Why Query Optimization? Access Path Selection in a Relational Database Management System. How to come up with the right query plan?
|
|
|
- George Wood
- 10 years ago
- Views:
Transcription
1 Why Query Optimization? Access Path Selection in a Relational Database Management System P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price Peyman Talebifard Queries must be executed and execution takes time There are multiple execution plans for most queries Some plans cost less than others How to come up with the right query plan? 1. Measure the cost of each query 2. Enumerate possibilities 3. Pick the least expensive one Is that all? Simple Example SELECT * FROM A,B,C WHERE A.n = B.n AND B.m = C.m A = 100 tuples B = 50 tuples C = 2 tuples Which plan is cheaper? Join( C, Join( A, B ) ) Join( A, Join( B, C ) ) But the search space is too big Search space becomes too large as the number of joins increases In a matter of n! Just to remind you, 20! = 2,432,902,008,176,640,000 So now what do we do? Discussion 1 What will be changed in the query optimizer with the hardware today? 1.Can the search on the query space be decomposed into sub-problems, i.e.,could we design a parallel program for the space search problem? 2.More broadly, is there some way that we take advantage of the new multi-core technology to improve query optimization? 1
2 Changes Brought by Multi-core to Query Optimizer [VLDB 2008] Parallelizing Query Optimization [SIGMOD 2009] Parallelizing Extensible Query Optimizations [SIGMOD 2009] Dependency-Aware Reordering for Parallelizing Query Optimization in Multi-Core CPUs Selectivity factor Use Statistics Expected fraction of tuples that satisfy the predicate For each relation keep track of Cardinality of relations Number of pages in the segment containing tuples of relation T Fraction of empty to non-empty pages Use these statistics in conjunction with Sargable predicates Interesting Orders But Statistics alone cannot save us Expensive to compute Can t keep track of all joint statistics Compromise on statistics Periodically update stats for each relation Predicates Predicates like =, >, NOT, etc. reduce the number of tuples THUS: Evaluate predicates as early as possible System R Optimizer System R Optimizer A join operator can use either nested loop implementation sort-merge implementation Predicates are evaluated as early as possible Cost model relies on Use of statistics Selectivity factor CPU and I/O cost Consideration of interesting orders 2
3 Interesting Orders GROUP BY and ORDER BY or sortmerge joins generate interesting orders Cost of generating the interesting order should be added to the cost of a plan Back to the issue of search space Recall: search space too big (n!) Dynamic programming approach Dynamic programming (Wikipedia) Dynamic programming Assumption: Cost model satisfies the principle of optimality Optimal substructure means that optimal solutions of subproblems can be used to find the optimal solutions of the overall problem. An N-Join is really just a sequence of 2-Joins 1. Break the problem into smaller sub-problems. 2. Solve these problems optimally using this three-step process recursively. 3. Use these optimal solutions to construct an optimal solution for the original problem. Discussion 2 With formulas & methods; Without the estimation & experiment 1. Similar to Codd's paper "A Relational Model of Data for Large Shared Data Banks", this paper was also published in the ACM even though it lacks experimental data. Can we say that Codd's paper perhaps caused a paradigm shift in how the journal accepts papers? 2. It is the first time that a cost-based method is proposed to select access paths. The method has a deep influences to the subsequent work on query optimizer. But at that time when the paper is published, do you think the method proposed in the paper is not convincing without experimental data? If so, why does it succeed in the following decades? Major Contributions of Paper Cost based optimization Statistics CPU utilization (for sorts, etc.) Dynamic programming approach Interesting Orders 3
4 Summary of the Approach Example Schema Enumerate access paths to each relation Sequential scans Interesting orders Enumerate access paths to join a second relation to these results (if there is a predicate to do so) Nested loop (unordered) Merge (interesting order) Compare with equivalent solutions found so far but only keep the cheapest Example Query Example Initial Access Paths for single relations Example Search Tree 2 nd Relations Nested Loop Joining a second relation to the results for single relations 4
5 2 nd Relations Merge Join Prune and 3 Relations 5
Access Path Selection in a Relational Database Management System
Access Path Selection in a Relational Database Management System P. Griffiths Selinger M. M. Astrahan D. D. Chamberlin R. A. Lorie T. G. Price IBM Research Division, San Jose, California 95193 ABSTRACT:
Inside the PostgreSQL Query Optimizer
Inside the PostgreSQL Query Optimizer Neil Conway [email protected] Fujitsu Australia Software Technology PostgreSQL Query Optimizer Internals p. 1 Outline Introduction to query optimization Outline of
Access Path Selection in a Relational Database Management System. P. Griffiths Selinger M. M. Astrahan D. D. Chamberlin,: It. A. Lorie.
