Lecture 6: Query optimization, query tuning. Rasmus Pagh
|
|
|
- Gwendoline Neal
- 9 years ago
- Views:
Transcription
1 Lecture 6: Query optimization, query tuning Rasmus Pagh 1
2 Today s lecture Only one session (10-13) Query optimization: Overview of query evaluation Estimating sizes of intermediate results A typical query optimizer Query tuning: Providing good access paths Rewriting queries 2
3 Basics of query evaluation How to evaluate a query: Rewrite the query to (extended) relational algebra. Determine algorithms for computing intermediate results in the cheapest way. Execute the algorithms and you have the result! 3
4 Complications, 1 Rewrite the query to (extended) relational algebra. Can be done in many equivalent ways. Some may be more equal than others! Size of intermediate results of big importance. Queries with corellated subqueries do not really fit into relational algebra. 4
5 Complications, 2 Determine algorithms for computing intermediate results in the cheapest way. Best algorithm depends on the data: No access method (index, table scan,...) always wins. No algorithm for join, grouping, etc. always wins. Query optimizer should make an educated guess for a (near)optimal way of executing the query. 5
6 6
7 Schema: Motivating example (RG) Sailors(sid, sname, rating, age) 40 bytes/tuple, 100 tuples/page, 1000 pages Reserves(sid, bid, day, rname) 50 bytes/tuple, 80 tuples/page, 500 pages Query: SELECT S.sname FROM (Reserves NATURAL JOIN Sailors) WHERE bid=100 AND rating>5 7
8 Example, cont. Simple logical query plan: Physical query plan: Nested loop join. Selection and projection on the fly (pipelined). Cost: Around 500*1000 I/Os. 8
9 Example, cont. New logical query plan (push selects): Physical query plan: Full table scans of Reserves and Sailors. Sort-merge join of selection results Cost: I/Os plus sort-merge of selection results Latter cost should be estimated! 9
10 Example, cont. Another logical query plan: Assume there is an index on bid. Physical query plan: Index scan of Reserves. Index nested loop join with Sailors. Final select and projection on the fly. Cost: Around 1 I/O per matching tuple of Reserves for index nested loop join. 10
11 Algebraic equivalences In the previous examples, we gave several equivalent queries. A systematic (and correct!) way of forming equivalent relational algebra expression is based on algebraic rules. Query optimizers consider a (possibly quite large) space of equivalent plans at run time before deciding how to execute a given query. 11
12 Problem session 12
13 Simplification Core problem: σπ expressions, consisting of equi-joins, selections, and a projection. Subqueries either: Eliminated using rewriting, or Handled using a separate σπ expression. Grouping, aggregation, duplicate elimination: Handled in a final step. 13
14 Single relation access plans Example: Without an index: Full table scan. (Well, depends on the physical organization.) With index: Single index access path Multiple index access path Sorted index access path Index only access path ( covering index ) 14
15 Multi-relation access plans Similar principle, but now many more possibilities to consider. Common approach: Consider subsets of the involved relations, and the conditions that apply to each subset. Estimate the cost of evaluating the σπ expression restricted to this subset. Need to distinguish between different forms of the output (sorted, unsorted). Details in RG. 15
16 Estimating sizes of relations The sizes of intermediate results are important for the choices made when planning query execution. Time for operations grow (at least) linearly with size of (largest) argument. The total size can even be used as a crude estimate on the running time. 16
17 Classical approach: Heuristics In the book a number of heuristics for estimating sizes of intermediate results are presented. This classical approach works well in some cases, but is unreliable in general. The modern approach is based on maintaining suitable statistics summarizing the data. (Focus of lecture.) 17
18 Some possible types of statistics Random sample of, say 1% of the tuples. (NB. Should fit main memory.) The 1000 most frequent values of some attribute, with tuple counts. Histogram with number of values in different ranges. The skew of data values. (Not discussed in this lecture.) 18
19 Histogram Number of values/tuples in each of a number of intervals. Widely used. < > 42 How to use a histogram to estimate selectivity? 19
20 On-line vs off-line statistics Off-line: Statistics only computed periodically, often operator-controlled (e.g. Oracle). Typically involves sorting data according to all attributes. On-line: Statistics maintained automatically at all times by the DBMS. Focus of this lecture. 20
