Binary Search Trees CMPSC 122

Size: px
Start display at page:

Transcription

1 Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than in 360. Starting in Spring 2014, I've split the introduction to trees in 360 into two packets: one that encompasses all we do here and a second on the deeper mathematical analysis, namely a proof by strong induction of an important theorem relating the height and number of terminal vertices. If you are not concurrently taking both courses with me, but take 360 with me later, check in with me about potentially being excused from a lecture that will be review for you there. I. Motivation We've learned about various structures in which to store data arrays, lists, stacks, queues and each has something about it that makes it unique. What often motivates the choice of structure is what we want to do with it, or how we want to get information out of it. All of those other structures were linear structures. We can use the idea of binary trees to store data in a way that allows branching. Let's do an activity. You'll give me some numbers, and I'll put them into a binary tree in a particular way. As we go, write down the list of numbers in order and the tree. See if you can figure out what I'm doing. List of numbers: Resulting tree: Page 1 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

2 II. Binary Search Trees, Defined The kind of tree we're working with is something called a binary search tree, sometimes abbreviated BST. For a binary tree to be a binary search tree, it must satisfy the binary search tree property. That is, for each node n, n's left child must be less than n. More formally n's right child must be greater than n. More formally In this definition, we work under the assumption that all keys in a BST are unique. (This isn't a stretch, but if we wanted to allow non-unique keys, there are few different strategies we could employ for "same" keys.) Now then, it's worth noting how BSTs can be used. While we could certainly use a BST to store a list of numbers, it's really the meaning of those numbers that makes a BST useful. We really want to use a BST to store records. But, in practice, we don't really store an entire record in a node of a BST; we instead store some key to the record (think primary keys in database tables as we'll see in CMPSC 221). So, we store keys to records in a tree and use the structure of a binary tree to locate a record easily. That's why it's called a binary search tree. III. Searching A BST Question: In the tree we drew above, how would go about searching for the key 50 systematically, given that the tree must follow the BST property? Question: How would we determine that a key isn't found in a BST? So, let's generalize and write down pseudocode for an algorithm to search for a node in a BST. It should take as an input a pointer to the tree's root and a search key. It should return a pointer to a node containing the search key, or, in the case of failure, NIL. Page 2 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

3 Problem: What is the precondition for the above algorithm? IV. An Algorithm for Insertion into a BST To build a binary search tree from a set of input numbers: 1. Make the first input the root of the BST. 2. For each remaining input, recursively compare the input to the root of the tree. a. If the input is less than the root, it becomes the left child of the root (or, recursively, it goes into the left subtree.) b. If the input is greater than the root, it becomes the right child of the root (or, recursively, it goes into the right subtree.) Example 1: Build a BST from the following lists: a. 6, 4, 7 b. 6, 4, 7, 2, 5, 9 Problem: a. Build a BST from these inputs: 10, 20, 30, 40, 5, 8, 50, 60, 70, 15, 80 b. Comment on the shape of the BST. Page 3 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

4 Problem: Write a recursive algorithm to insert a key into a BST, given that key and a pointer to the BST's root. Page 4 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

5 V. Tree Traversal Once a tree is in place, we can traverse or walk the tree to list the elements of the tree. There are three kinds of traversals. The first is called an inorder traversal of the tree. Algorithm: Inorder Traversal(Tree T) 1. Do an Inorder Traversal on the left subtree of T 2. Print the root of T 3. Do an Inorder Traversal on the right subtree of T Notice the recursive nature of this procedure. Example: Let's go back and do an inorder traversal on a BST from the first page. The other two kinds of traversals are called preorder and postorder. In short, here's how all three go: Inorder Traversal: left, root, right Preorder Traversal: root, left, right Postorder Traversal: left, right, root Example: Let's do a preorder traversal on a BST from the first page. Example: Let's do a postorder traversal on a BST from the first page. Page 5 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

6 VI. Tree Sort Question: Suppose we had a list of numbers we wanted to sort. How could we use a BST to do this? Question: What advantages does this method have? VII. Performance of BST Algorithms Problem: Build a BST from these values: 50, 30, 20, 40, 70, 80, 60. Trace a search for 50. How many comparisons are necessary? Trace a search for 20. How many comparisons are necessary? Trace a search for 45. How many comparisons are necessary? Can we call any of these best or worst-case scenarios? Page 6 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