Access Path Selection in a Relational Database Management System P. Griffiths Selinger M. M. Astrahan D. D. Chamberlin,: It. A. Lorie.:' T. G. Price 4: IBM Research Division, San Jose, California 95193
Portable Bushy Processing Trees for Join Queries
Reihe Informatik 11 / 1996 Constructing Optimal Bushy Processing Trees for Join Queries is NP-hard Wolfgang Scheufele Guido Moerkotte 1 Constructing Optimal Bushy Processing Trees for Join Queries is NP-hard
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
Query Optimization in a Memory-Resident Domain Relational Calculus Database System
Query Optimization in a Memory-Resident Domain Relational Calculus Database System KYU-YOUNG WHANG and RAVI KRISHNAMURTHY IBM Thomas J. Watson Research Center We present techniques for optimizing queries
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
Advanced Oracle SQL Tuning
Advanced Oracle SQL Tuning Seminar content technical details 1) Understanding Execution Plans In this part you will learn how exactly Oracle executes SQL execution plans. Instead of describing on PowerPoint
Fallacies of the Cost Based Optimizer
Fallacies of the Cost Based Optimizer Wolfgang Breitling [email protected] Who am I Independent consultant since 1996 specializing in Oracle and Peoplesoft setup, administration, and performance tuning
Query Processing C H A P T E R12. Practice Exercises
C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass
Chapter 13: Query Optimization
Chapter 13: Query Optimization Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 13: Query Optimization Introduction Transformation of Relational Expressions Catalog
D B M G Data Base and Data Mining Group of Politecnico di Torino
Database Management Data Base and Data Mining Group of [email protected] A.A. 2014-2015 Optimizer objective A SQL statement can be executed in many different ways The query optimizer determines
Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs.
Phases of database design Application requirements Conceptual design Database Management Systems Conceptual schema Logical design ER or UML Physical Design Relational tables Logical schema Physical design
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
Understanding SQL Server Execution Plans. Klaus Aschenbrenner Independent SQL Server Consultant SQLpassion.at Twitter: @Aschenbrenner
Understanding SQL Server Execution Plans Klaus Aschenbrenner Independent SQL Server Consultant SQLpassion.at Twitter: @Aschenbrenner About me Independent SQL Server Consultant International Speaker, Author
Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division
Answer Key UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division CS186 Fall 2003 Eben Haber Midterm Midterm Exam: Introduction to Database Systems This exam has
In-Memory Data Management for Enterprise Applications
In-Memory Data Management for Enterprise Applications Jens Krueger Senior Researcher and Chair Representative Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly
Datenbanksysteme II: Implementation of Database Systems Implementing Joins
Datenbanksysteme II: Implementation of Database Systems Implementing Joins Material von Prof. Johann Christoph Freytag Prof. Kai-Uwe Sattler Prof. Alfons Kemper, Dr. Eickler Prof. Hector Garcia-Molina
PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce. Authors: B. Panda, J. S. Herbach, S. Basu, R. J. Bayardo.
PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce Authors: B. Panda, J. S. Herbach, S. Basu, R. J. Bayardo. VLDB 2009 CS 422 Decision Trees: Main Components Find Best Split Choose split
In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR
1 2 2 3 In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR The uniqueness of the primary key ensures that
Testing SQL Server s Query Optimizer: Challenges, Techniques and Experiences
Testing SQL Server s Query Optimizer: Challenges, Techniques and Experiences Leo Giakoumakis, Cesar Galindo-Legaria Microsoft SQL Server {leogia,cesarg}@microsoft.com Abstract Query optimization is an
Topics in basic DBMS course
Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch
Data storage Tree indexes
Data storage Tree indexes Rasmus Pagh February 7 lecture 1 Access paths For many database queries and updates, only a small fraction of the data needs to be accessed. Extreme examples are looking or updating
Best Practices for DB2 on z/os Performance
Best Practices for DB2 on z/os Performance A Guideline to Achieving Best Performance with DB2 Susan Lawson and Dan Luksetich www.db2expert.com and BMC Software September 2008 www.bmc.com Contacting BMC
Chapter 5: Overview of Query Processing
Chapter 5: Overview of Query Processing Query Processing Overview Query Optimization Distributed Query Processing Steps Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of
Chapter 14: Query Optimization
Chapter 14: Query Optimization Database System Concepts 5 th Ed. See www.db-book.com for conditions on re-use Chapter 14: Query Optimization Introduction Transformation of Relational Expressions Catalog
Query Optimization in Microsoft SQL Server PDW The article done by: Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit, Andrew Chung, Mostafa
Query Optimization in Microsoft SQL Server PDW The article done by: Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit, Andrew Chung, Mostafa Elhemali, Alan Halverson, Eric Robinson, Mahadevan Sankara
PartJoin: An Efficient Storage and Query Execution for Data Warehouses
PartJoin: An Efficient Storage and Query Execution for Data Warehouses Ladjel Bellatreche 1, Michel Schneider 2, Mukesh Mohania 3, and Bharat Bhargava 4 1 IMERIR, Perpignan, FRANCE [email protected] 2
Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)
Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2 Indexing Used for faster
Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr.
Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr. Dan Olteanu Submitted as part of Master of Computer Science Computing Laboratory
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
CA Performance Handbook. for DB2 for z/os
CA Performance Handbook for DB2 for z/os About the Contributors from Yevich, Lawson and Associates Inc. DAN LUKSETICH is a senior DB2 DBA. He works as a DBA, application architect, presenter, author, and
Efficient Processing of Joins on Set-valued Attributes
Efficient Processing of Joins on Set-valued Attributes Nikos Mamoulis Department of Computer Science and Information Systems University of Hong Kong Pokfulam Road Hong Kong [email protected] Abstract Object-oriented
Chapter 6: Episode discovery process
Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing
Run$me Query Op$miza$on
Run$me Query Op$miza$on Robust Op$miza$on for Graphs 2006-2014 All Rights Reserved 1 RDF Join Order Op$miza$on Typical approach Assign es$mated cardinality to each triple pabern. Bigdata uses the fast
SQL Server Query Tuning
SQL Server Query Tuning Klaus Aschenbrenner Independent SQL Server Consultant SQLpassion.at Twitter: @Aschenbrenner About me Independent SQL Server Consultant International Speaker, Author Pro SQL Server
Research Statement Immanuel Trummer www.itrummer.org
Research Statement Immanuel Trummer www.itrummer.org We are collecting data at unprecedented rates. This data contains valuable insights, but we need complex analytics to extract them. My research focuses
DBMS / Business Intelligence, SQL Server
DBMS / Business Intelligence, SQL Server Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the needs of IT professionals.
The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!
