Computer Science 210: Data Structures. Searching
|
|
|
- Brooke Doyle
- 9 years ago
- Views:
Transcription
1 Computer Science 210: Data Structures Searching
2 Searching Given a sequence of elements, and a target element, find whether the target occurs in the sequence Variations: find first occurence; find all occurences find the number of occurences, etc Searching is a fundamental problem For simplicity, weʼll assume we have an array of n numbers double a[]; double target; and we want to write a method //return the position of first occurrence or -1 if not found int search (double a[], double target)
3 Searching //return the position of first occurrence or -1 if not found int search (double a[], double target)
4 Searching //return the position of first occurrence or -1 if not found int search (double a[], double target) { for (int i=0; i< a.length; i++) if (a[i] == target) return i; //if we got here, no element matched return -1; linear search
5 Searching //return the position of first occurrence or -1 if not found int search (double a[], double target) { for (int i=0; i< a.length; i++) if (a[i] == target) return i; //if we got here, no element matched return -1; best-case (fastest)? linear search worst-case (slowest)?
6 Searching //return the position of first occurrence or -1 if not found int search (double a[], double target) { for (int i=0; i< a.length; i++) if (a[i] == target) return i; //if we got here, no element matched return -1; With linear search, in the worst case we have to examine the entire input Can we do better? (that is, faster)? Yes, if the input is sorted linear search
7 Binary search Input: A target and a sequence of elements, sorted (in some order). For simplicity, we assume increasing (non-decreasing) order. //return the position of occurrence or -1 if not found //invariant: a is sorted in increasing order int binarysearch (double a[], double target) Idea: searching in a phone book open in the middle; if name comes before the middle name, search in the left half. if name comes after the middle name, search in the right half. Examples: double a[] = {1, 3, 4, 6, 7, 7, 9, 12, 14, 18, 56, 67, 89, 100; search for 6 search for 80
8 Binary Search //return the position of occurrence or -1 if not found //invariant: a is sorted in increasing order int binarysearch (double a[], double target) { int start, end, middle; start = 0; end = a.length-1; while...?... { middle = (start + end)/2; if (target == a[middle]) return middle; if (target < a[middle]) end = middle-1; if (target > a[middle]) start = middle +1; //if we are here, not found return -1;
9 Binary Search Correctness Is it ok to throw away half of the input? Why? Can you argue? Analysis: at the first iteration through the loop, start and end delimit the entire array at the second iteration through the loop, start and end delimit one half of the array at the third iteration... one quarter of the array at the fourth iteration... one eighth of the array let n be the size of the input array i th iteration ==> a section of size n/2 i How many iterations can there be?
10 Logarithm review
11 Assume n = 1,000, 000 Binary search How many elements does linear search compare? How many elements does binary search compare? Intuitively, binary search is (much) more efficient than linear search that is, in the worst case. We always think of the worst-case. Best-cases are irrelevant and offer no guarantees on the performance of an algorithm. We will analyze and compare them formally next week.
12 Binary Search Itʼs easy to think of it recursively Searching in the first or second half are recursive problems We need to give the start and end to the recursive call //invariant: a[] is sorted in increasing order //return the position where target is found, or -1 if not found int binarysearch (double a[], double target) { //this is the call to the recursive solver return binsearchrecursive(a, target, 0, a.length -1); // invariant: a[] is sorted in increasing order //search for target in a[start...end]; return the position where target is found, or -1 if not found int binsearchrecursive(double a[], double target, int start, int end)
13 Binary Search Itʼs easy to think of it recursively Searching in the first or second half are recursive problems We need to give the start and end to the recursive call // invariant: a[] is sorted in increasing order //search for target in a[start...end]; return the position where target is found, or -1 if not found int binsearchrecursive(double a[], double target, int start, int end) { //base case if (start < end) return -1; without base-case, infinite recursion //otherwise int middle = (start+end)/2; //note that it gets truncated if (target == a[middle]) return middle; if (target < a[middle]) return binsearchrecursive(a, target, start, middle -1); return binsearchrecursive(a, target, middle+1, end);
Analysis of Binary Search algorithm and Selection Sort algorithm
Analysis of Binary Search algorithm and Selection Sort algorithm In this section we shall take up two representative problems in computer science, work out the algorithms based on the best strategy to
What Is Recursion? Recursion. Binary search example postponed to end of lecture
Recursion Binary search example postponed to end of lecture What Is Recursion? Recursive call A method call in which the method being called is the same as the one making the call Direct recursion Recursion
Binary search algorithm
Binary search algorithm Definition Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the whole array. If the value of the search key is less than
Algorithm Analysis [2]: if-else statements, recursive algorithms. COSC 2011, Winter 2004, Section N Instructor: N. Vlajic
1 Algorithm Analysis []: if-else statements, recursive algorithms COSC 011, Winter 004, Section N Instructor: N. Vlajic Algorithm Analysis for-loop Running Time The running time of a simple loop for (int
Lecture Notes on Linear Search
Lecture Notes on Linear Search 15-122: Principles of Imperative Computation Frank Pfenning Lecture 5 January 29, 2013 1 Introduction One of the fundamental and recurring problems in computer science is
Loop Invariants and Binary Search
Loop Invariants and Binary Search Chapter 4.3.3 and 9.3.1-1 - Outline Ø Iterative Algorithms, Assertions and Proofs of Correctness Ø Binary Search: A Case Study - 2 - Outline Ø Iterative Algorithms, Assertions
6. Standard Algorithms
6. Standard Algorithms The algorithms we will examine perform Searching and Sorting. 6.1 Searching Algorithms Two algorithms will be studied. These are: 6.1.1. inear Search The inear Search The Binary
The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!
