ASTERIX: An Open Source System for Big Data Management and Analysis (Demo) :: Presenter :: Yassmeen Abu Hasson
|
|
|
- Magdalen Wells
- 9 years ago
- Views:
Transcription
1 ASTERIX: An Open Source System for Big Data Management and Analysis (Demo) :: Presenter :: Yassmeen Abu Hasson
2 ASTERIX What is it? It s a next generation Parallel Database System to addressing today s Big Data management challenges.
3
4 Tour of ASTERIX Examples of our data definition language to model semi-structured data. Examples of interesting queries using our declarative query language. The capabilities of ASTERIX for answering special kind of queries.
5 Goal
6 How did ASTERIX start?
7 What was ASTERIX envisioned to be? ASTERIX was envisioned to be parallel, semi-structured information management system with the ability to ingest, store, index, query, analyze, and publish very large quantities of semi-structured data.
8 ASTERIX is well-suited to handle use cases: Rigid, relation-like data collections Flexible and more complex data.
9 ASTERIX s s Objective While ASTERIX began with the objective of creating a parallel, semi-structured information management system, three reusable software layers have resulted.
10 ASTERIX s s Architecture
11 Hyracks Layer Bottom most layer of the stack. Run time layer ( executor ). Job: accept and manage data-parallel computations requested either by - Direct end users of Hyracks - Layers above it in the stack.
12 Jobs are submitted to Hyracks in the form of directed acyclic graphs that are made up of: Operators Connectors
13 Operators & Connectors Operators: Responsible for consuming partitions of their inputs and producing output partitions. Connectors: Perform redistribution of data between different partitions of the same logical dataset.
14 Algebricks Algebra Layer A model-agnostic. Algebraic layer for parallel query processing and optimization. Its origin was as the center of the AQL compiler and optimizer of the ASTERIX system. It has been carefully designed to be agnostic of the model of its processed data.
15 Operators Work on collections of tuples containing data values. Data values Carried inside a tuple are not specified by the Algebricks toolkit. Language implementor Free to define any value types as abstract data types
16 Algebricks Parts A set of logical operators. A set of physical operators. A rewrite rule framework. A set of generally applicable rewrite rules. A metadata provider API that exposes metadata (catalog) information to Algebricks. A mapping of physical operators to the runtime operators in Hyracks.
17 Parses a user s query and then translates it into an algebraic form. The compiler uses the provided set of logical operators as nodes in a directed acyclic graph to form the algebraic representation of the query.
18 Some Algebricks Operators Algebricks provides all of the traditional relational operators such as select, project, and join. Algebricks enables the expression of correlated queries through the use of a subplan operator. The groupby operator in Algebricks allows complete nested plans to be applied to each group.
19 The ASTERIX Parallel Information System
20 Data in ASTERIX is based on a semistructured data model. ASTERIX is well-suited to handling use cases ranging from data collections whose types are well understood and to more complex data.
21
22 Data Storage Data storage in ASTERIX is based on the concept of a dataset, a declared collection of instances of a given type. ASTERIX supports both system managed datasets and external datasets.
23 System managed datasets which are stored and managed by ASTERIX as partitioned LSM based B+ trees with optional secondary indexes. External datasets, where the data can reside in existing HDFS files or collections of files in the cluster nodes local file systems.
24 ASYRTIX Queries
25 Query Processing ASTERIX compiles an AQL query into an Algebricks program. This program is then optimized via algebraic rewrite rules. After which code generation translates the resulting physical query plan into a corresponding Hyracks job that uses the operators and connectors of Hyracks to compute the desired query result.
26
27 Features of ASTERIX 1. ASTERIX Data Model (ADM) - Well understood and invariant data. - Flexible and potentially more complex data. 2. ASTERIX Query Language (AQL) A logical plan for a query is formed, translated and optimized.
28 Cont. Features of ASTERIX 3. Geo-Spatial queries Spatial data types are treated as first-class citizens in ASTERIX, providing built-in support for geo-spatial data. 4. Fuzzy queries An important use case for ASTERIX is querying, and analysis of semi-structured data drawn from Web sources so it is a given that some of the incoming data will be dirty. 5. Data feeds ASTERIX supports continuous data ingestion via data feeds and can be used to amass data from services such as Twitter or RSS feed-based services such as CNN news.
