Package nortest. R topics documented: July 30, Title Tests for Normality Version Date
|
|
|
- Daniel Jacobs
- 9 years ago
- Views:
Transcription
1 Title Tests for Normality Version Date Package nortest July 30, 2015 Description Five omnibus tests for testing the composite hypothesis of normality. License GPL (>= 2) Imports stats Author Juergen Gross [aut], Uwe Ligges [aut, cre] Maintainer Uwe Ligges NeedsCompilation no Repository CRAN Date/Publication :14:57 R topics documented: ad.test cvm.test lillie.test pearson.test sf.test Index 10 ad.test Anderson-Darling test for normality Description Performs the Anderson-Darling test for the composite hypothesis of normality, see e.g. Thode (2002, Sec ). 1
2 2 ad.test Usage ad.test(x) Arguments Details Value x a numeric vector of data values, the number of which must be greater than 7. Missing values are allowed. The Anderson-Darling test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is A = n 1 n [2i 1][ln(p (i) ) + ln(1 p (n i+1) )], n i=1 where p (i) = Φ([x (i) x]/s). Here, Φ is the cumulative distribution function of the standard normal distribution, and x and s are mean and standard deviation of the data values. The p-value is computed from the modified statistic Z = A( /n /n 2 )\ according to Table 4.9 in Stephens (1986). A list with class htest containing the following components: statistic p.value method data.name the value of the Anderson-Darling statistic. the p-value for the test. the character string Anderson-Darling normality test. a character string giving the name(s) of the data. Note The Anderson-Darling test is the recommended EDF test by Stephens (1986). Compared to the Cramer-von Mises test (as second choice) it gives more weight to the tails of the distribution. Author(s) Juergen Gross References Stephens, M.A. (1986): Tests based on EDF statistics. In: D Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York. See Also Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. shapiro.test for performing the Shapiro-Wilk test for normality. cvm.test, lillie.test, pearson.test, sf.test for performing further tests for normality. qqnorm for producing a normal quantilequantile plot.
3 cvm.test 3 Examples ad.test(rnorm(100, mean = 5, sd = 3)) ad.test(runif(100, min = 2, max = 4)) cvm.test Cramer-von Mises test for normality Description Performs the Cramer-von Mises test for the composite hypothesis of normality, see e.g. Thode (2002, Sec ). Usage cvm.test(x) Arguments x a numeric vector of data values, the number of which must be greater than 7. Missing values are allowed. Details Value The Cramer-von Mises test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is W = 1 n 12n + ( p (i) 2i 1 ) 2, 2n i=1 where p (i) = Φ([x (i) x]/s). Here, Φ is the cumulative distribution function of the standard normal distribution, and x and s are mean and standard deviation of the data values. The p-value is computed from the modified statistic Z = W ( /n) according to Table 4.9 in Stephens (1986). A list with class htest containing the following components: statistic p.value method data.name the value of the Cramer-von Mises statistic. the p-value for the test. the character string Cramer-von Mises normality test. a character string giving the name(s) of the data. Author(s) Juergen Gross
4 4 lillie.test References Stephens, M.A. (1986): Tests based on EDF statistics. In: D Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York. See Also Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. shapiro.test for performing the Shapiro-Wilk test for normality. ad.test, lillie.test, pearson.test, sf.test for performing further tests for normality. qqnorm for producing a normal quantilequantile plot. Examples cvm.test(rnorm(100, mean = 5, sd = 3)) cvm.test(runif(100, min = 2, max = 4)) lillie.test Lilliefors (Kolmogorov-Smirnov) test for normality Description Usage Performs the Lilliefors (Kolmogorov-Smirnov) test for the composite hypothesis of normality, see e.g. Thode (2002, Sec ). lillie.test(x) Arguments Details x a numeric vector of data values, the number of which must be greater than 4. Missing values are allowed. The Lilliefors (Kolmogorov-Smirnov) test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is the maximal absolute difference between empirical and hypothetical cumulative distribution function. It may be computed as D = max{d +, D } with D + = max {i/n p (i)}, D = max {p (i) (i 1)/n}, i=1,...,n i=1,...,n where p (i) = Φ([x (i) x]/s). Here, Φ is the cumulative distribution function of the standard normal distribution, and x and s are mean and standard deviation of the data values. The p-value is computed from the Dallal-Wilkinson (1986) formula, which is claimed to be only reliable when the p-value is smaller than 0.1. If the Dallal-Wilkinson p-value turns out to be greater than 0.1, then the p-value is computed from the distribution of the modified statistic Z = D( n / n), see Stephens (1974), the actual p-value formula being obtained by a simulation and approximation process.