7 Let's now consider a tree that's slightly larger, one where each of the leaves of the last tree had 2 children. Let's again extend the last tree in the same way and get a maximum number of comparisons. Let's generalize the worst-case number of comparisons for the special case of a binary search tree where each node has exactly 2 children: Number of nodes (n) Worst-Case Number of Comparisons Question: Does this count as a worst-case running time for a search in a BST? Why? If not, what would an accurate worst case be? Searching wasn't the only algorithm we looked at. Let's consider the performance of others: Insertion Traversal Finally, it would seem, then, that having perfectly balanced binary trees yields optimal performance. So, it would behoove us to have a way of balancing BSTs. We'll leave that for the middle of 465 (and, in the meantime, do some other things with trees in 360, as well as graphs, of which trees are just a special case). Page 7 of 7 Prepared by D. Hogan for PSU CMPSC 360 and CMPSC 122

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

A binary search tree is a binary tree with a special property called the BST-property, which is given as follows:

Chapter 12: Binary Search Trees A binary search tree is a binary tree with a special property called the BST-property, which is given as follows: For all nodes x and y, if y belongs to the left subtree

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child

Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using

Binary Search Trees (BST)

Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to node 2. Each node has at most two child nodes (a left and a right child) 3. Nodes are organized by the Binary Search

Full and Complete Binary Trees

Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

Converting a Number from Decimal to Binary

Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive

Questions 1 through 25 are worth 2 points each. Choose one best answer for each.

Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in

Ordered Lists and Binary Trees

Data Structures and Algorithms Ordered Lists and Binary Trees Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/62 6-0:

Data Structure [Question Bank]

Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:

Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain

inary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from each

DATA STRUCTURES USING C

DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

Data Structures and Algorithms

Data Structures and Algorithms CS245-2016S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list

CSE 326: Data Structures B-Trees and B+ Trees

Announcements (4//08) CSE 26: Data Structures B-Trees and B+ Trees Brian Curless Spring 2008 Midterm on Friday Special office hour: 4:-5: Thursday in Jaech Gallery (6 th floor of CSE building) This is

Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)

Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse

TREE BASIC TERMINOLOGIES

TREE Trees are very flexible, versatile and powerful non-liner data structure that can be used to represent data items possessing hierarchical relationship between the grand father and his children and

Data Structures. Level 6 C30151. www.fetac.ie. Module Descriptor

The Further Education and Training Awards Council (FETAC) was set up as a statutory body on 11 June 2001 by the Minister for Education and Science. Under the Qualifications (Education & Training) Act,

Algorithms Chapter 12 Binary Search Trees

Algorithms Chapter 1 Binary Search Trees Outline Assistant Professor: Ching Chi Lin 林 清 池 助 理 教 授 chingchi.lin@gmail.com Department of Computer Science and Engineering National Taiwan Ocean University

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

Data Structures, Practice Homework 3, with Solutions (not to be handed in)

Data Structures, Practice Homework 3, with Solutions (not to be handed in) 1. Carrano, 4th edition, Chapter 9, Exercise 1: What is the order of each of the following tasks in the worst case? (a) Computing

Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb

Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations

Learning Outcomes. COMP202 Complexity of Algorithms. Binary Search Trees and Other Search Trees

Learning Outcomes COMP202 Complexity of Algorithms Binary Search Trees and Other Search Trees [See relevant sections in chapters 2 and 3 in Goodrich and Tamassia.] At the conclusion of this set of lecture

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON THE USAGE OF OLD AND NEW DATA STRUCTURE ARRAYS, LINKED LIST, STACK,

MAX = 5 Current = 0 'This will declare an array with 5 elements. Inserting a Value onto the Stack (Push) -----------------------------------------

=============================================================================================================================== DATA STRUCTURE PSEUDO-CODE EXAMPLES (c) Mubashir N. Mir - www.mubashirnabi.com

PES Institute of Technology-BSC QUESTION BANK

PES Institute of Technology-BSC Faculty: Mrs. R.Bharathi CS35: Data Structures Using C QUESTION BANK UNIT I -BASIC CONCEPTS 1. What is an ADT? Briefly explain the categories that classify the functions

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

The ADT Binary Search Tree The Binary Search Tree is a particular type of binary tree that enables easy searching for specific items. Definition The ADT Binary Search Tree is a binary tree which has an

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary

How To Create A Tree From A Tree In Runtime (For A Tree)

Binary Search Trees < 6 2 > = 1 4 8 9 Binary Search Trees 1 Binary Search Trees A binary search tree is a binary tree storing keyvalue entries at its internal nodes and satisfying the following property:

10CS35: Data Structures Using C

CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

ER E P M A S S I CONSTRUCTING A BINARY TREE EFFICIENTLYFROM ITS TRAVERSALS DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1998-5

S I N S UN I ER E P S I T VER M A TA S CONSTRUCTING A BINARY TREE EFFICIENTLYFROM ITS TRAVERSALS DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1998-5 UNIVERSITY OF TAMPERE DEPARTMENT OF

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

From Last Time: Remove (Delete) Operation

CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From

Persistent Binary Search Trees

Persistent Binary Search Trees Datastructures, UvA. May 30, 2008 0440949, Andreas van Cranenburgh Abstract A persistent binary tree allows access to all previous versions of the tree. This paper presents

S. Muthusundari. Research Scholar, Dept of CSE, Sathyabama University Chennai, India e-mail: nellailath@yahoo.co.in. Dr. R. M.