21 Maintaining a random sample To get a sample of expected size 1% of full relation: Add a new tuple to the sample with probability 1%. If a sampled tuple is deleted or updated, remember to remove from or update in sample. 21
22 Estimating selects To estimate the size of a select statement σ C (R): Compute σ C (R ), where R is the random sample of R. If the sample is 1% of R, the estimate is 100 σ C (R ), etc. The estimate is reliable if σ C (R ) is not too small (the bigger, the better). 22
23 Estimating join sizes? Suppose you want to estimate the size of a join statement. You have random samples of 1% of each relation. Question: How do you do the estimation? 23
24 Estimating join sizes Compute, where R 1 and R 2 are samples of R1 and R2. If samples are 1% of the relations, estimate is 24
25 Keeping a sample of bounded size Reservoir sampling (Vitter 85): Initial sample consists of s tuples. A tuple inserted in R is stored in sample with probability s/( R +1). When storing a new tuple, it replaces a randomly chosen tuple in existing sample (unless sample has size < s due to a deletion). 25
26 Problem session 26
27 Tuning What can be done to improve the performance of a query? Key techniques: Denormalization Vertical/horizontal partitioning Aggregate maintenance Query rewriting (examples from SB p , 195) Sometimes: Optimizer hints 27
28 Examples from SB 28
29 Query rewrite, example 1 SELECT DISTINCT ssnum FROM Employee WHERE dept= CLA Problem: DISTINCT may force a sort operation. Solution: If ssnum is unique, DISTINCT can be omitted. (SB discusses some general cases in which there is no need for DISTINCT.) 29
30 Query rewrite, example 2 SELECT ssnum FROM Employee WHERE dept IN (SELECT dept FROM ResearchDept) Problem: An index on Employee.dept may not be used. Alternative query: SELECT ssnum FROM Employee E, ResearchDept D WHERE E.dept=D.dept 30
31 Query rewrite, example 3 The dark side of temporaries: SELECT * INTO temp FROM Employee WHERE salary > ; SELECT ssnum FROM Temp WHERE Temp.dept = study admin Problems: Forces the creation of a temporary Does not use index on Employee.dept 31
32 Query rewrite, example 4 SELECT ssnum FROM Employee E1 WHERE salary = (SELECT max(salary) FROM Employee E2 WHERE E1.dept=E2.dept) Problem: Subquery may be executed for each employee (or at least each department) Solution ( the light side of temporaries ): SELECT dept, max(salary) as m INTO temp FROM Employee GROUP BY dept; SELECT ssnum FROM Employee E, temp WHERE salary=m AND E.dept=temp.dept 32
33 Query rewrite, example 5 SELECT E.ssnum FROM Employee E, Student S WHERE E.name=S.name Better to use a more compact key: SELECT E.ssnum FROM Employee E, Student S WHERE E.ssnum=S.ssnum 33
34 Hints Using optimizer hints in Oracle. Example: Forcing join order. SELECT /*+ORDERED */ * FROM customers c, order_items l, orders o WHERE c.cust_last_name = Smith AND o.cust_id = c.cust_id AND o.order_id = l.order_id; Beware: Best choice may vary depending on parameters of the query, or change over time! Should always prefer that optimizer makes choice. 34
35 Hint example SELECT bond.id FROM bond, deal WHERE bond.interestrate=5.6 AND bond.dealid = deal.dealid AND deal.date = 7/7/1997 Clustered index on interestrate, nonclustered indexes on dealid, and nonclustered index on date. In absence of accurate statistics, optimizer might use the indexes on interestrate and dealid. Better to use the (very selective) index on date. May use force if necessary! 35
36 Conclusion The database tuner should Be aware of the range of possibilities the DBMS has in evaluating a query. Consider the possibilities for providing more efficient access paths to be chosen by the optimizer. Know ways of circumventing shortcomings of query optimizers. Important mainly for DBMS implementers: How to parse, translate, etc. How the space of query plans is searched. 36
37 Exercises On Thursday morning, we will go through: ADBT exam, June 2006, question 2 ADBT exam, June 2005, question 3.b+c 37
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
Chapter 5. SQL: Queries, Constraints, Triggers
Chapter 5 SQL: Queries, Constraints, Triggers 1 Overview: aspects of SQL DML: Data Management Language. Pose queries (Ch. 5) and insert, delete, modify rows (Ch. 3) DDL: Data Definition Language. Creation,
Relational Algebra. Module 3, Lecture 1. Database Management Systems, R. Ramakrishnan 1
Relational Algebra Module 3, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Relational Query Languages Query languages: Allow manipulation and retrieval of data from a database. Relational model
Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division
Answer Key UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division CS186 Fall 2003 Eben Haber Midterm Midterm Exam: Introduction to Database Systems This exam has
Advanced Oracle SQL Tuning
Advanced Oracle SQL Tuning Seminar content technical details 1) Understanding Execution Plans In this part you will learn how exactly Oracle executes SQL execution plans. Instead of describing on PowerPoint
Relational Algebra and SQL
Relational Algebra and SQL Johannes Gehrke [email protected] http://www.cs.cornell.edu/johannes Slides from Database Management Systems, 3 rd Edition, Ramakrishnan and Gehrke. Database Management
Chapter 13: Query Optimization
Chapter 13: Query Optimization Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 13: Query Optimization Introduction Transformation of Relational Expressions Catalog
Evaluation of Expressions
Query Optimization Evaluation of Expressions Materialization: one operation at a time, materialize intermediate results for subsequent use Good for all situations Sum of costs of individual operations
Chapter 14: Query Optimization
Chapter 14: Query Optimization Database System Concepts 5 th Ed. See www.db-book.com for conditions on re-use Chapter 14: Query Optimization Introduction Transformation of Relational Expressions Catalog
Physical Database Design and Tuning
Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence
1. Physical Database Design in Relational Databases (1)
Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence
MapReduce examples. CSE 344 section 8 worksheet. May 19, 2011
MapReduce examples CSE 344 section 8 worksheet May 19, 2011 In today s section, we will be covering some more examples of using MapReduce to implement relational queries. Recall how MapReduce works from
SQL: Queries, Programming, Triggers
SQL: Queries, Programming, Triggers Chapter 5 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 R1 Example Instances We will use these instances of the Sailors and Reserves relations in
Example Instances. SQL: Queries, Programming, Triggers. Conceptual Evaluation Strategy. Basic SQL Query. A Note on Range Variables
SQL: Queries, Programming, Triggers Chapter 5 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Example Instances We will use these instances of the Sailors and Reserves relations in our
Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs.
Phases of database design Application requirements Conceptual design Database Management Systems Conceptual schema Logical design ER or UML Physical Design Relational tables Logical schema Physical design
Inside the PostgreSQL Query Optimizer
Inside the PostgreSQL Query Optimizer Neil Conway [email protected] Fujitsu Australia Software Technology PostgreSQL Query Optimizer Internals p. 1 Outline Introduction to query optimization Outline of
Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)
Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2 Indexing Used for faster
Databasesystemer, forår 2005 IT Universitetet i København. Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005
Databasesystemer, forår 2005 IT Universitetet i København Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005 Forelæser: Rasmus Pagh Today s lecture Constraints and triggers Uniqueness
Relational Databases
Relational Databases Jan Chomicki University at Buffalo Jan Chomicki () Relational databases 1 / 18 Relational data model Domain domain: predefined set of atomic values: integers, strings,... every attribute
Boats bid bname color 101 Interlake blue 102 Interlake red 103 Clipper green 104 Marine red. Figure 1: Instances of Sailors, Boats and Reserves
Tutorial 5: SQL By Chaofa Gao Tables used in this note: Sailors(sid: integer, sname: string, rating: integer, age: real); Boats(bid: integer, bname: string, color: string); Reserves(sid: integer, bid:
Oracle Database 11g: SQL Tuning Workshop
Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database
Chapter 5 More SQL: Complex Queries, Triggers, Views, and Schema Modification
Chapter 5 More SQL: Complex Queries, Triggers, Views, and Schema Modification Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 5 Outline More Complex SQL Retrieval Queries
SQL: Queries, Programming, Triggers
SQL: Queries, Programming, Triggers CSC343 Introduction to Databases - A. Vaisman 1 R1 Example Instances We will use these instances of the Sailors and Reserves relations in our examples. If the key for
Introduction to tuple calculus Tore Risch 2011-02-03
