Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)
|
|
- Clarence Franklin
- 4 years ago
- Views:
Transcription
1 Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1
2 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2
3 Indexing Used for faster query processing Tree indexes (B+-trees) Good for equality and range queries Hash indexes Good only for equality queries Multi-dimensional indexes (R-trees, Grid-Files) Good for queries involving two or more attributes Specialized indexes (Bitmaps) 3
4 Clustering (primary) B+-tree on candidate key record with search key 1 record with search key 3 FILE WITH RECORDS This example corresponds to dense B+-tree index: Every search key value appears in a leaf node You may also have sparse B+-tree, e.g., entries in leaf nodes correspond to pages 4
5 Non-clustering (secondary) B+-tree on candidate key FILE WITH RECORDS record with search key 11 record with search key 3 record with search key 1 Should be always dense 5
6 Join Algorithms - Block Nested Loops r JOIN s, where r is the outer relation and s the inner relation for each block B r of r do begin for each block B s of s do begin for each tuple t r in B r do begin for each tuple t s in B s do begin if (t r,t s ) satisfies the join condition add (t r,t s ) to the result Use M 2 disk pages as blocking unit for outer relation, where M = memory size; use remaining 2 pages to buffer inner relation and output 6
7 Join Algorithms - Index Nested Loops Index lookups can replace file scans if join is an equi-join or natural join and an index is available on the inner relation s join attribute Can construct an index just to compute a join. For each tuple t r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t r. 7
8 Join Algorithms - Merge Join Sort both files on the join attribute using external sorting Scan the two sorted files and produce results for records that match on the join attribute Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory) Can be used only for equi-joins and natural joins 8
9 Join Algorithms - Hash Join (Partition step) Partition both files on the same number of buckets using the same hash function on the join attribute. Essentially we create a hash file organization for both files (Join step) For each bucket of the small file (build input): Read the entire bucket in memory Read the corresponding bucket of the other file (probe input) page by page and produce results 9
10 Query Processing Algorithms for other operations Duplicate Elimination (Projection) based on Sorting or Hashing Set operations (e.g., Union, Intersection) based on Merge Join or Hash Join Combination of Operations Materialization: store results of an intermediate expression on disk and read them for the next operation Pipelining: pass on tuples to subsequent operations even as an operation is being executed (cheaper but not applicable with all algorithms) 10
11 Query Optimization Goal: to find a good evaluation plan to be executed An evaluation plan is an algebra expression together with the specific algorithm to be used for each operation. Query optimizer uses statistics Number of records per table Number of different values per attribute etc. Given the statistics, the optimizer estimates the cost of alternative plans and chooses the one with the minimum estimated cost. Standard optimization rules: Perform selections before joins Perform small joins before larger ones (for join ordering) Remove useless attributes 11
12 Transactions A transaction is a unit of program execution that accesses and possibly updates various data items. Atomicity. Either all operations of the transaction are properly reflected in the database or none are. Consistency. Execution of a transaction in isolation preserves the consistency of the database. Isolation. Although multiple transactions may execute concurrently, each transaction must be unaware of other concurrently executing transactions. Durability. After a transaction completes successfully, the changes it has made to the database persist, even if there are system failures. 12
13 Concurrency control schemes Control the interaction among the concurrent transactions in order to prevent them from destroying the consistency of the database In addition they need to achieve recoverability if a transaction T j reads data items previously written by a transaction T i, the commit operation of T i must appear before the commit operation of T j (durability property) It is also desirable to avoid cascading rollbacks when a single transaction failure leads to a series of transaction rollbacks. Solution: only permit reading items written by comitted transactions 13
14 Two-Phase Locking Protocol This is a protocol which ensures conflict-serializable schedules. Phase 1: Growing Phase transaction may obtain locks transaction may not release locks Phase 2: Shrinking Phase transaction may release locks transaction may not obtain locks The transactions can be serialized in the order of their lock points (i.e. the point where a transaction acquired its final lock). May have deadlocks. We can break the deadlocks when they happen, or prevent them by using special variants of 2PL 14
15 Timestamp-Based Protocol Each transaction T i has a timestamp TS(T i ) These timestamps determine the serializability order Each data item Q has two timestamps W-timestamp(Q) is the largest time-stamp of any transaction that executed write(q) successfully. R-timestamp(Q) is the largest time-stamp of any transaction that executed read(q) successfully. Transaction T i issues a read(q) If TS(T i ) < W-timestamp(Q), then T i needs to read a value of Q that has been already overwritten. Suppose a transaction T i issues a write(q) If TS(T i ) < R-timestamp(Q), then the value of Q that T i is producing was needed previously If TS(T ) i < W-timestamp(Q), then T 15 i is attempting to write an obsolete value of Q.