The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >
Analysis of a Search Algorithm
CSE 326 Lecture 4: Lists and Stacks 1. Agfgd 2. Dgsdsfd 3. Hdffdsf 4. Sdfgsfdg 5. Tefsdgass We will review: Analysis: Searching a sorted array (from last time) List ADT: Insert, Delete, Find, First, Kth,
Sorting Algorithms. Nelson Padua-Perez Bill Pugh. Department of Computer Science University of Maryland, College Park
Sorting Algorithms Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park Overview Comparison sort Bubble sort Selection sort Tree sort Heap sort Quick sort Merge
Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
Zabin Visram Room CS115 CS126 Searching. Binary Search
Zabin Visram Room CS115 CS126 Searching Binary Search Binary Search Sequential search is not efficient for large lists as it searches half the list, on average Another search algorithm Binary search Very
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential
Outline. Introduction Linear Search. Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques
Searching (Unit 6) Outline Introduction Linear Search Ordered linear search Unordered linear search Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques
Binary Heap Algorithms
CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn G. Chappell
Lecture Notes on Binary Search Trees
Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 17 October 23, 2014 1 Introduction In this lecture, we will continue considering associative
Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)
Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse
Algorithms. Margaret M. Fleck. 18 October 2010
Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying big-o
You are to simulate the process by making a record of the balls chosen, in the sequence in which they are chosen. Typical output for a run would be:
Lecture 7 Picking Balls From an Urn The problem: An urn has n (n = 10) balls numbered from 0 to 9 A ball is selected at random, its' is number noted, it is set aside, and another ball is selected from
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
Symbol Tables. Introduction
Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The
Sequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
recursion here it is in C++ power function cis15 advanced programming techniques, using c++ fall 2007 lecture # VI.1
topics: recursion searching cis15 advanced programming techniques, using c++ fall 2007 lecture # VI.1 recursion recursion is defining something in terms of itself there are many examples in nature and
Introduction to Programming (in C++) Loops. Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC
Introduction to Programming (in C++) Loops Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC Example Assume the following specification: Input: read a number N > 0 Output:
Example. Introduction to Programming (in C++) Loops. The while statement. Write the numbers 1 N. Assume the following specification:
Example Introduction to Programming (in C++) Loops Assume the following specification: Input: read a number N > 0 Output: write the sequence 1 2 3 N (one number per line) Jordi Cortadella, Ricard Gavaldà,
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
APP INVENTOR. Test Review
APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division
recursion, O(n), linked lists 6/14
recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list
Chapter 8: Bags and Sets
Chapter 8: Bags and Sets In the stack and the queue abstractions, the order that elements are placed into the container is important, because the order elements are removed is related to the order in which
CS473 - Algorithms I
CS473 - Algorithms I Lecture 9 Sorting in Linear Time View in slide-show mode 1 How Fast Can We Sort? The algorithms we have seen so far: Based on comparison of elements We only care about the relative
Data Structures. Algorithm Performance and Big O Analysis
Data Structures Algorithm Performance and Big O Analysis What s an Algorithm? a clearly specified set of instructions to be followed to solve a problem. In essence: A computer program. In detail: Defined
4.2 Sorting and Searching
Sequential Search: Java Implementation 4.2 Sorting and Searching Scan through array, looking for key. search hit: return array index search miss: return -1 public static int search(string key, String[]
Chapter 7: Sequential Data Structures
Java by Definition Chapter 7: Sequential Data Structures Page 1 of 112 Chapter 7: Sequential Data Structures We have so far explored the basic features of the Java language, including an overview of objectoriented
CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting
CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)
In mathematics, it is often important to get a handle on the error term of an approximation. For instance, people will write
Big O notation (with a capital letter O, not a zero), also called Landau's symbol, is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic behavior of functions.
