Easy Machining Center Setup

Size: px
Start display at page:

Download "Easy Machining Center Setup"

Transcription

1 White Paper Document No. MWA-072-EN_01_1404 April 2014 Easy Machining Center Setup Using FANUC s Direct Input of Workpiece Origin Setting Measured and Tool Length Measurement features to easily establish workpiece coordinate system and tool length geometry offset values.

2 1 Introduction Choosing a Tool Length Measurement Method Additional Tools Required Measuring Workpiece Coordinate System Offset Values How Does the Direct Input of Workpiece Origin Setting Measured Feature Work? Measuring X and Y Axes Workpiece Coordinate Offset Values Procedure to Set the X and Y Axes Workpiece Coordinate System Offset Values Measuring Z-axis Workpiece Coordinate Offset Procedure to Set the Z-axis Workpiece Coordinate System Offset Value Measuring Tool Length Geometry Offset Values Tool Length Measurement Methods How Does the Tool Length Measurement Feature Work? Using the Reference Tool Method Using the Touch-off Method Reference Tool Method Procedure to Measure Tool Length Geometry Offset Values with a Reference Tool Touch-off Method Procedure for Measuring Tool Length Geometry Offsets using the Touch-off Method Summary 18 Document # MWA-072-EN_01_ Page 2 of 20

3 1 Introduction Before running a new job on a CNC machining center or mill there are several setup tasks that the operator must complete. Steps include: Securing the workpiece in a vice, fixture or other workholding device Loading any new tooling Set the workpiece coordinate system offset values in the CNC Set the tool geometry offset values in the CNC Using workpiece coordinate system and tool geometry offsets simplifies part programming and by allowing the programmer to ignore the physical machine and tooling characteristics during program creation. They also enhance scheduling flexibility, within limits, because programs using these features will run on a wide range of machine and tooling configurations. Workpiece coordinate system offsets resolve the difference between the program zero assumed in the part program and the actual machine zero. Tool geometry offset resolves the difference between the zero length and diameter tool assumed when creating the part program and the actual tool lengths and diameters used at production time. Establishing the values for the workpiece coordinate system and tool geometry offsets at setup time is confusing to some machine operators and it is a source of data entry errors. FANUC s Direct Input of Workpiece Origin Setting Measured and Tool Length Measurement features simplifies and error-proofs setting offset values. Both features are standard in the FANUC Series 0i-MD machining center CNC and available as an option for the FANUC Series 30i/31i/32i. They are also available as standard or optional features on many other FANUC CNCs. 1.1 Choosing a Tool Length Measurement Method Two methods are commonly used to establish tool length offset values. The choice also impacts the way the workpiece coordinate offset Z-axis value is established. Reference Tool this method as the name implies uses a reference tool to establish the tool length offset values. The reference tool has tool length offset value of zero and all the other tools have a length relative to the reference tool. If the reference tool method is chosen, the reference tool is also used to establish the Z-axis workpiece coordinate system offset value. The reference tool method is preferred by production shops or progressive job shops that minimized setup time by using standardized tool setups. Touch-off this method measures every tool used in the current program relative to a reference surface on the part, usually the top of the workpiece blank. The Z-axis workpiece coordinate system value is set to zero. This method is commonly used in smaller job shops and toolrooms where setup time is less important and the machine s tool changer capacity does not allow for standard tool setups. Document # MWA-072-EN_01_ Page 3 of 20

4 At first glance it may appear that the touch-off method eliminates the need to establish the Z-axis workpiece coordinate system value and is therefore more efficient and preferred. In practice the reference tool method eliminates the need to re-measure any previously measured tool. By standardizing as many tools as possible in the tool changer, the reference tool method limits job setup to measuring the Z-axis workpiece coordinate system value and the length of any new tools. 1.2 Additional Tools Required The measurement process requires a few inexpensive tools: Workpiece coordinate offset measurement - a low cost edge finder (~$20) can be used to establish the X and Y axes workpiece coordinate system offset values. A thin piece of paper can be used to measure the Z-axis workpiece coordinate system value. Tool length geometry offset measurement - an inexpensive (~$100-$200) electronic or dial offset gage provides quick and efficient measurement when using the reference tool method. A thin piece of paper is all that is needed for the touch-off method. Tool geometry diameter data can be found in the tooling catalog or measured with a suitable caliper or micrometer. Since tool diameter measurement is a very common procedure, we will not discuss it further here. 2 Measuring Workpiece Coordinate System Offset Values Using a workpiece coordinate system in the part program requires the workpiece coordinate system offset to be specified at setup time. In these procedures, the program zero points are assumed to be the bottom left of the part in X and Y and the top of the part in Z, since this is common Document # MWA-072-EN_01_ Page 4 of 20

5 2.1 How Does the Direct Input of Workpiece Origin Setting Measured Feature Work? Z Edge Finder X X Workpiece Ø0.200 Vice Position of X-axis after detecting the left hand edge of a part with an edge finder The basic concept of using an edge finder on a CNC machining center and a conventional mill with a digital readout (DRO) is the same. In the illustration above, there is a inch diameter edge finder that has been positioned so it is just in contact with the left edge of the workpiece. The example screen to the right shows the CNC position registers after a diameter edge finder just makes contact with left-hand edge of a part. The CNC displays X inches in both the absolution (program) position and the machine position registers. What we are trying to do is set lefthand edge of the workpiece as the program zero in the X-axis. If the edge finder had no diameter, touching the part on the left would mean that we would want to set the current axis position to zero in the workpiece coordinate system. Document # MWA-072-EN_01_ Page 5 of 20

