Loop Invariants and Binary Search
|
|
|
- Leslie Gaines
- 10 years ago
- Views:
Transcription
1 Loop Invariants and Binary Search Chapter and
2 Outline Ø Iterative Algorithms, Assertions and Proofs of Correctness Ø Binary Search: A Case Study - 2 -
3 Outline Ø Iterative Algorithms, Assertions and Proofs of Correctness Ø Binary Search: A Case Study - 3 -
4 Assertions Ø An assertion is a statement about the state of the data at a specified point in your algorithm. Ø An assertion is not a task for the algorithm to perform. Ø You may think of it as a comment that is added for the benefit of the reader
5 Loop Invariants Ø Binary search can be implemented as an iterative algorithm (it could also be done recursively). Ø Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms
6 Other Examples of Assertions Ø Preconditions: Any assumptions that must be true about the input instance. Ø Postconditions: The statement of what must be true when the algorithm/program returns. Ø Exit condition: The statement of what must be true to exit a loop
7 Iterative Algorithms Take one step at a time towards the final destination loop (done) take step end loop - 7 -
8 Establishing Loop Invariant From the Pre-Conditions on the input instance we must establish the loop invariant
9 Maintain Loop Invariant Ø Suppose that q We start in a safe location (pre-condition) q If we are in a safe location, we always step to another safe location (loop invariant) Ø Can we be assured that the computation will always be in a safe location? Ø By what principle? - 9 -
10 Maintain Loop Invariant By Induction the computation will always be in a safe location. S(0) isi, ( ) isi, ( ) Si ( + 1)
11 Ending The Algorithm Ø Define Exit Condition Exit Ø Termination: With sufficient progress, the exit condition will be met. 0 km Exit Ø When we exit, we know q exit condition is true q loop invariant is true from these we must establish Exit the post conditions
12 Definition of Correctness <PreCond> & <code> è <PostCond> If the input meets the preconditions, then the output must meet the postconditions. If the input does not meet the preconditions, then nothing is required
13 Outline Ø Iterative Algorithms, Assertions and Proofs of Correctness Ø Binary Search: A Case Study
14 Define Problem: Binary Search Ø PreConditions q Key 25 q Sorted List Ø PostConditions q Find key in list (if there)
15 Define Loop Invariant Ø Maintain a sublist. Ø If the key is contained in the original list, then the key is contained in the sublist. key
16 Define Step Ø Cut sublist in half. Ø Determine which half the key would be in. Ø Keep that half. key 25 mid If key mid, then key is in left half If key > mid, then key is in right half.
17 Define Step Ø It is faster not to check if the middle element is the key. Ø Simply continue. key If key mid, then key is in left half If key > mid, then key is in right half.
18 Make Progress Ø The size of the list becomes smaller km km
19 Exit Condition key km Ø If the key is contained in the original list, then the key is contained in the sublist. Ø Sublist contains one element. Exit If element = key, return associated entry. Otherwise return false
20 Running Time The sublist is of size n, n / 2, n / 4, n / 8,,1 Each step O(1) time. Total = O(log n) key If key mid, then key is in left half If key > mid, then key is in right half.
21 Running Time Ø Binary search can interact poorly with the memory hierarchy (i.e. caching), because of its random-access nature. Ø It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers
22 END OF LECTURE FEB 13,
23 BinarySearch(A[1..n], key) <precondition>: A[1..n] is sorted in non-decreasing order <postcondition>: If key is in A[1..n], algorithm returns its location p = 1, q = n while q > p < loop-invariant>: If key is in A[1..n], then key is in A[p.. q] p + q mid = 2 if key A[ mid ] q = mid else p = mid + 1 end end if key = A[ p] return( p) else return("key not in list") end
24 Simple, right? Ø Although the concept is simple, binary search is notoriously easy to get wrong. Ø Why is this?
25 Boundary Conditions Ø The basic idea behind binary search is easy to grasp. Ø It is then easy to write pseudocode that works for a typical case. Ø Unfortunately, it is equally easy to write pseudocode that fails on the boundary conditions
26 Boundary Conditions if key A[ mid ] q = mid else p = mid + 1 end or if key < A[ mid ] q = mid else p = mid + 1 end What condition will break the loop invariant?
27 Boundary Conditions key 36 mid Code: key A[mid] select right half Bug!!
28 Boundary Conditions if key A[ mid ] q = mid else p = mid + 1 end if key < A[ mid ] q = mid 1 else p = mid end if key < A[ mid ] q = mid else p = mid + 1 end OK OK Not OK!!