29 Status of ASTERIX ADM/AQL layer of ASTERIX is able to run parallel queries including : - Lookups. - Large scans. - Parallel joins. - Parallel aggregates.
30 Status of ASTERIX - Documenting the ASTERIX code. - Adding indexing support for fuzzy selection queries. - Improving the performance of spatial aggregation - Adding support for continuous queries - Extending AQL with windowing features - Starting to work with a few early users and use cases to learn by experience where should go next.
31 References
Big Data Platforms: What s Next?
Big Data Platforms: What s Next? Three computer scientists from UC Irvine address the question What s next for big data? by summarizing the current state of the big data platform space and then describing
Pla7orms for Big Data Management and Analysis. Michael J. Carey Informa(on Systems Group UCI CS Department
Pla7orms for Big Data Management and Analysis Michael J. Carey Informa(on Systems Group UCI CS Department Outline Big Data Pla6orm Space The Big Data Era Brief History of Data Pla6orms Dominant Pla6orms
Inside Big Data Management : Ogres, Onions, or Parfaits?
Inside Big Data Management : Ogres, Onions, or Parfaits? Vinayak Borkar Computer Science Department UC Irvine, USA Michael J. Carey Computer Science Department UC Irvine, USA Chen Li Computer Science Department
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine. #AsterixDB
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine #AsterixDB 0 Rough Topical Plan Background and motivation (quick!) Big Data storage
HadoopRDF : A Scalable RDF Data Analysis System
HadoopRDF : A Scalable RDF Data Analysis System Yuan Tian 1, Jinhang DU 1, Haofen Wang 1, Yuan Ni 2, and Yong Yu 1 1 Shanghai Jiao Tong University, Shanghai, China {tian,dujh,whfcarter}@apex.sjtu.edu.cn
Spark. Fast, Interactive, Language- Integrated Cluster Computing
Spark Fast, Interactive, Language- Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Cosmos. Big Data and Big Challenges. Ed Harris - Microsoft Online Services Division HTPS 2011
Cosmos Big Data and Big Challenges Ed Harris - Microsoft Online Services Division HTPS 2011 1 Outline Introduction Cosmos Overview The Structured s Project Conclusion 2 What Is COSMOS? Petabyte Store and
Damia: Data Mashups for Intranet Applications
Damia: Data Mashups for Intranet Applications David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, Ashutosh Singh IBM Almaden Research Center 650 Harry Road San Jose, CA 95120, USA {simmen,
Apache MRQL (incubating): Advanced Query Processing for Complex, Large-Scale Data Analysis
Apache MRQL (incubating): Advanced Query Processing for Complex, Large-Scale Data Analysis Leonidas Fegaras University of Texas at Arlington http://mrql.incubator.apache.org/ 04/12/2015 Outline Who am
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Cosmos. Big Data and Big Challenges. Pat Helland July 2011
Cosmos Big Data and Big Challenges Pat Helland July 2011 1 Outline Introduction Cosmos Overview The Structured s Project Some Other Exciting Projects Conclusion 2 What Is COSMOS? Petabyte Store and Computation
CitusDB Architecture for Real-Time Big Data
CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets!! Large data collections appear in many scientific domains like climate studies.!! Users and
SAP HANA SPS 09 - What s New? HANA IM Services: SDI and SDQ
SAP HANA SPS 09 - What s New? HANA IM Services: SDI and SDQ (Delta from SPS 08 to SPS 09) SAP HANA Product Management November, 2014 2014 SAP SE or an SAP affiliate company. All rights reserved. 1 Agenda
Impala: A Modern, Open-Source SQL Engine for Hadoop. Marcel Kornacker Cloudera, Inc.