6 However, the edge finder has a diameter inch and the actual position in the desired workpiece coordinate system is half the diameter of the edge finder in the negative direction. That is the current position is actually (0.2000/2.0=0.1000) in the negative direction or the axis is at the position X This makes sense, if current position was X , programming an absolute move to X0.0 would move the X-axis 0.1-inch in the positive direction, placing the center of the edge finder directly over the left-most edge of the part. So we want tell the CNC to set the current absolute (program) position for the X axis to X (half the diameter of the edge finder in the negative direction). That is exactly what the Direct Input of Workpiece Origin Offset Value Measured feature does. The operator positions an axis to a known location in the workpiece coordinate system using the edge finder, in this case inch in X. The operator then enters the letter address of the axis being measured followed by the desired position in the coordinates of the workpiece coordinate system X-0.1 in this example. When the operator presses the [MEASUR] soft key, the CNC then calculates and sets the value of the workpiece coordinate system offset required that makes the current absolute (program) position the value specified by the operator. In the middleright CNC screen you can see the CNC has calculated an X-axis workpiece coordinate system offset of In the bottom-right CNC screen you can see that the absolute (program) position is now X , the value set by the operator. Document # MWA-072-EN_01_ Page 6 of 20

7 The Direct Input of Workpiece Origin Setting Value Measured feature simplifies and error-proofs workpiece coordinate system offset data entry. Without this feature, the operators must read the axis position, add the diameter of the edge finder, select the appropriate workpiece coordinate offset field (X/Y/Z), enter the resultant value in the key input buffer and then press the INPUT key on the MDI panel. Though no high mathematics is involved, the procedure does provide multiple opportunities for errors. The same basic concept is used when measuring the Z-axis coordinate system offset. However, instead of allowing for half the diameter of the edge finder, we are allow for the thickness of the paper shim used. If the top surface is not qualified, we can also allow for the amount to be machine off the surface of the part to the part zero in the Z-axis. In this case the Z-axis is positioned a paper thickness above the part. The actual position of the tip of the tool is inch in the positive direction from the desired program zero point. If we are to take off inch from the top surface, the zero point is plus inches from the current Z-axis position. If the machine position in the Z-axis is Z (see illustration below) when the reference tool is in contact with the paper and the operator enter Z0.054 into the key input buffer on the CNC Workpiece Coordinate System offset page and presses the [MEASURE] soft key, the Z-axis workpiece coordinate system offset will be set to Z and the absolute (program) position becomes Z Program an absolute move of Z0 will move the Z-axis inches in the negative direction to the surface of the part. Reference Tool (spindle nose) Z X Paper Z Workpiece Vice Position of Z-axis after detecting the top surface of a part with a thin paper shim Document # MWA-072-EN_01_ Page 7 of 20

8 2.2 Measuring X and Y Axes Workpiece Coordinate Offset Values Finding the position of the side of a part with an edge finder is considered such a basic procedure that the device manufacturers rarely provide any instructions with their products. Using an edge finder with a CNC is very similar to using an edge finder with a manual machine with a digital readout (DRO) except we have the more capable CNC to make the process a little easier. Edge finders come in both mechanical and electronic versions: Mechanical Edge Finder has a main body that mounts in a tool holder, collet or chuck. The measuring end of the edge finder is attached to its body with a strong spring. When installed in the spindle, running at around 1,000 RPM, the measuring end typically wobbles some operators flick the end to kick it off-center and force it to wobble. When the edge finder is very close to the edge of the part, the body and the measurement end stabilize and line up concentrically. Moving just a bit closer to the edge makes the measurement head kick off-center decisively, indicating that the edge has been detected. While it is prudent to look along the edge being detected while jogging the edge finder into position, it is important to look perpendicular to the edge to detect the kick. Electronic Edge Finder works like a low cost trigger probe. Electronic edge finders have lights, audible alarms or both to signal when the measurement end comes in contact with the workpiece edge. The electronic edge finder may have a ball ended stylus, similar to a trigger probe. Electronic edge finders are used with the spindle stopped. Aside from the kick of the mechanical edge finder versus the light or audible alarm of the electronic edge finder, the procedure to find an edge position is very similar. The position detected by the edge finder will be off by half the diameter of the sensor tip. It is important to know the diameter of the sensor, because it must be considered when entering the offset data into the CNC Procedure to Set the X and Y Axes Workpiece Coordinate System Offset Values 1. Make sure that the workpiece coordinate system offset used in the part program is active typically the G54 for single part setups. Check the modal G-codes on the position page. If it is not active, activate it using manual data input (MDI) mode. 2. Inspect the workpiece on the edges to be measured and make sure there are no burrs or other artifacts that might produce a false edge detection. If necessary, dress the edge with as hone or file. 3. Mount the part in the workholding. Document # MWA-072-EN_01_ Page 8 of 20