5 lillie.test 5 Value A list with class htest containing the following components: statistic p.value method data.name the value of the Lilliefors (Kolomogorv-Smirnov) statistic. the p-value for the test. the character string Lilliefors (Kolmogorov-Smirnov) normality test. a character string giving the name(s) of the data. Note The Lilliefors (Kolomorov-Smirnov) test is the most famous EDF omnibus test for normality. Compared to the Anderson-Darling test and the Cramer-von Mises test it is known to perform worse. Although the test statistic obtained from lillie.test(x) is the same as that obtained from ks.test(x, "pnorm", mean(x), sd(x)), it is not correct to use the p-value from the latter for the composite hypothesis of normality (mean and variance unknown), since the distribution of the test statistic is different when the parameters are estimated. The function call lillie.test(x) essentially produces the same result as the S-PLUS function call ks.gof(x) with the distinction that the p-value is not set to 0.5 when the Dallal-Wilkinson approximation yields a p-value greater than 0.1. (Actually, the alternative p-value approximation is provided for the complete range of test statistic values, but is only used when the Dallal-Wilkinson approximation fails.) Author(s) Juergen Gross References Dallal, G.E. and Wilkinson, L. (1986): An analytic approximation to the distribution of Lilliefors test for normality. The American Statistician, 40, Stephens, M.A. (1974): EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, See Also Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. shapiro.test for performing the Shapiro-Wilk test for normality. ad.test, cvm.test, pearson.test, sf.test for performing further tests for normality. qqnorm for producing a normal quantilequantile plot. Examples lillie.test(rnorm(100, mean = 5, sd = 3)) lillie.test(runif(100, min = 2, max = 4))
6 6 pearson.test pearson.test Pearson chi-square test for normality Description Performs the Pearson chi-square test for the composite hypothesis of normality, see e.g. Thode (2002, Sec. 5.2). Usage pearson.test(x, n.classes = ceiling(2 * (n^(2/5))), adjust = TRUE) Arguments x a numeric vector of data values. Missing values are allowed. n.classes The number of classes. The default is due to Moore (1986). adjust logical; if TRUE (default), the p-value is computed from a chi-square distribution with n.classes-3 degrees of freedom, otherwise from a chi-square distribution with n.classes-1 degrees of freedom. Details The Pearson test statistic is P = (C i E i ) 2 /E i, where C i is the number of counted and E i is the number of expected observations (under the hypothesis) in class i. The classes are build is such a way that they are equiprobable under the hypothesis of normality. The p-value is computed from a chi-square distribution with n.classes-3 degrees of freedom if adjust is TRUE and from a chi-square distribution with n.classes-1 degrees of freedom otherwise. In both cases this is not (!) the correct p-value, lying somewhere between the two, see also Moore (1986). Value A list with class htest containing the following components: statistic p.value method data.name n.classes the value of the Pearson chi-square statistic. the p-value for the test. the character string Pearson chi-square normality test. a character string giving the name(s) of the data. the number of classes used for the test. df the degress of freedom of the chi-square distribution used to compute the p- value.