16 Multiversion Timestamp Protocol Each data item Q has a sequence of versions <Q 1, Q 2,..., Q m >. Let Q k be the version of Q whose write timestamp is the largest write timestamp less than or equal to TS(T i ). 1. If transaction T i issues a read(q), then the value returned is the content of version Q k. Reads always succeed. 2. If transaction T i issues a write(q), if TS(T i ) < R-timestamp(Q k ), then transaction T i is rolled back. Some other transaction T j that (in the serialization order defined by the timestamp values) should read T i 's write, has already read a version created by a transaction older than T i. If TS(T i ) = W-timestamp(Q k ), the contents of Q k are overwritten; Q k was written before also by T i. If TS(T i ) > W-timestamp(Q k ) a new version of Q is created. 16
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
Query Processing C H A P T E R12. Practice Exercises
C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass
Concurrency Control. Chapter 17. Comp 521 Files and Databases Fall 2010 1
Concurrency Control Chapter 17 Comp 521 Files and Databases Fall 2010 1 Conflict Serializable Schedules Recall conflicts (WR, RW, WW) were the cause of sequential inconsistency Two schedules are conflict
Database Tuning and Physical Design: Execution of Transactions
Database Tuning and Physical Design: Execution of Transactions David Toman School of Computer Science University of Waterloo Introduction to Databases CS348 David Toman (University of Waterloo) Transaction
Textbook and References
Transactions Qin Xu 4-323A Life Science Building, Shanghai Jiao Tong University Email: xuqin523@sjtu.edu.cn Tel: 34204573(O) Webpage: http://cbb.sjtu.edu.cn/~qinxu/ Webpage for DBMS Textbook and References
Lecture 7: Concurrency control. Rasmus Pagh
Lecture 7: Concurrency control Rasmus Pagh 1 Today s lecture Concurrency control basics Conflicts and serializability Locking Isolation levels in SQL Optimistic concurrency control Transaction tuning Transaction
Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe. Table of Contents. A. Short Table of Contents
Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe Table of Contents A. Short Table of Contents (This Includes part and chapter titles only) PART 1: INTRODUCTION AND CONCEPTUAL
Data Warehousing und Data Mining
Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data
Databases and Information Systems 1 Part 3: Storage Structures and Indices
bases and Information Systems 1 Part 3: Storage Structures and Indices Prof. Dr. Stefan Böttcher Fakultät EIM, Institut für Informatik Universität Paderborn WS 2009 / 2010 Contents: - database buffer -
CIS 631 Database Management Systems Sample Final Exam
CIS 631 Database Management Systems Sample Final Exam 1. (25 points) Match the items from the left column with those in the right and place the letters in the empty slots. k 1. Single-level index files
Data Management in the Cloud
Data Management in the Cloud Ryan Stern stern@cs.colostate.edu : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server
Transaction Management Overview
Transaction Management Overview Chapter 16 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Transactions Concurrent execution of user programs is essential for good DBMS performance. Because
Contents RELATIONAL DATABASES
Preface xvii Chapter 1 Introduction 1.1 Database-System Applications 1 1.2 Purpose of Database Systems 3 1.3 View of Data 5 1.4 Database Languages 9 1.5 Relational Databases 11 1.6 Database Design 14 1.7
Multi-dimensional index structures Part I: motivation
Multi-dimensional index structures Part I: motivation 144 Motivation: Data Warehouse A definition A data warehouse is a repository of integrated enterprise data. A data warehouse is used specifically for
Course Content. Transactions and Concurrency Control. Objectives of Lecture 4 Transactions and Concurrency Control
Database Management Systems Fall 2001 CMPUT 391: Transactions & Concurrency Control Dr. Osmar R. Zaïane University of Alberta Chapters 18 and 19 of Textbook Course Content Introduction Database Design
Expert Oracle. Database Architecture. Techniques and Solutions. 10gr, and 11g Programming. Oracle Database 9/, Second Edition.