29 Boundary Conditions mid p+ q = 2 or mid p+ q = 2 key Shouldn t matter, right? Select mid p + q =
30 Boundary Conditions key 25 mid Select mid p + q = If key mid, then key is in left half. If key > mid, then key is in right half
31 Boundary Conditions key 25 mid Select mid p + q = If key mid, then key is in left half. If key > mid, then key is in right half
32 Boundary Conditions Another bug! key 25 No progress toward goal: Loops Forever! mid Select mid p + q = If key mid, then key is in left half. If key > mid, then key is in right half
33 Boundary Conditions p + q mid = 2 if key A[ mid ] q = mid else p = mid + 1 end p + q mid = 2 if key < A[ mid ] q = mid 1 else p = mid end p + q mid = 2 if key A[ mid ] q = mid else p = mid + 1 end OK OK Not OK!!
34 Ø How many possible algorithms? Ø How many correct algorithms? Ø Probability of guessing correctly? Getting it Right p + q mid = 2 if key A[ mid ] q = mid else p = mid + 1 end p + q o r mid =? 2 or if key < A[ mid ]? or q = mid 1 else end p = mid
35 Alternative Algorithm: Less Efficient but More Clear BinarySearch(A[1..n],key) <precondition>: A[1..n] is sorted in non-decreasing order <postcondition>: If key is in A[1..n], algorithm returns its location p = 1, q = n while q p end < loop-invariant>: If key is in A[1..n], then key is in A[p..q] mid = p + q 2 if key <A[mid] q = mid 1 else if key > A[mid] else end p = mid + 1 return(mid) return("key not in list") Still Θ(log n), but with slightly larger constant
36 Card Trick Ø A volunteer, please
37 Pick a Card Done Thanks to J. Edmonds for this example.
38 Loop Invariant: The selected card is one of these
39 Which column? left
40 Loop Invariant: The selected card is one of these
41 Selected column is placed in the middle
42 I will rearrange the cards
43 Relax Loop Invariant: I will remember the same about each column
44 Which column? right
45 Loop Invariant: The selected card is one of these
46 Selected column is placed in the middle
47 I will rearrange the cards
48 Which column? left
49 Loop Invariant: The selected card is one of these
50 Selected column is placed in the middle
51 Here is your card. Wow!
52 Ternary Search Ø Loop Invariant: selected card in central subset of cards Size of subset = n / 3 where n = i 1 total number of cards i = iteration index Ø How many iterations are required to guarantee success?
53 Learning Outcomes Ø From this lecture, you should be able to: q Use the loop invariant method to think about iterative algorithms. q Prove that the loop invariant is established. q Prove that the loop invariant is maintained in the typical case. q Prove that the loop invariant is maintained at all boundary conditions. q Prove that progress is made in the typical case q Prove that progress is guaranteed even near termination, so that the exit condition is always reached. q Prove that the loop invariant, when combined with the exit condition, produces the post-condition. q Trade off efficiency for clear, correct code
Analysis of Binary Search algorithm and Selection Sort algorithm
Analysis of Binary Search algorithm and Selection Sort algorithm In this section we shall take up two representative problems in computer science, work out the algorithms based on the best strategy to
Lecture Notes on Linear Search
Lecture Notes on Linear Search 15-122: Principles of Imperative Computation Frank Pfenning Lecture 5 January 29, 2013 1 Introduction One of the fundamental and recurring problems in computer science is
Zabin Visram Room CS115 CS126 Searching. Binary Search
Zabin Visram Room CS115 CS126 Searching Binary Search Binary Search Sequential search is not efficient for large lists as it searches half the list, on average Another search algorithm Binary search Very
What Is Recursion? Recursion. Binary search example postponed to end of lecture
Recursion Binary search example postponed to end of lecture What Is Recursion? Recursive call A method call in which the method being called is the same as the one making the call Direct recursion Recursion
Binary search algorithm
Binary search algorithm Definition Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the whole array. If the value of the search key is less than
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential
Computer Science 210: Data Structures. Searching
Computer Science 210: Data Structures Searching Searching Given a sequence of elements, and a target element, find whether the target occurs in the sequence Variations: find first occurence; find all occurences
6. Standard Algorithms
6. Standard Algorithms The algorithms we will examine perform Searching and Sorting. 6.1 Searching Algorithms Two algorithms will be studied. These are: 6.1.1. inear Search The inear Search The Binary
Outline. 1 Denitions. 2 Principles. 4 Implementation and Evaluation. 5 Debugging. 6 References
Outline Computer Science 331 Introduction to Testing of Programs Mike Jacobson Department of Computer Science University of Calgary Lecture #3-4 1 Denitions 2 3 4 Implementation and Evaluation 5 Debugging
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Regression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Binary Heap Algorithms
CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn G. Chappell
CSC 180 H1F Algorithm Runtime Analysis Lecture Notes Fall 2015
1 Introduction These notes introduce basic runtime analysis of algorithms. We would like to be able to tell if a given algorithm is time-efficient, and to be able to compare different algorithms. 2 Linear
Binary Multiplication
Binary Multiplication Q: How do we multiply two numbers? eg. 12, 345 6, 789 111105 987600 8641500 + 74070000 83, 810, 205 10111 10101 10111 00000 1011100 0000000 + 101110000 111100011 Pad, multiply and
CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting
CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)
A simple algorithm with no simple verication
A simple algorithm with no simple verication Laszlo Csirmaz Central European University Abstract The correctness of a simple sorting algorithm is resented, which algorithm is \evidently wrong" at the rst
Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb
Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
Logistics. Software Testing. Logistics. Logistics. Plan for this week. Before we begin. Project. Final exam. Questions?