Impala: A Modern, Open-Source SQL Engine for Hadoop Marcel Kornacker Cloudera, Inc. Agenda Goals; user view of Impala Impala performance Impala internals Comparing Impala to other systems Impala Overview:
Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations
Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation
Data Modeling for Big Data
Data Modeling for Big Data by Jinbao Zhu, Principal Software Engineer, and Allen Wang, Manager, Software Engineering, CA Technologies In the Internet era, the volume of data we deal with has grown to terabytes
NakeDB: Database Schema Visualization
NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2012/13
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2012/13 Hadoop Ecosystem Overview of this Lecture Module Background Google MapReduce The Hadoop Ecosystem Core components: Hadoop
Leveraging the Eclipse TPTP* Agent Infrastructure
2005 Intel Corporation; made available under the EPL v1.0 March 3, 2005 Eclipse is a trademark of Eclipse Foundation, Inc 1 Leveraging the Eclipse TPTP* Agent Infrastructure Andy Kaylor Intel Corporation
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
Mission-Critical Database with Real-Time Search for Big Data
Mission-Critical Database with Real-Time Search for Big Data February 17, 2012 Slide 1 Overview About MarkLogic Why MarkLogic Case Studies Technology and Features Slide 2 About MarkLogic 10 years in business
Unified Batch & Stream Processing Platform
Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built
irods and Metadata survey Version 0.1 Date March Abhijeet Kodgire [email protected] 25th
irods and Metadata survey Version 0.1 Date 25th March Purpose Survey of Status Complete Author Abhijeet Kodgire [email protected] Table of Contents 1 Abstract... 3 2 Categories and Subject Descriptors...
BIG DATA AGGREGATOR STASINOS KONSTANTOPOULOS NCSR DEMOKRITOS, GREECE. Big Data Europe
BIG DATA AGGREGATOR STASINOS KONSTANTOPOULOS NCSR DEMOKRITOS, GREECE Big Data Europe The Big Data Aggregator The Big Data Aggregator: o A general-purpose architecture for processing Big Data o An implementation
Native Connectivity to Big Data Sources in MicroStrategy 10. Presented by: Raja Ganapathy
Native Connectivity to Big Data Sources in MicroStrategy 10 Presented by: Raja Ganapathy Agenda MicroStrategy supports several data sources, including Hadoop Why Hadoop? How does MicroStrategy Analytics
Inside the PostgreSQL Query Optimizer
Inside the PostgreSQL Query Optimizer Neil Conway [email protected] Fujitsu Australia Software Technology PostgreSQL Query Optimizer Internals p. 1 Outline Introduction to query optimization Outline of
Harnessing Big Data with KNIME
Harnessing Big Data with KNIME Tobias Kötter KNIME.com Agenda The three V s of Big Data Big Data Extension and Databases Nodes Demo 2 Variety, Volume, Velocity Variety: integrating heterogeneous data (and
Information Processing, Big Data, and the Cloud
Information Processing, Big Data, and the Cloud James Horey Computational Sciences & Engineering Oak Ridge National Laboratory Fall Creek Falls 2010 Information Processing Systems Model Parameters Data-intensive
The Sierra Clustered Database Engine, the technology at the heart of
A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel
Architectures for massive data management
Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache
Topics in basic DBMS course
Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch
Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc.
Oracle BI EE Implementation on Netezza Prepared by SureShot Strategies, Inc. The goal of this paper is to give an insight to Netezza architecture and implementation experience to strategize Oracle BI EE
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
Cloud Computing and Advanced Relationship Analytics
Cloud Computing and Advanced Relationship Analytics Using Objectivity/DB to Discover the Relationships in your Data By Brian Clark Vice President, Product Management Objectivity, Inc. 408 992 7136 [email protected]
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)
Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2 Indexing Used for faster
Introducing Microsoft SQL Server 2012 Getting Started with SQL Server Management Studio
Querying Microsoft SQL Server 2012 Microsoft Course 10774 This 5-day instructor led course provides students with the technical skills required to write basic Transact-SQL queries for Microsoft SQL Server
<Insert Picture Here> Oracle SQL Developer 3.0: Overview and New Features
1 Oracle SQL Developer 3.0: Overview and New Features Sue Harper Senior Principal Product Manager The following is intended to outline our general product direction. It is intended
Querying Microsoft SQL Server
Course 20461C: Querying Microsoft SQL Server Module 1: Introduction to Microsoft SQL Server 2014 This module introduces the SQL Server platform and major tools. It discusses editions, versions, tools used
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics Dharmendra Agawane 1, Rohit Pawar 2, Pavankumar Purohit 3, Gangadhar Agre 4 Guide: Prof. P B Jawade 2
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
White Paper. Optimizing the Performance Of MySQL Cluster
White Paper Optimizing the Performance Of MySQL Cluster Table of Contents Introduction and Background Information... 2 Optimal Applications for MySQL Cluster... 3 Identifying the Performance Issues.....