Expert Oracle Database Architecture Oracle Database 9/, Techniques and Solutions 10gr, and 11g Programming Second Edition TECHNiSCHE JNFORMATIONSBIBLIOTHEK UN!VERSITAT BIBLIOTHEK HANNOVER Thomas Kyte Apress
Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs.
Phases of database design Application requirements Conceptual design Database Management Systems Conceptual schema Logical design ER or UML Physical Design Relational tables Logical schema Physical design
SQL Server Query Tuning
SQL Server Query Tuning Klaus Aschenbrenner Independent SQL Server Consultant SQLpassion.at Twitter: @Aschenbrenner About me Independent SQL Server Consultant International Speaker, Author Pro SQL Server
Concurrency Control. Module 6, Lectures 1 and 2
Concurrency Control Module 6, Lectures 1 and 2 The controlling intelligence understands its own nature, and what it does, and whereon it works. -- Marcus Aurelius Antoninus, 121-180 A. D. Database Management
CS 525 Advanced Database Organization - Spring 2013 Mon + Wed 3:15-4:30 PM, Room: Wishnick Hall 113
CS 525 Advanced Database Organization - Spring 2013 Mon + Wed 3:15-4:30 PM, Room: Wishnick Hall 113 Instructor: Boris Glavic, Stuart Building 226 C, Phone: 312 567 5205, Email: bglavic@iit.edu Office Hours:
Oracle Database 11g: SQL Tuning Workshop Release 2
Oracle University Contact Us: 1 800 005 453 Oracle Database 11g: SQL Tuning Workshop Release 2 Duration: 3 Days What you will learn This course assists database developers, DBAs, and SQL developers to
Concurrency Control: Locking, Optimistic, Degrees of Consistency
CS262A: Advanced Topics in Computer Systems Joe Hellerstein, Spring 2008 UC Berkeley Concurrency Control: Locking, Optimistic, Degrees of Consistency Transaction Refresher Statement of problem: Database:
Recovery System C H A P T E R16. Practice Exercises
C H A P T E R16 Recovery System Practice Exercises 16.1 Explain why log records for transactions on the undo-list must be processed in reverse order, whereas redo is performed in a forward direction. Answer:
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : II / III Section : CSE - 1 & 2 Subject Code : CS 6302 Subject Name : Database
Transactional properties of DBS
Transactional properties of DBS Transaction Concepts Concurrency control Recovery Transactions: Definition Transaction (TA) Unit of work consisting of a sequence of operations Transaction principles (ACID):
Introduction to Database Management Systems
Database Administration Transaction Processing Why Concurrency Control? Locking Database Recovery Query Optimization DB Administration 1 Transactions Transaction -- A sequence of operations that is regarded
Transactions: Definition. Transactional properties of DBS. Transactions: Management in DBS. Transactions: Read/Write Model
Transactions: Definition Transactional properties of DBS Transaction Concepts Concurrency control Recovery Important concept Transaction (TA) Unit of work consisting of a sequence of operations Transaction
Chapter 6 The database Language SQL as a tutorial
Chapter 6 The database Language SQL as a tutorial About SQL SQL is a standard database language, adopted by many commercial systems. ANSI SQL, SQL-92 or SQL2, SQL99 or SQL3 extends SQL2 with objectrelational
Oracle Database 11g: SQL Tuning Workshop
Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database
(Pessimistic) Timestamp Ordering. Rules for read and write Operations. Pessimistic Timestamp Ordering. Write Operations and Timestamps
(Pessimistic) stamp Ordering Another approach to concurrency control: Assign a timestamp ts(t) to transaction T at the moment it starts Using Lamport's timestamps: total order is given. In distributed
Transactions. SET08104 Database Systems. Copyright @ Napier University
Transactions SET08104 Database Systems Copyright @ Napier University Concurrency using Transactions The goal in a concurrent DBMS is to allow multiple users to access the database simultaneously without