7 sf.test 7 Note The Pearson chi-square test is usually not recommended for testing the composite hypothesis of normality due to its inferior power properties compared to other tests. It is common practice to compute the p-value from the chi-square distribution with n.classes - 3 degrees of freedom, in order to adjust for the additional estimation of two parameters. (For the simple hypothesis of normality (mean and variance known) the test statistic is asymptotically chi-square distributed with n.classes - 1 degrees of freedom.) This is, however, not correct as long as the parameters are estimated by mean(x) and var(x) (or sd(x)), as it is usually done, see Moore (1986) for details. Since the true p-value is somewhere between the two, it is suggested to run pearson.test twice, with adjust = TRUE (default) and with adjust = FALSE. It is also suggested to slightly change the default number of classes, in order to see the effect on the p-value. Eventually, it is suggested not to rely upon the result of the test. The function call pearson.test(x) essentially produces the same result as the S-PLUS function call chisq.gof((x-mean(x))/sqrt(var(x)), n.param.est=2). Author(s) Juergen Gross References Moore, D.S. (1986): Tests of the chi-squared type. In: D Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York. Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. See Also shapiro.test for performing the Shapiro-Wilk test for normality. ad.test, cvm.test, lillie.test, sf.test for performing further tests for normality. qqnorm for producing a normal quantilequantile plot. Examples pearson.test(rnorm(100, mean = 5, sd = 3)) pearson.test(runif(100, min = 2, max = 4)) sf.test Shapiro-Francia test for normality Description Performs the Shapiro-Francia test for the composite hypothesis of normality, see e.g. Thode (2002, Sec ).
8 8 sf.test Usage sf.test(x) Arguments x a numeric vector of data values, the number of which must be between 5 and Missing values are allowed. Details The test statistic of the Shapiro-Francia test is simply the squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal distribution. The p-value is computed from the formula given by Royston (1993). Value A list with class htest containing the following components: statistic p.value method data.name the value of the Shapiro-Francia statistic. the p-value for the test. the character string Shapiro-Francia normality test. a character string giving the name(s) of the data. Note The Shapiro-Francia test is known to perform well, see also the comments by Royston (1993). The expected ordered quantiles from the standard normal distribution are approximated by qnorm(ppoints(x, a = 3/8)), being slightly different from the approximation qnorm(ppoints(x, a = 1/2)) used for the normal quantile-quantile plot by qqnorm for sample sizes greater than 10. Author(s) Juergen Gross References Royston, P. (1993): A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: an application to medicine. Statistics in Medicine, 12, Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. See Also shapiro.test for performing the Shapiro-Wilk test for normality. ad.test, cvm.test, lillie.test, pearson.test for performing further tests for normality. qqnorm for producing a normal quantilequantile plot.
9 sf.test 9 Examples sf.test(rnorm(100, mean = 5, sd = 3)) sf.test(runif(100, min = 2, max = 4))
10 Index Topic htest ad.test, 1 cvm.test, 3 lillie.test, 4 pearson.test, 6 sf.test, 7 ad.test, 1, 4, 5, 7, 8 cvm.test, 2, 3, 5, 7, 8 lillie.test, 2, 4, 4, 7, 8 pearson.test, 2, 4, 5, 6, 8 qqnorm, 2, 4, 5, 7, 8 sf.test, 2, 4, 5, 7, 7 shapiro.test, 2, 4, 5, 7, 8 10
Package empiricalfdr.deseq2
Type Package Package empiricalfdr.deseq2 May 27, 2015 Title Simulation-Based False Discovery Rate in RNA-Seq Version 1.0.3 Date 2015-05-26 Author Mikhail V. Matz Maintainer Mikhail V. Matz
Package benford.analysis
Type Package Package benford.analysis November 17, 2015 Title Benford Analysis for Data Validation and Forensic Analytics Version 0.1.3 Author Carlos Cinelli Maintainer Carlos Cinelli
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
t-test Statistics Overview of Statistical Tests Assumptions
t-test Statistics Overview of Statistical Tests Assumption: Testing for Normality The Student s t-distribution Inference about one mean (one sample t-test) Inference about two means (two sample t-test)
Variables Control Charts
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables
Error Type, Power, Assumptions. Parametric Tests. Parametric vs. Nonparametric Tests
Error Type, Power, Assumptions Parametric vs. Nonparametric tests Type-I & -II Error Power Revisited Meeting the Normality Assumption - Outliers, Winsorizing, Trimming - Data Transformation 1 Parametric
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