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
Functions Recursion. C++ functions. Declare/prototype. Define. Call. int myfunction (int ); int myfunction (int x){ int y = x*x; return y; }
Functions Recursion C++ functions Declare/prototype int myfunction (int ); Define int myfunction (int x){ int y = x*x; return y; Call int a; a = myfunction (7); function call flow types type of function
Lecture Notes on Binary Search Trees
Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 17 March 17, 2010 1 Introduction In the previous two lectures we have seen how to exploit the structure
Recursion. Slides. Programming in C++ Computer Science Dept Va Tech Aug., 2001. 1995-2001 Barnette ND, McQuain WD
1 Slides 1. Table of Contents 2. Definitions 3. Simple 4. Recursive Execution Trace 5. Attributes 6. Recursive Array Summation 7. Recursive Array Summation Trace 8. Coding Recursively 9. Recursive Design
Class : MAC 286. Data Structure. Research Paper on Sorting Algorithms
Name : Jariya Phongsai Class : MAC 286. Data Structure Research Paper on Sorting Algorithms Prof. Lawrence Muller Date : October 26, 2009 Introduction In computer science, a ing algorithm is an efficient
Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity
csci 210: Data Structures Recursion
csci 210: Data Structures Recursion Summary Topics recursion overview simple examples Sierpinski gasket Hanoi towers Blob check READING: GT textbook chapter 3.5 Recursion In general, a method of defining
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
Learning Outcomes. COMP202 Complexity of Algorithms. Binary Search Trees and Other Search Trees
Learning Outcomes COMP202 Complexity of Algorithms Binary Search Trees and Other Search Trees [See relevant sections in chapters 2 and 3 in Goodrich and Tamassia.] At the conclusion of this set of lecture
Object-Oriented Design Lecture 4 CSU 370 Fall 2007 (Pucella) Tuesday, Sep 18, 2007
Object-Oriented Design Lecture 4 CSU 370 Fall 2007 (Pucella) Tuesday, Sep 18, 2007 The Java Type System By now, you have seen a fair amount of Java. Time to study in more depth the foundations of the language,
This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions. Linda Shapiro Spring 2016
CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions Linda Shapiro Spring 2016 Announcements Friday: Review List and go over answers to Practice Problems 2 Hash Tables: Review Aim for constant-time
CSC 180 H1F Algorithm Runtime Analysis Lecture Notes Fall 2015
1 Introduction These notes introduce basic runtime analysis of algorithms. We would like to be able to tell if a given algorithm is time-efficient, and to be able to compare different algorithms. 2 Linear
1 Description of The Simpletron
Simulating The Simpletron Computer 50 points 1 Description of The Simpletron In this assignment you will write a program to simulate a fictional computer that we will call the Simpletron. As its name implies
Closest Pair of Points. Kleinberg and Tardos Section 5.4
Closest Pair of Points Kleinberg and Tardos Section 5.4 Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric
Binary Search Trees CMPSC 122
Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than
Data Structures and Algorithms
Data Structures and Algorithms Computational Complexity Escola Politècnica Superior d Alcoi Universitat Politècnica de València Contents Introduction Resources consumptions: spatial and temporal cost Costs
Linked Lists: Implementation Sequences in the C++ STL
Linked Lists: Implementation Sequences in the C++ STL continued CS 311 Data Structures and Algorithms Lecture Slides Wednesday, April 1, 2009 Glenn G. Chappell Department of Computer Science University
Questions 1 through 25 are worth 2 points each. Choose one best answer for each.
Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in
1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++
Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The
Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information a
CSE 220: Handout 29 Disjoint Sets 1 Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information about relations
Sample Questions Csci 1112 A. Bellaachia
Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k
Arrays. number: Motivation. Prof. Stewart Weiss. Software Design Lecture Notes Arrays
Motivation Suppose that we want a program that can read in a list of numbers and sort that list, or nd the largest value in that list. To be concrete about it, suppose we have 15 numbers to read in from
Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C
Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate
Cohort: BCA/07B/PT - BCA/06/PT - BCNS/06/FT - BCNS/05/FT - BIS/06/FT - BIS/05/FT - BSE/05/FT - BSE/04/PT-BSE/06/FT
BSc (Hons) in Computer Applications, BSc (Hons) Computer Science with Network Security, BSc (Hons) Business Information Systems & BSc (Hons) Software Engineering Cohort: BCA/07B/PT - BCA/06/PT - BCNS/06/FT
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
Basic Programming and PC Skills: Basic Programming and PC Skills:
Texas University Interscholastic League Contest Event: Computer Science The contest challenges high school students to gain an understanding of the significance of computation as well as the details of
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
A Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada [email protected] September 12,
Heaps & Priority Queues in the C++ STL 2-3 Trees
Heaps & Priority Queues in the C++ STL 2-3 Trees CS 3 Data Structures and Algorithms Lecture Slides Friday, April 7, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
Introduction to Parallel Programming and MapReduce
Introduction to Parallel Programming and MapReduce Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
Positional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
Sources: On the Web: Slides will be available on:
C programming Introduction The basics of algorithms Structure of a C code, compilation step Constant, variable type, variable scope Expression and operators: assignment, arithmetic operators, comparison,
Binary Multiplication
Binary Multiplication Q: How do we multiply two numbers? eg. 12, 345 6, 789 111105 987600 8641500 + 74070000 83, 810, 205 10111 10101 10111 00000 1011100 0000000 + 101110000 111100011 Pad, multiply and
HW4: Merge Sort. 1 Assignment Goal. 2 Description of the Merging Problem. Course: ENEE759K/CMSC751 Title:
HW4: Merge Sort Course: ENEE759K/CMSC751 Title: Merge Sort Date Assigned: March 24th, 2009 Date Due: April 10th, 2009 11:59pm Contact: Fuat Keceli keceli (at) umd (dot) edu 1 Assignment Goal The final
Node-Based Structures Linked Lists: Implementation
Linked Lists: Implementation CS 311 Data Structures and Algorithms Lecture Slides Monday, March 30, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected]
Chapter Objectives. Chapter 9. Sequential Search. Search Algorithms. Search Algorithms. Binary Search
Chapter Objectives Chapter 9 Search Algorithms Data Structures Using C++ 1 Learn the various search algorithms Explore how to implement the sequential and binary search algorithms Discover how the sequential
A Randomized Searching Algorithm and its Performance analysis with Binary Search and Linear Search Algorithms
Volume 1, No. 11, January 2013 ISSN 2278-1080 The International Journal of Computer Science & Applications (TIJCSA) RESEARCH PAPER Available Online at http://www.journalofcomputerscience.com/ A Randomized
Converting a Number from Decimal to Binary
Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
Now is the time. For all good men PERMUTATION GENERATION. Princeton University. Robert Sedgewick METHODS
Now is the time For all good men PERMUTATION GENERATION METHODS To come to the aid Of their party Robert Sedgewick Princeton University Motivation PROBLEM Generate all N! permutations of N elements Q:
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational
Sequences in the C++ STL
CS 311 Data Structures and Algorithms Lecture Slides Wednesday, November 4, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn
A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:
Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)
Introduction to Programming (in C++) Sorting. Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC
Introduction to Programming (in C++) Sorting Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC Sorting Let elem be a type with a operation, which is a total order A vector
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers
Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers TIMOTHY S. GEGG-HARRISON Winona State University Although computer scientists understand the importance of discrete
Recursion. Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive.
Recursion Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive. Why recursion? o For many problems, the recursion solution is more natural than the alternative
Time Limit: X Flags: -std=gnu99 -w -O2 -fomitframe-pointer. Time Limit: X. Flags: -std=c++0x -w -O2 -fomit-frame-pointer - lm
Judge Environment Language Compilers Language Version Flags/Notes Max Memory Limit C gcc 4.8.1 Flags: -std=gnu99 -w -O2 -fomit-frame-pointer - lm C++ g++ 4.8.1 Flags: -std=c++0x -w -O2 -fomit-frame-pointer
Regression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
What Is Recursion? 5/12/10 1. CMPSC 24: Lecture 13 Recursion. Lecture Plan. Divyakant Agrawal Department of Computer Science UC Santa Barbara
CMPSC 24: Lecture 13 Recursion Divyakant Agrawal Department of Computer Science UC Santa Barbara 5/12/10 1 Lecture Plan Recursion General structure of recursive soluions Why do recursive soluions terminate?
Elementary factoring algorithms
Math 5330 Spring 013 Elementary factoring algorithms The RSA cryptosystem is founded on the idea that, in general, factoring is hard. Where as with Fermat s Little Theorem and some related ideas, one can
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
Discrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using
Algorithm Design and Recursion
Chapter 13 Algorithm Design and Recursion Objectives To understand basic techniques for analyzing the efficiency of algorithms. To know what searching is and understand the algorithms for linear and binary
AP Computer Science AB Syllabus 1
AP Computer Science AB Syllabus 1 Course Resources Java Software Solutions for AP Computer Science, J. Lewis, W. Loftus, and C. Cocking, First Edition, 2004, Prentice Hall. Video: Sorting Out Sorting,
Course: Programming II - Abstract Data Types. The ADT Stack. A stack. The ADT Stack and Recursion Slide Number 1
Definition Course: Programming II - Abstract Data Types The ADT Stack The ADT Stack is a linear sequence of an arbitrary number of items, together with access procedures. The access procedures permit insertions