Indexing Techniques in Data Warehousing Environment The UB-Tree Algorithm
Indexing Techniques in Data Warehousing Environment The UB-Tree Algorithm Prepared by: Yacine ghanjaoui Supervised by: Dr. Hachim Haddouti March 24, 2003 Abstract The indexing techniques in multidimensional
DDB Functionalities by Major DMBS Products. Haibin Liu Shcherbak Maryna Nassrat Hatem
DDB Functionalities by Major DMBS Products Haibin Liu Shcherbak Maryna Nassrat Hatem Outline Introduction Distributed Security Distributed Concurrency Control Distributed Query Optimization Introduction
Overview of Storage and Indexing
Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan
Datenbanksysteme II: Implementation of Database Systems Implementing Joins
Datenbanksysteme II: Implementation of Database Systems Implementing Joins Material von Prof. Johann Christoph Freytag Prof. Kai-Uwe Sattler Prof. Alfons Kemper, Dr. Eickler Prof. Hector Garcia-Molina
Understanding Query Processing and Query Plans in SQL Server. Craig Freedman Software Design Engineer Microsoft SQL Server
Understanding Query Processing and Query Plans in SQL Server Craig Freedman Software Design Engineer Microsoft SQL Server Outline SQL Server engine architecture Query execution overview Showplan Common
Physical DB design and tuning: outline
Physical DB design and tuning: outline Designing the Physical Database Schema Tables, indexes, logical schema Database Tuning Index Tuning Query Tuning Transaction Tuning Logical Schema Tuning DBMS Tuning
Review: The ACID properties
Recovery Review: The ACID properties A tomicity: All actions in the Xaction happen, or none happen. C onsistency: If each Xaction is consistent, and the DB starts consistent, it ends up consistent. I solation:
COS 318: Operating Systems
COS 318: Operating Systems File Performance and Reliability Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Topics File buffer cache
TYPICAL QUESTIONS & ANSWERS
TYPICAL QUESTIONS & ANSWERS PART -I OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choosethe correct or the best alternative in the following: Q.1 Which of the following relational algebra operations
2 Associating Facts with Time
TEMPORAL DATABASES Richard Thomas Snodgrass A temporal database (see Temporal Database) contains time-varying data. Time is an important aspect of all real-world phenomena. Events occur at specific points
DATABASE DESIGN - 1DL400
DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information
Transactions and Recovery. Database Systems Lecture 15 Natasha Alechina
Database Systems Lecture 15 Natasha Alechina In This Lecture Transactions Recovery System and Media Failures Concurrency Concurrency problems For more information Connolly and Begg chapter 20 Ullmanand
Chapter 20: Advanced Transaction Processing
Chapter 20: Advanced Transaction Processing Remote Backup Systems Transaction-Processing Monitors High-Performance Transaction Systems Long-Duration Transactions Real-Time Transaction Systems Weak Levels
Overview of Storage and Indexing. Data on External Storage. Alternative File Organizations. Chapter 8
Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan
Performance Tuning for the Teradata Database
Performance Tuning for the Teradata Database Matthew W Froemsdorf Teradata Partner Engineering and Technical Consulting - i - Document Changes Rev. Date Section Comment 1.0 2010-10-26 All Initial document
Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013
Chapter 8: Data Storage, Indexing Structures for Files Truong Quynh Chi tqchi@cse.hcmut.edu.vn Spring- 2013 Overview of Database Design Process 2 Outline Data Storage Disk Storage Devices Files of Records
Concurrency control. Concurrency problems. Database Management System
Concurrency control Transactions per second (tps) is the measure of the workload of a operational DBMS; if two transactions access concurrently to the same data there is a problem: the module who resolve