9 4. Place the edge finder in a tool holder and place it in the spindle, either manually or using the automatic tool changer. 5. If using a mechanical edge finder, start the spindle at 1,000 RPM or the speed the manufacturer recommends. You can program the spindle speed in MDI and press cycle start. Start and stop the spindle with manual operator buttons or use MDI to execute the spindle start and stop M-codes (M03/M05). For an electronic edge finder, skip this step. 6. Jog the X, Y and Z axes so they are about an inch off the edge to be measured. You can use continuous jog mode or an electronic handwheel (also called an MPG or manual pulse generator) with a suitable increment setting. 7. Move to a lower jog speed or to smaller increment setting when using an electronic handwheel. 8. Move the edge finder in the Z-axis only until the measurement end is just below the top surface of the workpiece. It is important that only the tip of the mechanical edge finder or the stylus tip of the electronic edge finder is below the top surface of the workpiece. Move the axis slowly to ensure there is no collision; otherwise the instrument may get damaged. 9. Switch to incremental jog mode or continue to use an electronic handwheel. In either case, switch to the smallest increment available. 10. Slowly, move the edge finder towards the edge of the part until it is almost touching. 11. This step is slightly different depending on whether mechanical edge finder or an electronic edge finder is being used a. If using a mechanical device, very slowly move the edge finder towards the edge until the upper and lower parts align and stabilize. Move your observation point so that you can look at the edge finder in a direction perpendicular to the edge being measured, looking across the part if possible. Jog one increment at a time until the edge finder kicks. Back off a couple of increments and then back towards the part until it kicks again to ensure the position sensed is repeatable. b. If using an electronic device, very slowly move the edge finder towards the edge until the light or audible sound is signaled. Back off a couple of increments and then jog back to the part at one increment at a time until the edge finder signals again to ensure the position sensed is repeatable. Document # MWA-072-EN_01_ Page 9 of 20

10 12. Press the function button on the CNC MDI panel. 13. Press the [WORK] soft key to display the workpiece coordinate system offsets page. 14. Press the [OPRT] operations soft key to display the [MEASUR] soft key. 15. If necessary, press the key on the MDI panel until the workpiece coordinate system offset used in the part program is displayed typically the G54 offset. 16. Use the,, and cursor keys to highlight the X-axis field of the offset to be updated typically the G54 offset. Note you can select the X-axis field even if you are measuring the Y-axis because the next step sets the axis to be actually updated). 17. Enter the X letter address (or Y letter address) followed by the current axis position in the coordinates of the workpiece coordinate system. For example, if the edge finder has a diameter of inches and is in the negative direction relative to the desired workpiece coordinate zero, enter X-.1 (or Y-.1). 18. Press the [MEASUR] soft key the appropriate offset value is automatically set in the workpiece coordinate system offset table. The procedure above is repeated once for the X-axis and once for the Y-axis. See a video demonstrating these steps, here. 2.3 Measuring Z-axis Workpiece Coordinate Offset If you are using the reference tool method of setting tool length geometry offsets (see section 3), it is time to establish the Z-axis workpiece coordinate system offset using the reference tool, the top of the part and a thin piece of paper. The reference tool may be the spindle nose, the longest tool or the most common tool. The spindle must be stopped for this operation. If you plan to use the touch-off method of setting tool length geometry offsets, the Z-axis workpiece coordinate system offset value must be set to zero (cursor down to the Z field in the offsets, enter zero in the key input buffer and press the INPUT key on the MDI panel). Skip the procedure below Procedure to Set the Z-axis Workpiece Coordinate System Offset Value 1. Make sure that the workpiece coordinate system offset used in the part program is active. Check the modal G-codes on the position page. If it is not active, activate it using MDI mode. 2. Jog the X, Y and Z axis so the reference tool is about an inch above the top surface of the part. You can use continuous jog mode or an electronic handwheel with a suitable increment setting. 3. Switch to incremental jog mode or continue to use the electronic handwheel. In either case, switch to its smallest increment available. 4. Very slowly move the Z-axis until it is almost touching the part, leaving a gap of a little over a paper thickness. Document # MWA-072-EN_01_ Page 10 of 20

11 5. Press the function button on the CNC MDI panel. 6. Press the [WORK] soft key to display the workpiece coordinate system offsets page. 7. In necessary, press the key on the MDI panel until the workpiece coordinate system offset used in the part program is displayed typically the G54 offset. 8. Press the,, and cursor keys to highlight the X-axis field of the offset to be updated typically the G54 offset. 9. Take a thin piece of paper and test if it can be inserted between the reference tool (the spindle nose in the image) and the top surface of the machine. If the paper moves easily, jog the axis down one increment and re-test the fit. 10. Repeat step 8 until there is a slight mechanical resistance when inserting the paper between the part and reference tool. The reference tool is now one paper thickness above the top surface of the part. 11. This next step depends on whether the top of the part is a finished machined surface or not. Start by entering the Z letter address in the key input buffer. Next: a. For a previously qualified machined surface, enter the thickness of the paper (.004 for example) in the key input buffer after the Z letter address. b. For an un-machine surface, determine the amount of material to be removed during facing (0.050 for example) and enter that value in the key input buffer using the CNC MDI keyboard. Note we are ignoring the thickness of the paper as it is insignificant in this case. If you want to be precise, add the paper thickness to the value of the material to be removed (.054 for example) and enter that value. 12. Press the [MEASUR] soft key the appropriate offset value is set in the Z-axis workpiece coordinate system offset table value. See a video demonstrating these steps, here. Document # MWA-072-EN_01_ Page 11 of 20