A Sorting based Algorithm for the Construction of Balanced Search Tree Automatically for smaller elements and with minimum of one Rotation for Greater Elements from BST S. Muthusundari Research Scholar,

Binary Heap Algorithms

CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn G. Chappell

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 17 March 17, 2010 1 Introduction In the previous two lectures we have seen how to exploit the structure

Heaps & Priority Queues in the C++ STL 2-3 Trees

Heaps & Priority Queues in the C++ STL 2-3 Trees CS 3 Data Structures and Algorithms Lecture Slides Friday, April 7, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks

Chapter 14 The Binary Search Tree

Chapter 14 The Binary Search Tree In Chapter 5 we discussed the binary search algorithm, which depends on a sorted vector. Although the binary search, being in O(lg(n)), is very efficient, inserting a

Exercises Software Development I. 11 Recursion, Binary (Search) Trees. Towers of Hanoi // Tree Traversal. January 16, 2013

Exercises Software Development I 11 Recursion, Binary (Search) Trees Towers of Hanoi // Tree Traversal January 16, 2013 Software Development I Winter term 2012/2013 Institute for Pervasive Computing Johannes

Exam study sheet for CS2711. List of topics

Exam study sheet for CS2711 Here is the list of topics you need to know for the final exam. For each data structure listed below, make sure you can do the following: 1. Give an example of this data structure

Symbol Tables. Introduction

Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:

Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)

Data Structure with C

Subject: Data Structure with C Topic : Tree Tree A tree is a set of nodes that either:is empty or has a designated node, called the root, from which hierarchically descend zero or more subtrees, which

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. Course Curriculum. DATA STRUCTURES (Code: 3330704)

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT Course Curriculum DATA STRUCTURES (Code: 3330704) Diploma Programme in which this course is offered Semester in which offered Computer Engineering,

Binary Search Tree. 6.006 Intro to Algorithms Recitation 03 February 9, 2011

Binary Search Tree A binary search tree is a data structure that allows for key lookup, insertion, and deletion. It is a binary tree, meaning every node of the tree has at most two child nodes, a left

Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *

Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest

COMPSCI 105 S2 C - Assignment 2 Due date: Friday, 23 rd October 7pm

COMPSCI 105 S2 C - Assignment Two 1 of 7 Computer Science COMPSCI 105 S2 C - Assignment 2 Due date: Friday, 23 rd October 7pm 100 marks in total = 7.5% of the final grade Assessment Due: Friday, 23 rd

ECE 250 Data Structures and Algorithms MIDTERM EXAMINATION 2008-10-23/5:15-6:45 REC-200, EVI-350, RCH-106, HH-139

ECE 250 Data Structures and Algorithms MIDTERM EXAMINATION 2008-10-23/5:15-6:45 REC-200, EVI-350, RCH-106, HH-139 Instructions: No aides. Turn off all electronic media and store them under your desk. If

Data Structures Fibonacci Heaps, Amortized Analysis

Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

Previous Lectures. B-Trees. External storage. Two types of memory. B-trees. Main principles

B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

Parallelization: Binary Tree Traversal

By Aaron Weeden and Patrick Royal Shodor Education Foundation, Inc. August 2012 Introduction: According to Moore s law, the number of transistors on a computer chip doubles roughly every two years. First

Binary Search Trees. basic implementations randomized BSTs deletion in BSTs

Binary Search Trees basic implementations randomized BSTs deletion in BSTs eferences: Algorithms in Java, Chapter 12 Intro to Programming, Section 4.4 http://www.cs.princeton.edu/introalgsds/43bst 1 Elementary

B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees

B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

Any two nodes which are connected by an edge in a graph are called adjacent node.

. iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs

Data Structures. Chapter 8

Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a

Binary Search Trees. Each child can be identied as either a left or right. parent. right. A binary tree can be implemented where each node

Binary Search Trees \I think that I shall never see a poem as lovely as a tree Poem's are wrote by fools like me but only G-d can make atree \ {Joyce Kilmer Binary search trees provide a data structure

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 17 October 23, 2014 1 Introduction In this lecture, we will continue considering associative

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 221] edge. parent

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 221] Trees Important terminology: edge root node parent Some uses of trees: child leaf model arithmetic expressions and other expressions

Binary Heaps. CSE 373 Data Structures

Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property

CmSc 250 Intro to Algorithms Chapter 6. Transform and Conquer Binary Heaps 1. Definition A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called

Algorithms and Data Structures

Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2

Analysis of Algorithms I: Optimal Binary Search Trees

Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were

Algorithms and Data Structures

Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

M-way Trees and B-Trees

Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Once upon a time... in a course that we all like to

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated

Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information a

CSE 220: Handout 29 Disjoint Sets 1 Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information about relations

Lecture 6: Binary Search Trees CSCI 700 - Algorithms I. Andrew Rosenberg

Lecture 6: Binary Search Trees CSCI 700 - Algorithms I Andrew Rosenberg Last Time Linear Time Sorting Counting Sort Radix Sort Bucket Sort Today Binary Search Trees Data Structures Data structure is a

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit

Data Structures Page 1 of 24 A.1. Arrays (Vectors) n-element vector start address + ielementsize 0 +1 +2 +3 +4... +n-1 start address continuous memory block static, if size is known at compile time dynamic,

Dynamic Programming Problem Set Partial Solution CMPSC 465

Dynamic Programming Problem Set Partial Solution CMPSC 465 I ve annotated this document with partial solutions to problems written more like a test solution. (I remind you again, though, that a formal

Sample Questions Csci 1112 A. Bellaachia

Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k

Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

Rotation Operation for Binary Search Trees Idea:

Rotation Operation for Binary Search Trees Idea: Change a few pointers at a particular place in the tree so that one subtree becomes less deep in exchange for another one becoming deeper. A sequence of

Big Data and Scripting. Part 4: Memory Hierarchies

1, Big Data and Scripting Part 4: Memory Hierarchies 2, Model and Definitions memory size: M machine words total storage (on disk) of N elements (N is very large) disk size unlimited (for our considerations)

The following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2).

CHAPTER 5 The Tree Data Model There are many situations in which information has a hierarchical or nested structure like that found in family trees or organization charts. The abstraction that models hierarchical

Binary Search Trees 3/20/14

Binary Search Trees 3/0/4 Presentation for use ith the textbook Data Structures and Algorithms in Java, th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldasser, Wiley, 04 Binary Search Trees 4

recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list

Lecture 6: Trees, Binary Trees and Binary Search Trees (BST)

Lecture 6: Trees, Binary Trees and Binary Search Trees (BST) Reading materials Dale, Joyce, Weems: Chapter 8 OpenDSA: Chapter 9 Liang: only in Comprehensive edition, Binary search trees visualizations:

Java Software Structures

INTERNATIONAL EDITION Java Software Structures Designing and Using Data Structures FOURTH EDITION John Lewis Joseph Chase This page is intentionally left blank. Java Software Structures,International Edition

Data Structures Using C++

Data Structures Using C++ 1.1 Introduction Data structure is an implementation of an abstract data type having its own set of data elements along with functions to perform operations on that data. Arrays

Introduction to Data Structures and Algorithms

Introduction to Data Structures and Algorithms Chapter: Elementary Data Structures(1) Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German) Martensstraße 3, 91058 Erlangen Overview on simple data structures

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!

The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >

A Note on Maximum Independent Sets in Rectangle Intersection Graphs

A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,

Binary Search Trees. Ric Glassey glassey@kth.se

Binary Search Trees Ric Glassey glassey@kth.se Outline Binary Search Trees Aim: Demonstrate how a BST can maintain order and fast performance relative to its height Properties Operations Min/Max Search

Data Structure and Algorithm I Midterm Examination 120 points Time: 9:10am-12:10pm (180 minutes), Friday, November 12, 2010

Data Structure and Algorithm I Midterm Examination 120 points Time: 9:10am-12:10pm (180 minutes), Friday, November 12, 2010 Problem 1. In each of the following question, please specify if the statement

UNIVERSITY OF LONDON (University College London) M.Sc. DEGREE 1998 COMPUTER SCIENCE D16: FUNCTIONAL PROGRAMMING. Answer THREE Questions.

UNIVERSITY OF LONDON (University College London) M.Sc. DEGREE 1998 COMPUTER SCIENCE D16: FUNCTIONAL PROGRAMMING Answer THREE Questions. The Use of Electronic Calculators: is NOT Permitted. -1- Answer Question

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

A Comparison of Dictionary Implementations

A Comparison of Dictionary Implementations Mark P Neyer April 10, 2009 1 Introduction A common problem in computer science is the representation of a mapping between two sets. A mapping f : A B is a function

AP Computer Science AB Syllabus 1

AP Computer Science AB Syllabus 1 Course Resources Java Software Solutions for AP Computer Science, J. Lewis, W. Loftus, and C. Cocking, First Edition, 2004, Prentice Hall. Video: Sorting Out Sorting,