Module 3 (14 hrs) Transactions : Transaction Processing Systems(TPS): Properties (or ACID properties) of Transactions Atomicity Consistency
Module 3 (14 hrs) Transactions : A transaction is a logical unit of program execution It is a combination of database updates which have to be performed together It is a logical unit of work. It is a unit
Inside the PostgreSQL Query Optimizer
Inside the PostgreSQL Query Optimizer Neil Conway neilc@samurai.com Fujitsu Australia Software Technology PostgreSQL Query Optimizer Internals p. 1 Outline Introduction to query optimization Outline of
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division
Answer Key UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division CS186 Fall 2003 Eben Haber Midterm Midterm Exam: Introduction to Database Systems This exam has
Chapter 14: Recovery System
Chapter 14: Recovery System Chapter 14: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery Remote Backup Systems Failure Classification Transaction failure
In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR
1 2 2 3 In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR The uniqueness of the primary key ensures that
Lecture 1: Data Storage & Index
Lecture 1: Data Storage & Index R&G Chapter 8-11 Concurrency control Query Execution and Optimization Relational Operators File & Access Methods Buffer Management Disk Space Management Recovery Manager
Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation
Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election
Recovery and the ACID properties CMPUT 391: Implementing Durability Recovery Manager Atomicity Durability
Database Management Systems Winter 2004 CMPUT 391: Implementing Durability Dr. Osmar R. Zaïane University of Alberta Lecture 9 Chapter 25 of Textbook Based on slides by Lewis, Bernstein and Kifer. University
Quiz! Database Indexes. Index. Quiz! Disc and main memory. Quiz! How costly is this operation (naive solution)?
Database Indexes How costly is this operation (naive solution)? course per weekday hour room TDA356 2 VR Monday 13:15 TDA356 2 VR Thursday 08:00 TDA356 4 HB1 Tuesday 08:00 TDA356 4 HB1 Friday 13:15 TIN090
File Management. Chapter 12
File Management Chapter 12 File Management File management system is considered part of the operating system Input to applications is by means of a file Output is saved in a file for long-term storage
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly
Chapter 5. Foundations of of Information Systems Systems (WS (WS 2008/09) Database Management Systems. Database Management Systems
Database Management Systems Foundations of of Information Systems Systems (WS (WS 2008/09) Chapter 5 Database Management Systems Foundations of IM 1 DBMS architecture Main components of a database management
A Shared-nothing cluster system: Postgres-XC
Welcome A Shared-nothing cluster system: Postgres-XC - Amit Khandekar Agenda Postgres-XC Configuration Shared-nothing architecture applied to Postgres-XC Supported functionalities: Present and Future Configuration
CS 245 Final Exam Winter 2013
CS 245 Final Exam Winter 2013 This exam is open book and notes. You can use a calculator and your laptop to access course notes and videos (but not to communicate with other people). You have 140 minutes
Distributed Databases. Concepts. Why distributed databases? Distributed Databases Basic Concepts
Distributed Databases Basic Concepts Distributed Databases Concepts. Advantages and disadvantages of distributed databases. Functions and architecture for a DDBMS. Distributed database design. Levels of
Optimizing Performance. Training Division New Delhi
Optimizing Performance Training Division New Delhi Performance tuning : Goals Minimize the response time for each query Maximize the throughput of the entire database server by minimizing network traffic,
W I S E. SQL Server 2008/2008 R2 Advanced DBA Performance & WISE LTD.
SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning COURSE CODE: COURSE TITLE: AUDIENCE: SQSDPT SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning SQL Server DBAs, capacity planners and system
Storage and File Structure
Storage and File Structure Chapter 10: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files
Transaction Processing Monitors
Chapter 24: Advanced Transaction Processing! Transaction-Processing Monitors! Transactional Workflows! High-Performance Transaction Systems! Main memory databases! Real-Time Transaction Systems! Long-Duration
! Volatile storage: ! Nonvolatile storage:
Chapter 17: Recovery System Failure Classification! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management!
B2.2-R3: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS
B2.2-R3: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered
Principles of Distributed Database Systems
M. Tamer Özsu Patrick Valduriez Principles of Distributed Database Systems Third Edition
D B M G Data Base and Data Mining Group of Politecnico di Torino
Database Management Data Base and Data Mining Group of tania.cerquitelli@polito.it A.A. 2014-2015 Optimizer objective A SQL statement can be executed in many different ways The query optimizer determines
Transactions and the Internet
Transactions and the Internet Week 12-13 Week 12-13 MIE253-Consens 1 Schedule Week Date Lecture Topic 1 Jan 9 Introduction to Data Management 2 Jan 16 The Relational Model 3 Jan. 23 Constraints and SQL
Data storage Tree indexes
Data storage Tree indexes Rasmus Pagh February 7 lecture 1 Access paths For many database queries and updates, only a small fraction of the data needs to be accessed. Extreme examples are looking or updating
The ConTract Model. Helmut Wächter, Andreas Reuter. November 9, 1999
The ConTract Model Helmut Wächter, Andreas Reuter November 9, 1999 Overview In Ahmed K. Elmagarmid: Database Transaction Models for Advanced Applications First in Andreas Reuter: ConTracts: A Means for
Database Internals (Overview)
Database Internals (Overview) Eduardo Cunha de Almeida eduardo@inf.ufpr.br Outline of the course Introduction Database Systems (E. Almeida) Distributed Hash Tables and P2P (C. Cassagne) NewSQL (D. Kim
MapReduce and the New Software Stack
20 Chapter 2 MapReduce and the New Software Stack Modern data-mining applications, often called big-data analysis, require us to manage immense amounts of data quickly. In many of these applications, the
Review. Data Warehousing. Today. Star schema. Star join indexes. Dimension hierarchies
Review Data Warehousing CPS 216 Advanced Database Systems Data warehousing: integrating data for OLAP OLAP versus OLTP Warehousing versus mediation Warehouse maintenance Warehouse data as materialized
LearnFromGuru Polish your knowledge
SQL SERVER 2008 R2 /2012 (TSQL/SSIS/ SSRS/ SSAS BI Developer TRAINING) Module: I T-SQL Programming and Database Design An Overview of SQL Server 2008 R2 / 2012 Available Features and Tools New Capabilities
Roadmap. 15-721 DB Sys. Design & Impl. Detailed Roadmap. Paper. Transactions - dfn. Reminders: Locking and Consistency
15-721 DB Sys. Design & Impl. Locking and Consistency Christos Faloutsos www.cs.cmu.edu/~christos Roadmap 1) Roots: System R and Ingres 2) Implementation: buffering, indexing, q-opt 3) Transactions: locking,
Algorithms for merged indexes
Algorithms for merged indexes Goetz Graefe HP Labs 1 Goetz.Graefe@HP.com Merged indexes are B-trees that contain multiple traditional indexes and interleave their records based on a common sort order.
ENHANCEMENTS TO SQL SERVER COLUMN STORES. Anuhya Mallempati #2610771
ENHANCEMENTS TO SQL SERVER COLUMN STORES Anuhya Mallempati #2610771 CONTENTS Abstract Introduction Column store indexes Batch mode processing Other Enhancements Conclusion ABSTRACT SQL server introduced
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
2) What is the structure of an organization? Explain how IT support at different organizational levels.