12 3 Measuring Tool Length Geometry Offset Values 3.1 Tool Length Measurement Methods As was stated in the introduction, there are two methods commonly used to establish tool length offset values. Reference Tool this method uses a reference tool to establish the tool length offset values. The reference tool has tool length offset value of zero and all the other tools have a length relative to the reference tool. The reference tool method is preferred by production shops or progressive job shops that minimized setup time by using standardized tool setups. Reference Tool Method Reference Tool (spindle nose) Z-axis Relative Zero Offset Gauge Vice Z Tool Relative Length X Touch-off this method measures every tool used in the current program relative to a reference surface on the part, usually the top of the workpiece blank. This method is commonly used in smaller job shops and toolrooms where setup time is less important and the machine s tool changer capacity does not allow for standard tool setups. Touch-off Method Paper Tool Z Z (relative position) X Workpiece Vice Document # MWA-072-EN_01_ Page 12 of 20

13 3.2 How Does the Tool Length Measurement Feature Work? The Tool Length Measurement simply copies the relative position register of the axis selected to the tool length offset field selected. Using it for tool length measurement requires that the relative position be zeroed at the appropriate location for the method being used Using the Reference Tool Method When the reference tool method is used to measure tool lengths, the trick is to establish the Z-axis relative position zero when reference tool is at the tool measurement position. Though we provide more detail in the procedure that follows, there are four primary steps in the process: 1. Move the reference tool to a reference position. This is when the reference tool is in contact with the offset gauge. 2. Reset the Z-axis relative position to zero. 3. Install the tool to be measured in the spindle and move the tip of the tool to the same reference position. The Z-axis relative position register should now display the relative length of the tool. 4. Select the tool offset number and the geometry length offset field to be updated and enter Z in the key input buffer and press the [INP. C] soft key to copy the Z-axis relative position to the tool offset field Using the Touch-off Method When the touch-off method is used, the Z-axis relative position zero should be the same as the machine position zero, which is automatically established when the CNC is turned on. Moving each tool used to the workpiece surface and coping the Z-axis relative position to the appropriate offset compensates for the tool length and the difference between the machine zero and the program zero at the same time. 1. Install the tool to be measured in the spindle and move the tip of the tool to the surface of the workpiece. The Z-axis relative position register should now display the relative distance from the home position to the tip of the tool. 2. Select the tool offset number and the geometry length offset field to be updated and enter Z in the key input buffer and press the [INP. C] soft key to copy the Z-axis relative position to the tool offset field. Document # MWA-072-EN_01_ Page 13 of 20

14 3.3 Reference Tool Method The reference tool method is the most efficient way to establish tool geometry length offsets, when a standardize tool load is possible. For each job setup, only the lengths of new tools need to be measured. Note: if you routinely replace every tool in the tool changer for every job; consider using the touch-off method that is discussed later in section 3. There are several common variations of the reference tool method and they all work well the key difference is the sign and the values stored in the tool geometry table: Common tool - this method uses a tool that is always in the tool changer as the reference tool. This makes sense because without the previously used reference tool to establish the Z-axis workpiece coordinate system offset value, all the tools used in the job would have to be measured again using a new reference tool defeating the objective. Some tools may be longer than the reference tool and they have a positive value in the tool geometry table. Some may be shorter than the reference tool and they have a negative value in the tool geometry table. This method sometimes confuses operators, because: 1. The tool lengths measured do not correspond to the physical lengths of the tools. 2. The sign of the tool offsets is sometime plus and sometime minus. In the example screen, tool #2 is the reference tool with a length of zero. Longest tool - this method uses the longest tool available as the reference tool. It has a tool offset length of zero. Now all the tool geometry offsets are negative, since they are all shorter than the longest reference tool. The tool lengths offset still do not correspond well with the actual lengths of the tools. This method works as long as the longest tool is is always in the tool changer. Otherwise the tool must be loaded just as a reference tool. Another problem is that the longest tool may not be able to be positioned on the top of tall workpieces to establish the Z-axis workpiece coordinate system offset. In the example screen, tool #8 is the reference tool. Document # MWA-072-EN_01_ Page 14 of 20