Logistics Project Part 3 (block) due Sunday, Oct 30 Feedback by Monday Logistics Project Part 4 (clock variant) due Sunday, Nov 13 th Individual submission Recommended: Submit by Nov 6 th Scoring Functionality
Learning Outcomes. COMP202 Complexity of Algorithms. Binary Search Trees and Other Search Trees
Learning Outcomes COMP202 Complexity of Algorithms Binary Search Trees and Other Search Trees [See relevant sections in chapters 2 and 3 in Goodrich and Tamassia.] At the conclusion of this set of lecture
Automated Program Behavior Analysis
Automated Program Behavior Analysis Stacy Prowell [email protected] March 2005 SQRL / SEI Motivation: Semantics Development: Most engineering designs are subjected to extensive analysis; software is
Algorithms and Data Structures
Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection
Lecture Notes on Binary Search Trees
Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 17 October 23, 2014 1 Introduction In this lecture, we will continue considering associative
Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
Binary Search Trees CMPSC 122
Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)
Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse
- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time
Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary
CS473 - Algorithms I
CS473 - Algorithms I Lecture 9 Sorting in Linear Time View in slide-show mode 1 How Fast Can We Sort? The algorithms we have seen so far: Based on comparison of elements We only care about the relative
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
Change Impact Analysis
Change Impact Analysis Martin Ward Reader in Software Engineering [email protected] Software Technology Research Lab De Montfort University Change Impact Analysis Impact analysis is a process that predicts
Randomized algorithms
Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Outline. Introduction Linear Search. Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques
Searching (Unit 6) Outline Introduction Linear Search Ordered linear search Unordered linear search Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques
Recursion. Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive.
Recursion Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive. Why recursion? o For many problems, the recursion solution is more natural than the alternative
Computing Concepts with Java Essentials
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Computing Concepts with Java Essentials 3rd Edition Cay Horstmann
Introduction to Programming System Design. CSCI 455x (4 Units)
Introduction to Programming System Design CSCI 455x (4 Units) Description This course covers programming in Java and C++. Topics include review of basic programming concepts such as control structures,
Chapter 8: Bags and Sets
Chapter 8: Bags and Sets In the stack and the queue abstractions, the order that elements are placed into the container is important, because the order elements are removed is related to the order in which
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:
Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)
Software Testing. Quality & Testing. Software Testing
Software Testing Software Testing Error: mistake made by the programmer/developer Fault: a incorrect piece of code/document (i.e., bug) Failure: result of a fault Goal of software testing: Cause failures
Pseudo code Tutorial and Exercises Teacher s Version
Pseudo code Tutorial and Exercises Teacher s Version Pseudo-code is an informal way to express the design of a computer program or an algorithm in 1.45. The aim is to get the idea quickly and also easy
A Randomized Searching Algorithm and its Performance analysis with Binary Search and Linear Search Algorithms
Volume 1, No. 11, January 2013 ISSN 2278-1080 The International Journal of Computer Science & Applications (TIJCSA) RESEARCH PAPER Available Online at http://www.journalofcomputerscience.com/ A Randomized
The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!
The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >
Software Testing & Analysis (F22ST3): Static Analysis Techniques 2. Andrew Ireland
Software Testing & Analysis (F22ST3) Static Analysis Techniques Andrew Ireland School of Mathematical and Computer Science Heriot-Watt University Edinburgh Software Testing & Analysis (F22ST3): Static
Query Processing C H A P T E R12. Practice Exercises
C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass
We will learn the Python programming language. Why? Because it is easy to learn and many people write programs in Python so we can share.
LING115 Lecture Note Session #4 Python (1) 1. Introduction As we have seen in previous sessions, we can use Linux shell commands to do simple text processing. We now know, for example, how to count words.
Sequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
CS106A, Stanford Handout #38. Strings and Chars
CS106A, Stanford Handout #38 Fall, 2004-05 Nick Parlante Strings and Chars The char type (pronounced "car") represents a single character. A char literal value can be written in the code using single quotes
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Recursion vs. Iteration Eliminating Recursion
Recursion vs. Iteration Eliminating Recursion continued CS 311 Data Structures and Algorithms Lecture Slides Monday, February 16, 2009 Glenn G. Chappell Department of Computer Science University of Alaska
Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally
Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Algorithms. Margaret M. Fleck. 18 October 2010
Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying big-o
1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity
The KaleidaGraph Guide to Curve Fitting
The KaleidaGraph Guide to Curve Fitting Contents Chapter 1 Curve Fitting Overview 1.1 Purpose of Curve Fitting... 5 1.2 Types of Curve Fits... 5 Least Squares Curve Fits... 5 Nonlinear Curve Fits... 6
Data Structures. Algorithm Performance and Big O Analysis
Data Structures Algorithm Performance and Big O Analysis What s an Algorithm? a clearly specified set of instructions to be followed to solve a problem. In essence: A computer program. In detail: Defined
EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES
ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada [email protected]
WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math
Textbook Correlation WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Following Directions Unit FIRST QUARTER AND SECOND QUARTER Logic Unit
TECHNICAL UNIVERSITY OF CRETE DATA STRUCTURES FILE STRUCTURES
TECHNICAL UNIVERSITY OF CRETE DEPT OF ELECTRONIC AND COMPUTER ENGINEERING DATA STRUCTURES AND FILE STRUCTURES Euripides G.M. Petrakis http://www.intelligence.tuc.gr/~petrakis Chania, 2007 E.G.M. Petrakis
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Solving Problems Recursively
Solving Problems Recursively Recursion is an indispensable tool in a programmer s toolkit Allows many complex problems to be solved simply Elegance and understanding in code often leads to better programs:
Lecture 4 Online and streaming algorithms for clustering
CSE 291: Geometric algorithms Spring 2013 Lecture 4 Online and streaming algorithms for clustering 4.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
Searching Algorithms
Searching Algorithms The Search Problem Problem Statement: Given a set of data e.g., int [] arr = {10, 2, 7, 9, 7, 4}; and a particular value, e.g., int val = 7; Find the first index of the value in the
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
Linked Lists: Implementation Sequences in the C++ STL
Linked Lists: Implementation Sequences in the C++ STL continued CS 311 Data Structures and Algorithms Lecture Slides Wednesday, April 1, 2009 Glenn G. Chappell Department of Computer Science University
Cosmological Arguments for the Existence of God S. Clarke
Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets
AP Computer Science AB Syllabus 1
AP Computer Science AB Syllabus 1 Course Resources Java Software Solutions for AP Computer Science, J. Lewis, W. Loftus, and C. Cocking, First Edition, 2004, Prentice Hall. Video: Sorting Out Sorting,
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
Algorithms are the threads that tie together most of the subfields of computer science.
Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Chapter 2 Data Storage
Chapter 2 22 CHAPTER 2. DATA STORAGE 2.1. THE MEMORY HIERARCHY 23 26 CHAPTER 2. DATA STORAGE main memory, yet is essentially random-access, with relatively small differences Figure 2.4: A typical
15-150 Lecture 11: Tail Recursion; Continuations
15-150 Lecture 11: Tail Recursion; Continuations Lecture by Dan Licata February 21, 2011 In this lecture we will discuss space usage: analyzing the memory it takes your program to run tail calls and tail
each college c i C has a capacity q i - the maximum number of students it will admit
n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i
CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions
CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Problem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
5. Linear algebra I: dimension
5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs
Node-Based Structures Linked Lists: Implementation
Linked Lists: Implementation CS 311 Data Structures and Algorithms Lecture Slides Monday, March 30, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected]
[Refer Slide Time: 05:10]
Principles of Programming Languages Prof: S. Arun Kumar Department of Computer Science and Engineering Indian Institute of Technology Delhi Lecture no 7 Lecture Title: Syntactic Classes Welcome to lecture
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Computational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (two-dimensional), R 2 Space (three-dimensional), R 3 Space (higher-dimensional), R d A point in the plane, 3-dimensional space,
Sources: On the Web: Slides will be available on:
C programming Introduction The basics of algorithms Structure of a C code, compilation step Constant, variable type, variable scope Expression and operators: assignment, arithmetic operators, comparison,
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
Analysis of a Search Algorithm
CSE 326 Lecture 4: Lists and Stacks 1. Agfgd 2. Dgsdsfd 3. Hdffdsf 4. Sdfgsfdg 5. Tefsdgass We will review: Analysis: Searching a sorted array (from last time) List ADT: Insert, Delete, Find, First, Kth,
Algorithm Design and Recursion
Chapter 13 Algorithm Design and Recursion Objectives To understand basic techniques for analyzing the efficiency of algorithms. To know what searching is and understand the algorithms for linear and binary
Recursion and Dynamic Programming. Biostatistics 615/815 Lecture 5
Recursion and Dynamic Programming Biostatistics 615/815 Lecture 5 Last Lecture Principles for analysis of algorithms Empirical Analysis Theoretical Analysis Common relationships between inputs and running