The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >
Data Warehouse Design
Data Warehouse Design Modern Principles and Methodologies Matteo Golfarelli Stefano Rizzi Translated by Claudio Pagliarani Mc Grauu Hill New York Chicago San Francisco Lisbon London Madrid Mexico City
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
Automatic segmentation of text into structured records
Automatic segmentation of text into structured records Vinayak Borkar Kaustubh Deshmukh Sunita Sarawagi Indian Institute of Technology, Bombay ABSTRACT In this paper we present a method for automatically
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
SQL Tuning Proven Methodologies
SQL Tuning Proven Methodologies V.Hariharaputhran V.Hariharaputhran o Twelve years in Oracle Development / DBA / Big Data / Cloud Technologies o All India Oracle Users Group (AIOUG) Evangelist o Passion
Searching frequent itemsets by clustering data
Towards a parallel approach using MapReduce Maria Malek Hubert Kadima LARIS-EISTI Ave du Parc, 95011 Cergy-Pontoise, FRANCE [email protected], [email protected] 1 Introduction and Related Work
Big Data, Fast Processing Speeds Kevin McGowan SAS Solutions on Demand, Cary NC
Big Data, Fast Processing Speeds Kevin McGowan SAS Solutions on Demand, Cary NC ABSTRACT As data sets continue to grow, it is important for programs to be written very efficiently to make sure no time
Efficient Data Access and Data Integration Using Information Objects Mica J. Block
Efficient Data Access and Data Integration Using Information Objects Mica J. Block Director, ACES Actuate Corporation [email protected] Agenda Information Objects Overview Best practices Modeling Security
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
Unraveling the Duplicate-Elimination Problem in XML-to-SQL Query Translation
Unraveling the Duplicate-Elimination Problem in XML-to-SQL Query Translation Rajasekar Krishnamurthy University of Wisconsin [email protected] Raghav Kaushik Microsoft Corporation [email protected]
Data Warehousing und Data Mining
Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data
Indexing Techniques for Data Warehouses Queries. Abstract
Indexing Techniques for Data Warehouses Queries Sirirut Vanichayobon Le Gruenwald The University of Oklahoma School of Computer Science Norman, OK, 739 [email protected] [email protected] Abstract Recently,
ML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
Exploring Query Optimization Techniques in Relational Databases
Exploring Optimization Techniques in Relational Databases Majid Khan and M. N. A. Khan SZABIST, Islamabad, Pakistan [email protected],[email protected] Abstract In the modern era, digital data is
Efficient Integration of Data Mining Techniques in Database Management Systems
Efficient Integration of Data Mining Techniques in Database Management Systems Fadila Bentayeb Jérôme Darmont Cédric Udréa ERIC, University of Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex France
Efficient Iceberg Query Evaluation for Structured Data using Bitmap Indices
Proc. of Int. Conf. on Advances in Computer Science, AETACS Efficient Iceberg Query Evaluation for Structured Data using Bitmap Indices Ms.Archana G.Narawade a, Mrs.Vaishali Kolhe b a PG student, D.Y.Patil
Lecture 6: Query optimization, query tuning. Rasmus Pagh
Lecture 6: Query optimization, query tuning Rasmus Pagh 1 Today s lecture Only one session (10-13) Query optimization: Overview of query evaluation Estimating sizes of intermediate results A typical query
Oracle Database 11g: SQL Tuning Workshop Release 2
Oracle University Contact Us: 1 800 005 453 Oracle Database 11g: SQL Tuning Workshop Release 2 Duration: 3 Days What you will learn This course assists database developers, DBAs, and SQL developers to
Big Data Challenges in Bioinformatics
Big Data Challenges in Bioinformatics BARCELONA SUPERCOMPUTING CENTER COMPUTER SCIENCE DEPARTMENT Autonomic Systems and ebusiness Pla?orms Jordi Torres [email protected] Talk outline! We talk about Petabyte?