Introduction to tuple calculus Tore Risch 2011-02-03 The relational data model is based on considering normalized tables as mathematical relationships. Powerful query languages can be defined over such
1Z0-117 Oracle Database 11g Release 2: SQL Tuning. Oracle
1Z0-117 Oracle Database 11g Release 2: SQL Tuning Oracle To purchase Full version of Practice exam click below; http://www.certshome.com/1z0-117-practice-test.html FOR Oracle 1Z0-117 Exam Candidates We
SQL Simple Queries. Chapter 3.1 V3.0. Copyright @ Napier University Dr Gordon Russell
SQL Simple Queries Chapter 3.1 V3.0 Copyright @ Napier University Dr Gordon Russell Introduction SQL is the Structured Query Language It is used to interact with the DBMS SQL can Create Schemas in the
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly
Introduction to database design
Introduction to database design KBL chapter 5 (pages 127-187) Rasmus Pagh Some figures are borrowed from the ppt slides from the book used in the course, Database systems by Kiefer, Bernstein, Lewis Copyright
CS143 Notes: Views & Authorization
CS143 Notes: Views & Authorization Book Chapters (4th) Chapter 4.7, 6.5-6 (5th) Chapter 4.2, 8.6 (6th) Chapter 4.4, 5.3 Views What is a view? A virtual table created on top of other real tables Almost
COMP 5138 Relational Database Management Systems. Week 5 : Basic SQL. Today s Agenda. Overview. Basic SQL Queries. Joins Queries
COMP 5138 Relational Database Management Systems Week 5 : Basic COMP5138 "Relational Database Managment Systems" J. Davis 2006 5-1 Today s Agenda Overview Basic Queries Joins Queries Aggregate Functions
In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR
1 2 2 3 In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR The uniqueness of the primary key ensures that
Practical Database Design and Tuning
Practical Database Design and Tuning 1. Physical Database Design in Relational Databases Factors that Influence Physical Database Design: A. Analyzing the database queries and transactions For each query,
D B M G Data Base and Data Mining Group of Politecnico di Torino
Database Management Data Base and Data Mining Group of [email protected] A.A. 2014-2015 Optimizer objective A SQL statement can be executed in many different ways The query optimizer determines
Relational Database: Additional Operations on Relations; SQL
Relational Database: Additional Operations on Relations; SQL Greg Plaxton Theory in Programming Practice, Fall 2005 Department of Computer Science University of Texas at Austin Overview The course packet
Oracle Database 11g: SQL Tuning Workshop Release 2
Oracle University Contact Us: 1 800 005 453 Oracle Database 11g: SQL Tuning Workshop Release 2 Duration: 3 Days What you will learn This course assists database developers, DBAs, and SQL developers to
Oracle EXAM - 1Z0-117. Oracle Database 11g Release 2: SQL Tuning. Buy Full Product. http://www.examskey.com/1z0-117.html
Oracle EXAM - 1Z0-117 Oracle Database 11g Release 2: SQL Tuning Buy Full Product http://www.examskey.com/1z0-117.html Examskey Oracle 1Z0-117 exam demo product is here for you to test the quality of the
Physical DB design and tuning: outline
Physical DB design and tuning: outline Designing the Physical Database Schema Tables, indexes, logical schema Database Tuning Index Tuning Query Tuning Transaction Tuning Logical Schema Tuning DBMS Tuning
Performance Tuning for the Teradata Database
Performance Tuning for the Teradata Database Matthew W Froemsdorf Teradata Partner Engineering and Technical Consulting - i - Document Changes Rev. Date Section Comment 1.0 2010-10-26 All Initial document
CS2Bh: Current Technologies. Introduction to XML and Relational Databases. The Relational Model. The relational model
CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 The Relational Model CS2 Spring 2005 (LN6) 1 The relational model Proposed by Codd in 1970. It is the dominant data
SQL Tables, Keys, Views, Indexes
CS145 Lecture Notes #8 SQL Tables, Keys, Views, Indexes Creating & Dropping Tables Basic syntax: CREATE TABLE ( DROP TABLE ;,,..., ); Types available: INT or INTEGER REAL or FLOAT CHAR( ), VARCHAR( ) DATE,
Best Practices for DB2 on z/os Performance
Best Practices for DB2 on z/os Performance A Guideline to Achieving Best Performance with DB2 Susan Lawson and Dan Luksetich www.db2expert.com and BMC Software September 2008 www.bmc.com Contacting BMC
SQL: QUERIES, CONSTRAINTS, TRIGGERS
5 SQL: QUERIES, CONSTRAINTS, TRIGGERS Online material is available for all exercises in this chapter on the book s webpage at http://www.cs.wisc.edu/~dbbook This includes scripts to create tables for each