Package retrosheet. April 13, 2015
Type Package Package retrosheet April 13, 2015 Title Import Professional Baseball Data from 'Retrosheet' Version 1.0.2 Date 2015-03-17 Maintainer Richard Scriven A collection of tools
Package dsstatsclient
Maintainer Author Version 4.1.0 License GPL-3 Package dsstatsclient Title DataSHIELD client site stattistical functions August 20, 2015 DataSHIELD client site
Nonparametric Statistics
Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania Oriana Zacaj Department of Mathematics, Polytechnic University, Faculty of Mathematics and Physics Engineering
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
THE OPEN SOURCE SOFTWARE R IN THE STATISTICAL QUALITY CONTROL
1. Miriam ANDREJIOVÁ, 2. Zuzana KIMÁKOVÁ THE OPEN SOURCE SOFTWARE R IN THE STATISTICAL QUALITY CONTROL 1,2 TECHNICAL UNIVERSITY IN KOŠICE, FACULTY OF MECHANICAL ENGINEERING, KOŠICE, DEPARTMENT OF APPLIED
Package dunn.test. January 6, 2016
Version 1.3.2 Date 2016-01-06 Package dunn.test January 6, 2016 Title Dunn's Test of Multiple Comparisons Using Rank Sums Author Alexis Dinno Maintainer Alexis Dinno
Diskussionsbeiträge des Fachbereichs Wirtschaftwissenschaft. Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison
Diskussionsbeiträge des Fachbereichs Wirtschaftwissenschaft der Freien Universität Berlin Nr. 2004/9 VOLKSWIRTSCHAFTLICHE REIHE Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison
Package sendmailr. February 20, 2015
Version 1.2-1 Title send email using R Package sendmailr February 20, 2015 Package contains a simple SMTP client which provides a portable solution for sending email, including attachment, from within
START Selected Topics in Assurance
START Selected Topics in Assurance Related Technologies Table of Contents Introduction Some Statistical Background Fitting a Normal Using the Anderson Darling GoF Test Fitting a Weibull Using the Anderson
Tutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls [email protected] MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
Descriptive Statistics: Summary Statistics
Tutorial for the integration of the software R with introductory statistics Copyright Grethe Hystad Chapter 2 Descriptive Statistics: Summary Statistics In this chapter we will discuss the following topics:
Package changepoint. R topics documented: November 9, 2015. Type Package Title Methods for Changepoint Detection Version 2.
Type Package Title Methods for Changepoint Detection Version 2.2 Date 2015-10-23 Package changepoint November 9, 2015 Maintainer Rebecca Killick Implements various mainstream and
The Variability of P-Values. Summary
The Variability of P-Values Dennis D. Boos Department of Statistics North Carolina State University Raleigh, NC 27695-8203 [email protected] August 15, 2009 NC State Statistics Departement Tech Report
Package uptimerobot. October 22, 2015
Type Package Version 1.0.0 Title Access the UptimeRobot Ping API Package uptimerobot October 22, 2015 Provide a set of wrappers to call all the endpoints of UptimeRobot API which includes various kind
Package SHELF. February 5, 2016
Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s
2002-2008 The Trustees of Indiana University Univariate Analysis and Normality Test: 1 I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s Univariate
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Package cpm. July 28, 2015
Package cpm July 28, 2015 Title Sequential and Batch Change Detection Using Parametric and Nonparametric Methods Version 2.2 Date 2015-07-09 Depends R (>= 2.15.0), methods Author Gordon J. Ross Maintainer
Goodness-of-Fit Test
Communications in Statistics Simulation and Computation, 37: 396 4, 008 Copyright Taylor & Francis Group, LLC ISSN: 036-098 print/53-44 online DOI: 0.080/0360908098360 Goodness-of-Fit Test The Distribution
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
Package survpresmooth
Package survpresmooth February 20, 2015 Type Package Title Presmoothed Estimation in Survival Analysis Version 1.1-8 Date 2013-08-30 Author Ignacio Lopez de Ullibarri and Maria Amalia Jacome Maintainer
Package lmertest. July 16, 2015
Type Package Title Tests in Linear Mixed Effects Models Version 2.0-29 Package lmertest July 16, 2015 Maintainer Alexandra Kuznetsova Depends R (>= 3.0.0), Matrix, stats, methods, lme4 (>=
Package TSfame. February 15, 2013
Package TSfame February 15, 2013 Version 2012.8-1 Title TSdbi extensions for fame Description TSfame provides a fame interface for TSdbi. Comprehensive examples of all the TS* packages is provided in the
Package tagcloud. R topics documented: July 3, 2015
Package tagcloud July 3, 2015 Type Package Title Tag Clouds Version 0.6 Date 2015-07-02 Author January Weiner Maintainer January Weiner Description Generating Tag and Word Clouds.