15 Because the offsets are all negative values and it is easier to establish a size limit for tool length geometry offsets, it is easy to error-proof the values entered using the CNCs Wrong Operation Prevention Function. Spindle nose - this method uses the spindle nose as the reference tool. Now all the tool geometry offsets are positive since all tools are longer than no tool. The values stored in the offset tables will correspond reasonably well with the actual physical length of the tools. The spindle nose is always available for measurement and it will always be able to reach the top of any part to perform the measurement for the Z-axis workpiece coordinate offset. This method creates the least confusion to operators. Note that in the example screen, all the tools have positive lengths the tool nose (T00) is the tool with a zero length. Though spindle nose is often used as the reference tool, it should be noted that if a G49 is programmed, cancelling the tool offset, the Z- axis will move in the direction of the part, potentially causing a crash. In practice, users of the spindle nose method do not program G49 and rely on G28 to temporarily disable the tool length offset as it returns the Z-axis home. Because the offsets are all positive values and it is easy to establish a size limit for tool length geometry offsets, it is easy to error-proof the values entered using the CNCs Wrong Operation Prevention Function. Note: The reference tool chosen must be used during setup to set the workpiece coordinate system offset value in the Z-axis, but it does not have to be actually used in the current program. Since both the longest tool method and the spindle nose method ensures that values are Procedure to Measure Tool Length Geometry Offset Values with a Reference Tool 1. Place the tool offset gage on a clean, stable work surface that is accessible by all the tools to be measured, including the reference tool (including the spindle nose if it is the reference tool). The surface can be the vice, fixture or the machine table. An electronic or dial indicator gage can be used. 2. When using the most common tool or longest tool method, place the reference tool in the spindle. This can be done manually or by executing a T-code and an M06 in the MDI mode. When using the spindle nose as a reference tool, remove any tool from the spindle manually or program and execute a T00 M06 in the MDI mode. 3. Use the jog buttons or an electronic handwheel to position the reference tool close to and above the tool offset gage. Document # MWA-072-EN_01_ Page 15 of 20

16 4. Switch to incremental jog or continue to use an electronic handwheel. In either case, select the smallest increment of movement available. 5. Lower the reference tool (or spindle nose) until: a. The light is displayed and/or audible alarm is triggered on an electronic tool offset gage b. There is a reliable reading on the dial indicator. When a reliable reading is established, set the dial to zero. 6. Press the function button on the CNC MDI panel. 7. Press the [REL.] soft key to display the relative coordinate system position page. 8. Enter Z0 in the key input buffer and press the [PRESET] soft key the Z-axis relative zero position is now set to the reference height of the tool offset gage. 9. Retract the Z-axis and place the tool to be measured in the spindle, either manually or by programming and executing a T-code and an M06 in the MDI mode. 10. Using incremental jog or an electronic handwheel with the smallest increment for movement selected, lower the tool until: a. The light is displayed and/or audible alarm is triggered on an electronic tool offset gage. b. The dial returns to the same zero displayed with the reference tool. 11. Press the function button on the CNC MDI panel. 12. Press the [OFFSET] soft key to display the tool offsets page. 13. If necessary, press the key on the MDI panel until the tool offset that matches the tool number being measured is displayed. 14. Press the,, and cursor keys to highlight the specific tool number being measured in the GEOM (H) column H is the length offset. Document # MWA-072-EN_01_ Page 16 of 20

17 15. Enter the Z letter address in the key input buffer and press the [INP. C.] soft key to copy the Z-axis relative position to the selected offset. This stores the difference in length between the reference tool and the tool being measured. In the example screen to the right, the offset will be stored in tool offset number 3 (H03), the current value of the Z-axis relative position is positive 2.25-inches. That means the tool is 2.25 inches longer than the reference tool. After pressing the [INP. C.] soft key, the value of offset 3 is inches, the value copied from the Z-axis relative register. 16. Repeat steps 9 through 15 for any addition tools to be measured. Note: some operators use a thin piece of paper as a "feeler gage" and a flat surface to establish the reference tool datum and measure tool offsets. Others may be using a gauge block as a feeler gauge. However, tool offset gages are inexpensive and fast - and they are less likely to damage tooling in the hands of a less experienced operator. See a video demonstrating these steps, here. 3.4 Touch-off Method The touch-off method is used when there are no standard tools in the tool changer, so every tool used in the program must be measured for every job setup. Note the X and Y workpiece coordinate system offsets are set the same whether using the reference tool or touch-off tool methods. See the procedure in Section 2. However, the Z-axis workpiece coordinate system offset must be set to zero when using the touch-off method Procedure for Measuring Tool Length Geometry Offsets using the Touch-off Method This procedure must be repeated once for each tool used in the part program, regardless if it has a tool length coordinate offset set from a previous job setup. 1. Make sure that the workpiece coordinate system offset used in the part program is active. Check the modal G-codes on the position page. If it is not active, activate it using MDI mode. Also check that the Z-axis relative position is zero at the home position (the default when the CNC is powered-up). 2. Retract the Z-axis and place the tool to be measured in the spindle, either manually or by programming and executing a T-code and M06 in the MDI mode. Document # MWA-072-EN_01_ Page 17 of 20

18 3. Use incremental jog or an electronic handwheel with a suitable increment and lower the tool until it is about a one inch above a clean flat surface on the part. If one is not available, first skim the top of the part with a facing tool to create a suitable measurement surface. 4. Switch to incremental jog mode or continue to use an electronic handwheel. In either case, switch to the smallest increment available. 5. Very slowly move the Z-axis down until it is almost touching the part, leaving a paper thickness gap or more. 6. Press the function button on the CNC MDI panel. 7. Press the [OFFSET] soft key to display the tool offsets page. 8. Press the key on the MDI panel until the tool offset that matches the tool number being measured is displayed. 9. Press the,, and cursor keys to highlight the specific tool number being measured in the GEOM (H) column H is the length offset. 10. Take a thin piece of paper and test if it can be inserted between the tool and the top surface of the machine. If the paper moves easily, jog the axis down one increment and re-test the fit. 11. Repeat step 9 until there is a slight mechanical resistance when inserting the paper between the part and tool. The tool is now one paper thickness above the top of the part. 12. Enter the Z letter address in the key input buffer and press the [INP. C.] soft key to copy the Z-axis relative position to the tool length offset. 13. Enter the thickness of the paper (.004 for example) in the key input buffer using the CNC MDI keyboard and press the [INPUT+] soft key to compensate for the fact that the tool was not actually touching the part. Alternatively, use the tool wear offset to fine tune the tool length after measuring a part. 4 Summary FANUC s Direct Input of Workpiece Origin Setting Value Measured and Tool Length Measurement features make it easy to establish workpiece coordinate system and tool length geometry offsets. All the values entered by the operator are known and constant half the diameter of the edge finder and the thickness of the paper. Calculations and data entry are minimized, error-proofing the process. The measurement values are calculated and entered automatically with simple soft key actions. The reference tool method using the spindle nose is fast because it uses an inexpensive tool offset gage and eliminates the re-measuring of standard tools. It also reduces operator confusion since all the signs of the offset values are positive and the dimensions of the values are roughly the visible length of the tool. Document # MWA-072-EN_01_ Page 18 of 20