Execution Strategies for SQL Subqueries
Execution Strategies for SQL Subqueries Mostafa Elhemali, César Galindo- Legaria, Torsten Grabs, Milind Joshi Microsoft Corp With additional slides from material in paper, added by S. Sudarshan 1 Motivation
Query Optimization in Oracle 12c Database In-Memory
Query Optimization in Oracle 12c Database In-Memory Dinesh Das *, Jiaqi Yan *, Mohamed Zait *, Satyanarayana R Valluri, Nirav Vyas *, Ramarajan Krishnamachari *, Prashant Gaharwar *, Jesse Kamp *, Niloy
Parallelizing Structural Joins to Process Queries over Big XML Data Using MapReduce
Parallelizing Structural Joins to Process Queries over Big XML Data Using MapReduce Huayu Wu Institute for Infocomm Research, A*STAR, Singapore [email protected] Abstract. Processing XML queries over
SQL Performance for a Big Data 22 Billion row data warehouse
SQL Performance for a Big Data Billion row data warehouse Dave Beulke dave @ d a v e b e u l k e.com Dave Beulke & Associates Session: F19 Friday May 8, 15 8: 9: Platform: z/os D a v e @ d a v e b e u
Architecture Sensitive Database Design: Examples from the Columbia Group
Architecture Sensitive Database Design: Examples from the Columbia Group Kenneth A. Ross Columbia University John Cieslewicz Columbia University Jun Rao IBM Research Jingren Zhou Microsoft Research In
In-Memory Columnar Databases HyPer. Arto Kärki University of Helsinki 30.11.2012
In-Memory Columnar Databases HyPer Arto Kärki University of Helsinki 30.11.2012 1 Introduction Columnar Databases Design Choices Data Clustering and Compression Conclusion 2 Introduction The relational
Instructional Design Framework CSE: Unit 1 Lesson 1
Instructional Design Framework Stage 1 Stage 2 Stage 3 If the desired end result is for learners to then you need evidence of the learners ability to then the learning events need to. Stage 1 Desired Results
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries Kale Sarika Prakash 1, P. M. Joe Prathap 2 1 Research Scholar, Department of Computer Science and Engineering, St. Peters
Physical DB design and tuning: outline
Physical DB design and tuning: outline Designing the Physical Database Schema Tables, indexes, logical schema Database Tuning Index Tuning Query Tuning Transaction Tuning Logical Schema Tuning DBMS Tuning
A Comparison of Functional and Imperative Programming Techniques for Mathematical Software Development
A Comparison of Functional and Imperative Programming Techniques for Mathematical Software Development Scott Frame and John W. Coffey Department of Computer Science University of West Florida Pensacola,
Efficiently Identifying Inclusion Dependencies in RDBMS
Efficiently Identifying Inclusion Dependencies in RDBMS Jana Bauckmann Department for Computer Science, Humboldt-Universität zu Berlin Rudower Chaussee 25, 12489 Berlin, Germany [email protected]
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
FPGA-based Multithreading for In-Memory Hash Joins
FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded
EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES
ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada [email protected]
Evaluation of Expressions
Query Optimization Evaluation of Expressions Materialization: one operation at a time, materialize intermediate results for subsequent use Good for all situations Sum of costs of individual operations
An Oracle White Paper May 2011. The Oracle Optimizer Explain the Explain Plan
An Oracle White Paper May 2011 The Oracle Optimizer Explain the Explain Plan Introduction... 1 The Execution Plan... 2 Displaying the Execution plan... 3 What is Cost... 8 Understanding the execution plan...
Oracle Database 11g: SQL Tuning Workshop
Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database
External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13
External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing
DATA STRUCTURES USING C
DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give
A Generic Auto-Provisioning Framework for Cloud Databases
A Generic Auto-Provisioning Framework for Cloud Databases Jennie Rogers 1, Olga Papaemmanouil 2 and Ugur Cetintemel 1 1 Brown University, 2 Brandeis University Instance Type Introduction Use Infrastructure-as-a-Service
Performance Evaluation of Natural and Surrogate Key Database Architectures
Performance Evaluation of Natural and Surrogate Key Database Architectures Sebastian Link 1, Ivan Luković 2, Pavle ogin *)1 1 Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand [email protected]
Web Service Mediation Through Multi-level Views
Web Service Mediation Through Multi-level Views Manivasakan Sabesan and Tore Risch Department of Information Technology, Uppsala University, Sweden {msabesan, Tore.Risch}@it.uu.se Abstract. The web Service
Caching XML Data on Mobile Web Clients
Caching XML Data on Mobile Web Clients Stefan Böttcher, Adelhard Türling University of Paderborn, Faculty 5 (Computer Science, Electrical Engineering & Mathematics) Fürstenallee 11, D-33102 Paderborn,