How To Optimize Data Processing In A Distributed System
Performance Optimization Techniques and Tools for Data-Intensive Computation Platforms An Overview of Performance Limitations in Big Data Systems and Proposed Optimizations VASILIKI KALAVRI Licentiate
Apache Flink Next-gen data analysis. Kostas Tzoumas [email protected] @kostas_tzoumas
Apache Flink Next-gen data analysis Kostas Tzoumas [email protected] @kostas_tzoumas What is Flink Project undergoing incubation in the Apache Software Foundation Originating from the Stratosphere research
STREAM ANALYTIX. Industry s only Multi-Engine Streaming Analytics Platform
STREAM ANALYTIX Industry s only Multi-Engine Streaming Analytics Platform One Platform for All Create real-time streaming data analytics applications in minutes with a powerful visual editor Get a wide
Scaling Datalog for Machine Learning on Big Data
Scaling Datalog for Machine Learning on Big Data Yingyi Bu, Vinayak Borkar, Michael J. Carey University of California, Irvine Joshua Rosen, Neoklis Polyzotis University of California, Santa Cruz Tyson
LDIF - Linked Data Integration Framework
LDIF - Linked Data Integration Framework Andreas Schultz 1, Andrea Matteini 2, Robert Isele 1, Christian Bizer 1, and Christian Becker 2 1. Web-based Systems Group, Freie Universität Berlin, Germany [email protected],
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
MOC 20461C: Querying Microsoft SQL Server. Course Overview
MOC 20461C: Querying Microsoft SQL Server Course Overview This course provides students with the knowledge and skills to query Microsoft SQL Server. Students will learn about T-SQL querying, SQL Server
Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem
Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem 2015 SAP SE or an SAP affiliate company. All rights
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Oracle Big Data Spatial and Graph: Spatial Features
F E A T U R E O V E R V I E W Oracle Big Data Spatial and Graph: Spatial Features For over a decade, Oracle has offered leading spatial and graph analytic technology for Oracle Database. Oracle is applying
Querying Microsoft SQL Server 2012
Course 10774A: Querying Microsoft SQL Server 2012 Length: 5 Days Language(s): English Audience(s): IT Professionals Level: 200 Technology: Microsoft SQL Server 2012 Type: Course Delivery Method: Instructor-led
High-Volume Data Warehousing in Centerprise. Product Datasheet
High-Volume Data Warehousing in Centerprise Product Datasheet Table of Contents Overview 3 Data Complexity 3 Data Quality 3 Speed and Scalability 3 Centerprise Data Warehouse Features 4 ETL in a Unified
Course ID#: 1401-801-14-W 35 Hrs. Course Content
Course Content Course Description: This 5-day instructor led course provides students with the technical skills required to write basic Transact- SQL queries for Microsoft SQL Server 2014. This course
An Oracle White Paper June 2013. Oracle: Big Data for the Enterprise
An Oracle White Paper June 2013 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure
Ganzheitliches Datenmanagement
Ganzheitliches Datenmanagement für Hadoop Michael Kohs, Senior Sales Consultant @mikchaos The Problem with Big Data Projects in 2016 Relational, Mainframe Documents and Emails Data Modeler Data Scientist
Course 10774A: Querying Microsoft SQL Server 2012
Course 10774A: Querying Microsoft SQL Server 2012 About this Course This 5-day instructor led course provides students with the technical skills required to write basic Transact-SQL queries for Microsoft
Course 10774A: Querying Microsoft SQL Server 2012 Length: 5 Days Published: May 25, 2012 Language(s): English Audience(s): IT Professionals
Course 10774A: Querying Microsoft SQL Server 2012 Length: 5 Days Published: May 25, 2012 Language(s): English Audience(s): IT Professionals Overview About this Course Level: 200 Technology: Microsoft SQL
Oracle Spatial and Graph. Jayant Sharma Director, Product Management