SAS/STAT. 9.2 User s Guide. Introduction to. Nonparametric Analysis. (Book Excerpt) SAS Documentation
SAS/STAT Introduction to 9.2 User s Guide Nonparametric Analysis (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation
Package missforest. February 20, 2015
Type Package Package missforest February 20, 2015 Title Nonparametric Missing Value Imputation using Random Forest Version 1.4 Date 2013-12-31 Author Daniel J. Stekhoven Maintainer
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Package polynom. R topics documented: June 24, 2015. Version 1.3-8
Version 1.3-8 Package polynom June 24, 2015 Title A Collection of Functions to Implement a Class for Univariate Polynomial Manipulations A collection of functions to implement a class for univariate polynomial
Experimental Design for Influential Factors of Rates on Massive Open Online Courses
Experimental Design for Influential Factors of Rates on Massive Open Online Courses December 12, 2014 Ning Li [email protected] Qing Wei [email protected] Yating Lan [email protected] Yilin Wei [email protected]
Chapter 12 Nonparametric Tests. Chapter Table of Contents
Chapter 12 Nonparametric Tests Chapter Table of Contents OVERVIEW...171 Testing for Normality...... 171 Comparing Distributions....171 ONE-SAMPLE TESTS...172 TWO-SAMPLE TESTS...172 ComparingTwoIndependentSamples...172
Package HHG. July 14, 2015
Type Package Package HHG July 14, 2015 Title Heller-Heller-Gorfine Tests of Independence and Equality of Distributions Version 1.5.1 Date 2015-07-13 Author Barak Brill & Shachar Kaufman, based in part
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Introduction. Statistics Toolbox
Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon
Package jrvfinance. R topics documented: October 6, 2015
Package jrvfinance October 6, 2015 Title Basic Finance; NPV/IRR/Annuities/Bond-Pricing; Black Scholes Version 1.03 Implements the basic financial analysis functions similar to (but not identical to) what
( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Package trimtrees. February 20, 2015
Package trimtrees February 20, 2015 Type Package Title Trimmed opinion pools of trees in a random forest Version 1.2 Date 2014-08-1 Depends R (>= 2.5.0),stats,randomForest,mlbench Author Yael Grushka-Cockayne,
Normal Probability Plots and Tests for Normality
Normal Probability Plots and Tests for Normality Thomas A. Ryan, Jr. and Brian L. Joiner, Statistics Department, The Pennsylvania State University 1976 Acknowledgments: Helpful assistance from Dr. Barbara
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Package decompr. August 17, 2016
Version 4.5.0 Title Global-Value-Chain Decomposition Package decompr August 17, 2016 Two global-value-chain decompositions are implemented. Firstly, the Wang-Wei-Zhu (Wang, Wei, and Zhu, 2013) algorithm
Package bigdata. R topics documented: February 19, 2015
Type Package Title Big Data Analytics Version 0.1 Date 2011-02-12 Author Han Liu, Tuo Zhao Maintainer Han Liu Depends glmnet, Matrix, lattice, Package bigdata February 19, 2015 The
Time Series Analysis
Time Series Analysis [email protected] Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Package hive. July 3, 2015
Version 0.2-0 Date 2015-07-02 Title Hadoop InteractiVE Package hive July 3, 2015 Description Hadoop InteractiVE facilitates distributed computing via the MapReduce paradigm through R and Hadoop. An easy
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
Estimating Industry Multiples
Estimating Industry Multiples Malcolm Baker * Harvard University Richard S. Ruback Harvard University First Draft: May 1999 Rev. June 11, 1999 Abstract We analyze industry multiples for the S&P 500 in
Java Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
Package syuzhet. February 22, 2015
Type Package Package syuzhet February 22, 2015 Title Extracts Sentiment and Sentiment-Derived Plot Arcs from Text Version 0.2.0 Date 2015-01-20 Maintainer Matthew Jockers Extracts
Package CIFsmry. July 10, 2016. Index 6
Type Package Package CIFsmry July 10, 2016 Title Weighted summary of cumulative incidence functions Version 1.0.1.1 Date 2013-10-10 Author Jianing Li Maintainer Jianing Li Depends R(>= 3.0.1)
Package CoImp. February 19, 2015
Title Copula based imputation method Date 2014-03-01 Version 0.2-3 Package CoImp February 19, 2015 Author Francesca Marta Lilja Di Lascio, Simone Giannerini Depends R (>= 2.15.2), methods, copula Imports
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.
Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric
Bandwidth Selection for Nonparametric Distribution Estimation
Bandwidth Selection for Nonparametric Distribution Estimation Bruce E. Hansen University of Wisconsin www.ssc.wisc.edu/~bhansen May 2004 Abstract The mean-square efficiency of cumulative distribution function
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
Chapter 7 Section 1 Homework Set A
Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the
Package neuralnet. February 20, 2015
Type Package Title Training of neural networks Version 1.32 Date 2012-09-19 Package neuralnet February 20, 2015 Author Stefan Fritsch, Frauke Guenther , following earlier work
A MULTIVARIATE OUTLIER DETECTION METHOD
A MULTIVARIATE OUTLIER DETECTION METHOD P. Filzmoser Department of Statistics and Probability Theory Vienna, AUSTRIA e-mail: [email protected] Abstract A method for the detection of multivariate
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing
An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing Kyle Chauvin August 21, 2006 This work is the product of a summer research project at the University of Kansas, conducted
Maximally Selected Rank Statistics in R
Maximally Selected Rank Statistics in R by Torsten Hothorn and Berthold Lausen This document gives some examples on how to use the maxstat package and is basically an extention to Hothorn and Lausen (2002).
Package MBA. February 19, 2015. Index 7. Canopy LIDAR data
Version 0.0-8 Date 2014-4-28 Title Multilevel B-spline Approximation Package MBA February 19, 2015 Author Andrew O. Finley , Sudipto Banerjee Maintainer Andrew
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
Indices of Model Fit STRUCTURAL EQUATION MODELING 2013
Indices of Model Fit STRUCTURAL EQUATION MODELING 2013 Indices of Model Fit A recommended minimal set of fit indices that should be reported and interpreted when reporting the results of SEM analyses:
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
N-Way Analysis of Variance
N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data
Package robfilter. R topics documented: February 20, 2015. Version 4.1 Date 2012-09-13 Title Robust Time Series Filters
Version 4.1 Date 2012-09-13 Title Robust Time Series Filters Package robfilter February 20, 2015 Author Roland Fried , Karen Schettlinger
2 Sample t-test (unequal sample sizes and unequal variances)
Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA E. J. Dadey SSNIT, Research Department, Accra, Ghana S. Ankrah, PhD Student PGIA, University of Peradeniya, Sri Lanka Abstract This study investigates
Package GSA. R topics documented: February 19, 2015
Package GSA February 19, 2015 Title Gene set analysis Version 1.03 Author Brad Efron and R. Tibshirani Description Gene set analysis Maintainer Rob Tibshirani Dependencies impute
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Package date. R topics documented: February 19, 2015. Version 1.2-34. Title Functions for handling dates. Description Functions for handling dates.
Package date February 19, 2015 Version 1.2-34 Title Functions for handling dates Functions for handling dates. Imports graphics License GPL-2 Author Terry Therneau [aut], Thomas Lumley [trl] (R port),
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY
CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 4, Winter 2004 ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY SURREY KIM, 1 SONG LI, 2 HONGWEI LONG 3 AND RANDALL PYKE Based on work carried out
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
Package hive. January 10, 2011
Package hive January 10, 2011 Version 0.1-9 Date 2011-01-09 Title Hadoop InteractiVE Description Hadoop InteractiVE, is an R extension facilitating distributed computing via the MapReduce paradigm. It
A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks
A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks May 2011 Tsuyoshi Nagafuji Takayuki
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