Overview. Physical Database Design. Modern Database Management McFadden/Hoffer Chapter 7. Database Management Systems Ramakrishnan Chapter 16
HNC Computing - s HNC Computing - s Physical Overview Process What techniques are available for physical design? Physical Explain one physical design technique. Modern Management McFadden/Hoffer Chapter
Relational Calculus. Module 3, Lecture 2. Database Management Systems, R. Ramakrishnan 1
Relational Calculus Module 3, Lecture 2 Database Management Systems, R. Ramakrishnan 1 Relational Calculus Comes in two flavours: Tuple relational calculus (TRC) and Domain relational calculus (DRC). Calculus
SQL Query Performance Tuning: Tips and Best Practices
SQL Query Performance Tuning: Tips and Best Practices Pravasini Priyanka, Principal Test Engineer, Progress Software INTRODUCTION: In present day world, where dozens of complex queries are run on databases
Relational Division and SQL
Relational Division and SQL Soulé 1 Example Relations and Queries As a motivating example, consider the following two relations: Taken(,Course) which contains the courses that each student has completed,
SQL NULL s, Constraints, Triggers
CS145 Lecture Notes #9 SQL NULL s, Constraints, Triggers Example schema: CREATE TABLE Student (SID INTEGER PRIMARY KEY, name CHAR(30), age INTEGER, GPA FLOAT); CREATE TABLE Take (SID INTEGER, CID CHAR(10),
Oracle Database 11 g Performance Tuning. Recipes. Sam R. Alapati Darl Kuhn Bill Padfield. Apress*
Oracle Database 11 g Performance Tuning Recipes Sam R. Alapati Darl Kuhn Bill Padfield Apress* Contents About the Authors About the Technical Reviewer Acknowledgments xvi xvii xviii Chapter 1: Optimizing
Database Constraints and Design
Database Constraints and Design We know that databases are often required to satisfy some integrity constraints. The most common ones are functional and inclusion dependencies. We ll study properties of
Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design
Chapter 6: Physical Database Design and Performance Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS 464 Spring 2003 Topic 23 Database
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
Exercise 1: Relational Model
Exercise 1: Relational Model 1. Consider the relational database of next relational schema with 3 relations. What are the best possible primary keys in each relation? employ(person_name, street, city)
PERFORMANCE TIPS FOR BATCH JOBS
PERFORMANCE TIPS FOR BATCH JOBS Here is a list of effective ways to improve performance of batch jobs. This is probably the most common performance lapse I see. The point is to avoid looping through millions
MS SQL Performance (Tuning) Best Practices:
MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Query Processing. Q Query Plan. Example: Select B,D From R,S Where R.A = c S.E = 2 R.C=S.C. Himanshu Gupta CSE 532 Query Proc. 1
Q Query Plan Query Processing Example: Select B,D From R,S Where R.A = c S.E = 2 R.C=S.C Himanshu Gupta CSE 532 Query Proc. 1 How do we execute query? One idea - Do Cartesian product - Select tuples -
Chapter 5: Overview of Query Processing
Chapter 5: Overview of Query Processing Query Processing Overview Query Optimization Distributed Query Processing Steps Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of
Performance rule violations usually result in increased CPU or I/O, time to fix the mistake, and ultimately, a cost to the business unit.
Is your database application experiencing poor response time, scalability problems, and too many deadlocks or poor application performance? One or a combination of zparms, database design and application
Semantic Errors in SQL Queries: A Quite Complete List
Semantic Errors in SQL Queries: A Quite Complete List Christian Goldberg, Stefan Brass Martin-Luther-Universität Halle-Wittenberg {goldberg,brass}@informatik.uni-halle.de Abstract We investigate classes
Lecture 4: More SQL and Relational Algebra
CPSC 421 Database Management Systems Lecture 4: More SQL and Relational Algebra * Some material adapted from R. Ramakrishnan, L. Delcambre, and B. Ludaescher Today s Agenda Go over last week s quiz New
Partitioning under the hood in MySQL 5.5
Partitioning under the hood in MySQL 5.5 Mattias Jonsson, Partitioning developer Mikael Ronström, Partitioning author Who are we? Mikael is a founder of the technology behind NDB
LearnFromGuru Polish your knowledge
SQL SERVER 2008 R2 /2012 (TSQL/SSIS/ SSRS/ SSAS BI Developer TRAINING) Module: I T-SQL Programming and Database Design An Overview of SQL Server 2008 R2 / 2012 Available Features and Tools New Capabilities
Graham Kemp (telephone 772 54 11, room 6475 EDIT) The examiner will visit the exam room at 15:00 and 17:00.