Oracle Spatial and Graph Jayant Sharma Director, Product Management Agenda Oracle Spatial and Graph Graph Capabilities Q&A 2 Oracle Spatial and Graph Complete Open Integrated Most Widely Used 3 Open and
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
Introducing the Open Source CUAHSI Hydrologic Information System Desktop Application (HIS Desktop)
18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Introducing the Open Source CUAHSI Hydrologic Information System Desktop Application (HIS Desktop) Ames,
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Visualization methods for patent data
Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes
ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001
ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001 Readings Read Chapter 1 of text book ICOM 6005 Dr. Manuel
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
Querying Microsoft SQL Server Course M20461 5 Day(s) 30:00 Hours
Área de formação Plataforma e Tecnologias de Informação Querying Microsoft SQL Introduction This 5-day instructor led course provides students with the technical skills required to write basic Transact-SQL
Data Cleaning and Transformation - Tools. Helena Galhardas DEI IST
Data Cleaning and Transformation - Tools Helena Galhardas DEI IST Agenda ETL/Data Quality tools Generic functionalities Categories of tools The AJAX data cleaning and transformation framework Typical architecture
Database Application Developer Tools Using Static Analysis and Dynamic Profiling
Database Application Developer Tools Using Static Analysis and Dynamic Profiling Surajit Chaudhuri, Vivek Narasayya, Manoj Syamala Microsoft Research {surajitc,viveknar,manojsy}@microsoft.com Abstract
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
How to Choose Between Hadoop, NoSQL and RDBMS
How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A
Techniques for Composing REST services
Techniques for Composing REST services Cesare Pautasso Faculty of Informatics University of Lugano, Switzerland [email protected] http://www.pautasso.info Abstract Novel trends in Web services technology
Report: Declarative Machine Learning on MapReduce (SystemML)
Report: Declarative Machine Learning on MapReduce (SystemML) Jessica Falk ETH-ID 11-947-512 May 28, 2014 1 Introduction SystemML is a system used to execute machine learning (ML) algorithms in HaDoop,
SINTERO SERVER. Simplifying interoperability for distributed collaborative health care
SINTERO SERVER Simplifying interoperability for distributed collaborative health care Tim Benson, Ed Conley, Andrew Harrison, Ian Taylor COMSCI, Cardiff University What is Sintero? Sintero Server is a
Hierarchical Data Visualization
Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and
The Big Data Ecosystem at LinkedIn. Presented by Zhongfang Zhuang
The Big Data Ecosystem at LinkedIn Presented by Zhongfang Zhuang Based on the paper The Big Data Ecosystem at LinkedIn, written by Roshan Sumbaly, Jay Kreps, and Sam Shah. The Ecosystems Hadoop Ecosystem
@Scalding. https://github.com/twitter/scalding. Based on talk by Oscar Boykin / Twitter
@Scalding https://github.com/twitter/scalding Based on talk by Oscar Boykin / Twitter What is Scalding? Why Scala for Map/Reduce? How is it used at Twitter? What s next for Scalding? Yep, we re counting
MOC 20461 QUERYING MICROSOFT SQL SERVER
ONE STEP AHEAD. MOC 20461 QUERYING MICROSOFT SQL SERVER Length: 5 days Level: 300 Technology: Microsoft SQL Server Delivery Method: Instructor-led (classroom) COURSE OUTLINE Module 1: Introduction to Microsoft
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Outlines. Business Intelligence. What Is Business Intelligence? Data mining life cycle
Outlines Business Intelligence Lecture 15 Why integrate BI into your smart client application? Integrating Mining into your application Integrating into your application What Is Business Intelligence?