19 Document # MWA-072-EN_01_ Page 19 of 20

20 1800 Lakewood Boulevard Hoffman Estates, IL FANUC-US ( ) Find more information at Technical data is subject to change without prior notice. No part of this document may be reproduced in any form. All rights reserved Document # MWA-072-EN_01_1404

Course outline. Know Your Machine From A Programmer s Viewpoint 11 If you ve had experience with conventional (non-cnc) machine tools 11

Course outline. Know Your Machine From A Programmer s Viewpoint 11 If you ve had experience with conventional (non-cnc) machine tools 11 Course outline Know Your Machine From A Programmer s Viewpoint 11 If you ve had experience with conventional (non-cnc) machine tools 11 Machine Configurations 13 Vertical machining centers 13 C-frame style

More information

5. Tutorial. Starting FlashCut CNC

5. Tutorial. Starting FlashCut CNC FlashCut CNC Section 5 Tutorial 259 5. Tutorial Starting FlashCut CNC To start FlashCut CNC, click on the Start button, select Programs, select FlashCut CNC 4, then select the FlashCut CNC 4 icon. A dialog

More information

Proficiency Test For Machining Center

Proficiency Test For Machining Center Proficiency Test For Machining Center Name: Date: Section One: General CNC Questions 1) The spindle speed for a particular tool in a program is incorrect and you wish to reduce it. The kind of CNC word

More information

G10 Data Setting Command

G10 Data Setting Command G10 Data Setting Command Though it s barely mentioned in most basic CNC courses, the G10 command is an extremely important basic CNC feature It allows you to input data from within CNC programs This data

More information

CNC Turning Training CNC MILLING / ROUTING TRAINING GUIDE. www.denford.co.uk Page 1

CNC Turning Training CNC MILLING / ROUTING TRAINING GUIDE. www.denford.co.uk Page 1 CNC Turning Training www.denford.co.uk Page 1 Table of contents Introduction... 3 Start the VR Turning Software... 3 Configure the software for the machine... 4 Load your CNC file... 5 Configure the tooling...

More information

BENCHMAN -XT Machining Center

BENCHMAN -XT Machining Center BENCHMAN -XT Machining Center Tool Length Offset Probe User s Guide 1 1 34-5269-0000 1st Issue April 2001 2 Copyright 2001 intelitek All Rights Reserved The information contained in this guide (34-5269-0000)

More information

Overview. Milling Machine Fundamentals. Safety. Shop Etiquette. Vehicle Projects Machine Shop

Overview. Milling Machine Fundamentals. Safety. Shop Etiquette. Vehicle Projects Machine Shop Overview Milling Machine Fundamentals Wayne Staats, UW-Madison FSAE Safety Shop Etiquette Before Machining Indicating Calculating Feeds and Speeds Machining Maintenance Safety Respect the machines Common

More information

G and M Programming for CNC Milling Machines. Denford Limited Birds Royd Brighouse West Yorkshire England HD6 1NB Tel: +44 (0) 1484 712264

G and M Programming for CNC Milling Machines. Denford Limited Birds Royd Brighouse West Yorkshire England HD6 1NB Tel: +44 (0) 1484 712264 COMPUTERISED MACHINES AND SYSTEMS G and M Programming for CNC Milling Machines Denford Limited Birds Royd Brighouse West Yorkshire England HD6 1NB Tel: +44 (0) 1484 712264 G AND M Fax: PROGRAMMING +44

More information

CNC Applications. Tool Radius Compensation for Machining Centers

CNC Applications. Tool Radius Compensation for Machining Centers CNC Applications Tool Radius Compensation for Machining Centers Why Cutter Diameter Compensation? When machining finished surfaces with the side of a milling cutter (generally called profiling), the accuracy

More information

Milling and Machining Center Basics

Milling and Machining Center Basics Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of basic milling theories and procedures. In addition, the viewer will

More information

Lead Screw Backlash and Mach3, version 2

Lead Screw Backlash and Mach3, version 2 Lead Screw Backlash and Mach3, version 2 By R. G. Sparber Copyleft protects this document. 1 This article looks closely at backlash and then explains how to measure it. The resulting numbers are used in