(PGDIT 01) Paper - I : BASICS OF INFORMATION TECHNOLOGY 1) What is an information technology? Why you need to know about IT. 2) What is the structure of an organization? Explain how IT support at different
DATA WAREHOUSING FOR SOCIAL NETWORKING AND HUMAN MOBILITY RESEARCH AND DETECTING REAL-WORLD EVENTS IN SPACE AND TIME USING FEATURE CLUSTERING
DATA WAREHOUSING FOR SOCIAL NETWORKING AND HUMAN MOBILITY RESEARCH AND DETECTING REAL-WORLD EVENTS IN SPACE AND TIME USING FEATURE CLUSTERING A Dissertation Submitted to the Graduate School of the University
Hekaton: SQL Server s Memory-Optimized OLTP Engine
Hekaton: SQL Server s Memory-Optimized OLTP Engine Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike Zwilling Microsoft {cdiaconu, craigfr,
High-Performance Concurrency Control Mechanisms for Main-Memory Databases
High-Performance Concurrency Control Mechanisms for Main-Memory Databases Per-Åke Larson 1, Spyros Blanas 2, Cristian Diaconu 1, Craig Freedman 1, Jignesh M. Patel 2, Mike Zwilling 1 Microsoft 1, University
Chapter 15: Recovery System
Chapter 15: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery Shadow Paging Recovery With Concurrent Transactions Buffer Management Failure with Loss of
MapReduce for Data Warehouses
MapReduce for Data Warehouses Data Warehouses: Hadoop and Relational Databases In an enterprise setting, a data warehouse serves as a vast repository of data, holding everything from sales transactions
Question 1. Relational Data Model [17 marks] Question 2. SQL and Relational Algebra [31 marks]
EXAMINATIONS 2005 MID-YEAR COMP 302 Database Systems Time allowed: Instructions: 3 Hours Answer all questions. Make sure that your answers are clear and to the point. Write your answers in the spaces provided.
Redo Recovery after System Crashes
Redo Recovery after System Crashes David Lomet Microsoft Corporation One Microsoft Way Redmond, WA 98052 lomet@microsoft.com Mark R. Tuttle Digital Equipment Corporation One Kendall Square Cambridge, MA
Chapter 16: Recovery System
Chapter 16: Recovery System Failure Classification Failure Classification Transaction failure : Logical errors: transaction cannot complete due to some internal error condition System errors: the database
Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University
Operating Systems CSE 410, Spring 2004 File Management Stephen Wagner Michigan State University File Management File management system has traditionally been considered part of the operating system. Applications
Part I: Entity Relationship Diagrams and SQL (40/100 Pt.)
Part I: Entity Relationship Diagrams and SQL (40/100 Pt.) Q.1.1) Translate the following E-R Schema to SQL-DDL tables using the CREATE Table Statement and check constraints, if needed: LatinName EnglishName
Distributed Databases
C H A P T E R19 Distributed Databases Practice Exercises 19.1 How might a distributed database designed for a local-area network differ from one designed for a wide-area network? Data transfer on a local-area
Efficient Processing of Joins on Set-valued Attributes
Efficient Processing of Joins on Set-valued Attributes Nikos Mamoulis Department of Computer Science and Information Systems University of Hong Kong Pokfulam Road Hong Kong nikos@csis.hku.hk Abstract Object-oriented
Data Structures for Databases
60 Data Structures for Databases Joachim Hammer University of Florida Markus Schneider University of Florida 60.1 Overview of the Functionality of a Database Management System..................................
IBM DB2: LUW Performance Tuning and Monitoring for Single and Multiple Partition DBs
coursemonster.com/au IBM DB2: LUW Performance Tuning and Monitoring for Single and Multiple Partition DBs View training dates» Overview Learn how to tune for optimum performance the IBM DB2 9 for Linux,