve B. Jiang, Ph.D.
4D Scanning Steve B. Jiang, Ph.D. Department of Radiation Oncology [email protected] http://gray.mgh.harvard.edu/ Outline Problems with free breathing 3D scanning What is 4D CT? How does it work?
Secondary Neutrons in Proton and Ion Therapy
Secondary Neutrons in Proton and Ion Therapy L. Stolarczyk Institute of Nuclear Physics PAN, Poland on behalf of WG9 EURADOS Acknowledgments EURADOS Workig Group 9 Roger Harrison Jean Marc Bordy Carles
02 CyberKnife: Treatment Delivery
TREATMENT DELIVERY CyberKnife Treatment Delivery System The CyberKnife System is the first and only robotic radiosurgery system to offer highly precise and customizable, non-surgical treatment options
Overview of Proton Beam Cancer Therapy with Basic Economic Considerations
Overview of Proton Beam Cancer Therapy with Basic Economic Considerations Wayne Newhauser, Ph.D. Proton Therapy Project, Houston Cyclotron 235 MeV 300 na Extraction Channel Radial Probe Energy Degrader
Volumetric modulated arc therapy (VMAT) for prostate cancer
Planning study Volumetric modulated arc therapy (VMAT) for prostate cancer Institution: Purpose: Swedish Cancer Institute, Seattle, WA, USA In a community cancer center, treating prostate cancer comprises
Chapter 7 CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY
Chapter 7 CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY W. PARKER, H. PATROCINIO Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada 7.1. INTRODUCTION
DIFFERENT FROM THE REST FOCUSED ON THE FUTURE. A guide to understanding TomoTherapy treatments
DIFFERENT FROM THE REST FOCUSED ON THE FUTURE A guide to understanding TomoTherapy treatments Advanced treatment planning Integrated, daily CTrue imaging 360º treatment delivery A platform for truly personalized
Overview. Creation of 3D printed phantoms for clinical radiation therapy 7/7/2015. Eric Ehler, PhD Assistant Professor University of Minnesota
Creation of 3D printed phantoms for clinical radiation therapy Eric Ehler, PhD Assistant Professor University of Minnesota ehler [email protected] Overview Background of 3D Printing Practical Information Current
Introduction to Radiation Oncology
Editors: Abigail T. Berman, MD, University of Pennsylvania Jordan Kharofa, MD, Medical College of Wisconsin Introduction to Radiation Oncology What Every Medical Student Needs to Know Objectives Introduction
The feasibility of a QA program for ISIORT Trials
Baveno, Italy June 22-24, 2012 The feasibility of a QA program for ISIORT Trials Frank W. Hensley 1, Don A. Goer 2, Sebastian Adamczyk 3, Falk Roeder 1, Felix Sedlmayer 4, Peter Kopp 4 1 University Clinics