More information

Lesson 1 Basic Machining Practices Required For CNC Machining Centers

Lesson 1 Basic Machining Practices Required For CNC Machining Centers Get Ready To Learn About CNC Machining Centers Lesson 1 Lesson 1 Basic Machining Practices Required For CNC Machining Centers The more a person knows about the basic machining practices that apply to CNC

More information

CNC 8055 / CNC 8055i SELF-TEACHING MANUAL ( TC OPTION) (REF 0607) (Ref 0607)

CNC 8055 / CNC 8055i SELF-TEACHING MANUAL ( TC OPTION) (REF 0607) (Ref 0607) CNC 8055 / CNC 8055i (REF 0607) SELF-TEACHING MANUAL ( TC OPTION) (Ref 0607) All rights reserved. No part of this documentation may be copied, transcribed, stored in a data backup system or translated

More information

Milling & Machining Centers

Milling & Machining Centers Training Objective After watching the program and reviewing this printed material, the viewer will gain knowledge and understanding of basic milling theories and procedures. In addition, the viewer will

More information

Instructions Issued on November 30, 2006 Published by. Machine model 372, 373, 374 Page 1/14 Document No. ED373LH017M00. When measures are practiced

Instructions Issued on November 30, 2006 Published by. Machine model 372, 373, 374 Page 1/14 Document No. ED373LH017M00. When measures are practiced Inspection Document form control No. E592M0066A0 (1/14) Evaluation Assembly Instructions Issued on November 30, 2006 Published by Improvement Design Group INTEGREX-Product Machine model 372, 373, 374 Page

More information

Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers)

Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers) Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers) These features are commonly well covered in most basic CNC courses.

More information

Renishaw 2008. apply innovation TM. Calibrating 5-axis machines to improve part accuracy. 5Align

Renishaw 2008. apply innovation TM. Calibrating 5-axis machines to improve part accuracy. 5Align Calibrating 5-axis machines to improve part accuracy 5Align Productive Process Pyramid TM Understanding and tracking machine behaviour Process verification Thermal compensation In-cycle process control

More information

Summary Of GCODE Commands By Category (HTT0196)

Summary Of GCODE Commands By Category (HTT0196) Summary Of GCODE Commands By Category (HTT0196) SET UP COMMANDS CODE COMMAND FORMAT PURPOSE PAGE # F Feed Speed Fn Designates feed rate, or rate 05 of movement, of the axes. G4 Dwell Time G4/d Specifies

More information

3300M CNC Control Editing, Part Programming and Running simple program

3300M CNC Control Editing, Part Programming and Running simple program 3300M CNC Control diting, Part Programming and Running simple program Writen by Robin Baker F2 dit to enter editor. F1 F2 F3 F4 F5 F6 F7 F8 F9 Teach Draw Drill Pocket Mill Tool Calc Sub Misc xit Dimension

More information

CNC Programming. Lecture 25. Engineering 475 Automated Production Systems

CNC Programming. Lecture 25. Engineering 475 Automated Production Systems CNC Programming Lecture 25 Engineering 475 Automated Production Systems Information Needed by a CNC Machine 1. Preparatory Information: units, incremental or absolute positioning 2. Coordinates: X,Y,Z,

More information

CNC Applications. Introduction to Machining Centers

CNC Applications. Introduction to Machining Centers CNC Applications Introduction to Machining Centers Machining Centers A machining center is simply a CNC milling machine with an automatic tool changer and an enclosure. There are a number of different

More information

TL-Series Sub-Spindle Operator s Addendum

TL-Series Sub-Spindle Operator s Addendum 3 4 5 11 9 TL-Series Sub-Spindle Operator s Addendum 2 1 12 10 6 7 8 20HP VECTOR DUAL DRIVE LIVE TOOLING SUB SPINDLE 2008 Haas Automation, Inc. 96-0037 rev L 9/08 1 1. Introduction Specific M codes are

More information

MILLPWR Setup Access Code

MILLPWR Setup Access Code MILLPWR Setup Access Code An access code must be entered before the installation setup parameters can be accessed or changed. IMPORTANT The access code is 8891. Refer to Section 7, Setup. IMPORTANT Supervisors

More information

Mach4 CNC Controller Mill Programming Guide Version 1.0

Mach4 CNC Controller Mill Programming Guide Version 1.0 Mach4 CNC Controller Mill Programming Guide Version 1.0 1 Copyright 2014 Newfangled Solutions, Artsoft USA, All Rights Reserved The following are registered trademarks of Microsoft Corporation: Microsoft,

More information

JCUT CNC Router 3030A/6090/8090/1212/60150/1218/1224/1325/1530/A/B

JCUT CNC Router 3030A/6090/8090/1212/60150/1218/1224/1325/1530/A/B JCUT CNC Router 3030A/6090/8090/1212/60150/1218/1224/1325/1530/A/B User s Operation Manual Jinan Jcut CNC Equipment Co., Ltd. Content Content... 1 Ⅰ. Introduction of wiring of CNC router.......2.2 Ⅱ.Install

More information

MET 306 Activity 6. Using Pro/MFG Milling Operations Creo 2.0. Machining a Mast Step

MET 306 Activity 6. Using Pro/MFG Milling Operations Creo 2.0. Machining a Mast Step Using Pro/MFG Milling Operations Creo 2.0 Machining a Mast Step If the Trim option is grayed out when trimming the mill volume, Save (making sure the.asm file is going to the correct subdirectory), Exit

More information

Machine tool probe calibration

Machine tool probe calibration Machine tool probe calibration TE415 Machine tool probe calibration Introduction Upon first use and at intervals thereafter it is necessary to establish the characteristics of each individual probe installation.