CHALMERS UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering Examination in Databases, TDA357/DIT620 Tuesday 17 December 2013, 14:00-18:00 Examiner: Results: Exam review: Grades: Graham
Understanding Query Processing and Query Plans in SQL Server. Craig Freedman Software Design Engineer Microsoft SQL Server
Understanding Query Processing and Query Plans in SQL Server Craig Freedman Software Design Engineer Microsoft SQL Server Outline SQL Server engine architecture Query execution overview Showplan Common
ASTERIX: An Open Source System for Big Data Management and Analysis (Demo) :: Presenter :: Yassmeen Abu Hasson
ASTERIX: An Open Source System for Big Data Management and Analysis (Demo) :: Presenter :: Yassmeen Abu Hasson ASTERIX What is it? It s a next generation Parallel Database System to addressing today s
Why Query Optimization? Access Path Selection in a Relational Database Management System. How to come up with the right query plan?
Why Query Optimization? Access Path Selection in a Relational Database Management System P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price Peyman Talebifard Queries must be executed and execution
Execution Plans: The Secret to Query Tuning Success. MagicPASS January 2015
Execution Plans: The Secret to Query Tuning Success MagicPASS January 2015 Jes Schultz Borland plan? The following steps are being taken Parsing Compiling Optimizing In the optimizing phase An execution
Navigating Big Data with High-Throughput, Energy-Efficient Data Partitioning
Application-Specific Architecture Navigating Big Data with High-Throughput, Energy-Efficient Data Partitioning Lisa Wu, R.J. Barker, Martha Kim, and Ken Ross Columbia University Xiaowei Wang Rui Chen Outline
www.dotnetsparkles.wordpress.com
Database Design Considerations Designing a database requires an understanding of both the business functions you want to model and the database concepts and features used to represent those business functions.
Introduction. Part I: Finding Bottlenecks when Something s Wrong. Chapter 1: Performance Tuning 3
Wort ftoc.tex V3-12/17/2007 2:00pm Page ix Introduction xix Part I: Finding Bottlenecks when Something s Wrong Chapter 1: Performance Tuning 3 Art or Science? 3 The Science of Performance Tuning 4 The
1. SELECT DISTINCT f.fname FROM Faculty f, Class c WHERE f.fid = c.fid AND c.room = LWSN1106
Database schema: Department(deptid, dname, location) Student(snum, sname, deptid, slevel, age) Faculty(fid, fname, deptid) Class(cname, time, room, fid) Enrolled(snum, cname) SQL queries: 1. Get the names
SQL Server Administrator Introduction - 3 Days Objectives
SQL Server Administrator Introduction - 3 Days INTRODUCTION TO MICROSOFT SQL SERVER Exploring the components of SQL Server Identifying SQL Server administration tasks INSTALLING SQL SERVER Identifying
SUBQUERIES AND VIEWS. CS121: Introduction to Relational Database Systems Fall 2015 Lecture 6
SUBQUERIES AND VIEWS CS121: Introduction to Relational Database Systems Fall 2015 Lecture 6 String Comparisons and GROUP BY 2! Last time, introduced many advanced features of SQL, including GROUP BY! Recall:
Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr.
Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr. Dan Olteanu Submitted as part of Master of Computer Science Computing Laboratory
FHE DEFINITIVE GUIDE. ^phihri^^lv JEFFREY GARBUS. Joe Celko. Alvin Chang. PLAMEN ratchev JONES & BARTLETT LEARN IN G. y ti rvrrtuttnrr i t i r
: 1. FHE DEFINITIVE GUIDE fir y ti rvrrtuttnrr i t i r ^phihri^^lv ;\}'\^X$:^u^'! :: ^ : ',!.4 '. JEFFREY GARBUS PLAMEN ratchev Alvin Chang Joe Celko g JONES & BARTLETT LEARN IN G Contents About the Authors
Big Data Technology Pig: Query Language atop Map-Reduce
Big Data Technology Pig: Query Language atop Map-Reduce Eshcar Hillel Yahoo! Ronny Lempel Outbrain *Based on slides by Edward Bortnikov & Ronny Lempel Roadmap Previous class MR Implementation This class
The Classical Architecture. Storage 1 / 36
1 / 36 The Problem Application Data? Filesystem Logical Drive Physical Drive 2 / 36 Requirements There are different classes of requirements: Data Independence application is shielded from physical storage
Query tuning by eliminating throwaway
Query tuning by eliminating throwaway This paper deals with optimizing non optimal performing queries. Abstract Martin Berg ([email protected]) Server Technology System Management & Performance Oracle
Introduction to Microsoft Jet SQL
Introduction to Microsoft Jet SQL Microsoft Jet SQL is a relational database language based on the SQL 1989 standard of the American Standards Institute (ANSI). Microsoft Jet SQL contains two kinds of
4. SQL. Contents. Example Database. CUSTOMERS(FName, LName, CAddress, Account) PRODUCTS(Prodname, Category) SUPPLIERS(SName, SAddress, Chain)
ECS-165A WQ 11 66 4. SQL Contents Basic Queries in SQL (select statement) Set Operations on Relations Nested Queries Null Values Aggregate Functions and Grouping Data Definition Language Constructs Insert,
Advanced SQL. Lecture 3. Outline. Unions, intersections, differences Subqueries, Aggregations, NULLs Modifying databases, Indexes, Views
Advanced SQL Lecture 3 1 Outline Unions, intersections, differences Subqueries, Aggregations, NULLs Modifying databases, Indexes, Views Reading: Textbook chapters 6.2 and 6.3 from SQL for Nerds : chapter
Translating SQL into the Relational Algebra
Translating SQL into the Relational Algebra Jan Van den Bussche Stijn Vansummeren Required background Before reading these notes, please ensure that you are familiar with (1) the relational data model
MOC 20461C: Querying Microsoft SQL Server. Course Overview
MOC 20461C: Querying Microsoft SQL Server Course Overview This course provides students with the knowledge and skills to query Microsoft SQL Server. Students will learn about T-SQL querying, SQL Server
Query Processing C H A P T E R12. Practice Exercises
C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass
- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time
Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary
Optimization of SQL Queries in Main-Memory Databases
Optimization of SQL Queries in Main-Memory Databases Ladislav Vastag and Ján Genči Department of Computers and Informatics Technical University of Košice, Letná 9, 042 00 Košice, Slovakia [email protected]
Database Management Systems. Chapter 1
Database Management Systems Chapter 1 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2 What Is a Database/DBMS? A very large, integrated collection of data. Models real-world scenarios
DBMS / Business Intelligence, SQL Server
DBMS / Business Intelligence, SQL Server Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the needs of IT professionals.
Programming Tricks For Reducing Storage And Work Space Curtis A. Smith, Defense Contract Audit Agency, La Mirada, CA.
Paper 23-27 Programming Tricks For Reducing Storage And Work Space Curtis A. Smith, Defense Contract Audit Agency, La Mirada, CA. ABSTRACT Have you ever had trouble getting a SAS job to complete, although
Pre-Algebra Lecture 6
Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
Access Path Selection in a Relational Database Management System
Access Path Selection in a Relational Database Management System P. Griffiths Selinger M. M. Astrahan D. D. Chamberlin R. A. Lorie T. G. Price IBM Research Division, San Jose, California 95193 ABSTRACT:
3. Relational Model and Relational Algebra
ECS-165A WQ 11 36 3. Relational Model and Relational Algebra Contents Fundamental Concepts of the Relational Model Integrity Constraints Translation ER schema Relational Database Schema Relational Algebra
An Oracle White Paper May 2010. Guide for Developing High-Performance Database Applications
An Oracle White Paper May 2010 Guide for Developing High-Performance Database Applications Introduction The Oracle database has been engineered to provide very high performance and scale to thousands
INTRODUCTION TO DATABASE SYSTEMS
1 INTRODUCTION TO DATABASE SYSTEMS Exercise 1.1 Why would you choose a database system instead of simply storing data in operating system files? When would it make sense not to use a database system? Answer
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Oracle Database 12c: Introduction to SQL Ed 1.1
Oracle University Contact Us: 1.800.529.0165 Oracle Database 12c: Introduction to SQL Ed 1.1 Duration: 5 Days What you will learn This Oracle Database: Introduction to SQL training helps you write subqueries,