More information

HUST Lathe CNC Controller

HUST Lathe CNC Controller HUST Lathe CNC Controller Manual Model: HUST CNC H4CL-T Version: Sep 2006 Table of Contents TABLE OF CONTENTS 1 Main Features of CNC Lathe Controller 1-1 2 Operation 2-1 2.1 Basic Operation 2-1 Startup

More information

Making Soft Jaws for a Bison 3 Jaw Lathe Chuck

Making Soft Jaws for a Bison 3 Jaw Lathe Chuck Making Soft Jaws for a Bison 3 Jaw Lathe Chuck By R. G. Sparber Copyleft protects this document. 1 My Bison lathe chuck has served me well for many years. One of its features is the ability to remove the

More information

Cura for Type A Machines Quick Start Guide

Cura for Type A Machines Quick Start Guide Cura for Type A Machines Quick Start Guide 1 Table of Contents About Cura for Type A Machines Downloading Cura for Type A Machines Installing Cura for Type A Machines Mac Windows Linux About the Configuration

More information

Building an Off-Center Fixture for Turning Pendants

Building an Off-Center Fixture for Turning Pendants Building an Off-Center Fixture for Turning Pendants Turning a pendant off-center with most available metal pendant chucks means that you will have a significant amount of mass off center, which will limit

More information

Lathe Series Training Manual. Live Tool for Haas Lathe (including DS)

Lathe Series Training Manual. Live Tool for Haas Lathe (including DS) Haas Factory Outlet A Division of Productivity Inc Lathe Series Training Manual Live Tool for Haas Lathe (including DS) Created 020112-Rev 121012, Rev2-091014 This Manual is the Property of Productivity

More information

CNC USB dual layer PCB milling

CNC USB dual layer PCB milling CNC USB dual layer PCB milling by tim23x I've recently built a CNC machine out of various pieces of high-quality salvage. With the money I saved in the construction of the system I bought a controller

More information

NCGuide Academic packages

NCGuide Academic packages White Paper Document No. MWA-017-EN_06_1407 July 2014 NCGuide Academic packages Authentic FANUC CNC software on a PC for the most effective learning environment 1 Introduction 5 1.1 NCGuide Academic Packages...

More information

UNIT 1 INTRODUCTION TO NC MACHINE TOOLS

UNIT 1 INTRODUCTION TO NC MACHINE TOOLS UNIT 1 INTRODUCTION TO NC MACHINE TOOLS Structure 1.1 Introduction Objectives 1.2 NC Machines 1.2.1 Types of NC Machine 1.2.2 Controlled Axes 1.2.3 Basic Components of NC Machines 1.2.4 Problems with Conventional

More information

Mach3 Tutorial Setting up a basic three axis milling machine. Based on Mach3 2.0

Mach3 Tutorial Setting up a basic three axis milling machine. Based on Mach3 2.0 Mach3 Tutorial Setting up a basic three axis milling machine. Based on Mach3 2.0 Purpose. The purpose of this tutorial is to help and to guide the user to, step by step, set up and tune the Mach3 CNC controller

More information

PLCM-T1 / PLCM-T2 Torch height controller

PLCM-T1 / PLCM-T2 Torch height controller www.purelogic.ru Operating guide СОДЕРЖАНИЕ: 1. General information... 2 2. Scope of delivery... 3 3. Specifications... 3 4. The differences between T1 and T2... 4 5. Principle of operation... 6 6. Wiring

More information

FAGOR CNC 8055 ia-mc Control

FAGOR CNC 8055 ia-mc Control FAGOR CNC 8055 ia-mc Control The Fagor 8055 i/a-mc CNC control combines value & reliability with a featured packed modular control. This control was built for the shop environment with a rugged keyboard

More information

Project Instruction Booklet. CNC Milling Machine Project

Project Instruction Booklet. CNC Milling Machine Project CNC Milling Machine Project Instruction Booklet 1 P a g e Project Overview In this project students will learn how to use the following tools and shop materials to finish this project: personal protective

More information

Understanding Gcode Commands as used for Image Engraving

Understanding Gcode Commands as used for Image Engraving Understanding Gcode Commands as used for Image Engraving February 2015 John Champlain and Jeff Woodcock Introduction Reading and understanding gcodes is helpful for trouble-shooting cnc engraving processes,

More information

DMS 680. Universal length measuring system gauge inspection for»iso 9000«requirements

DMS 680. Universal length measuring system gauge inspection for»iso 9000«requirements DMS 680 Universal length measuring system gauge inspection for»iso 9000«requirements Universal length measuring system DMS 680 Wide range of applications For periodic inspection of gauges, reference gauges,

More information

MaraMeter. Indicating Snap Gages

MaraMeter. Indicating Snap Gages - 9-2 MaraMeter. Indicating Snap Gages Overview MaraMeter. The Indicating Snap Gage is ideal for highly accurate and reliable results on cylindrical work pieces with a narrow tolerance. MaraMeter 840 F

More information

HIGH PRODUCTION DUAL DRIVE HORIZONTAL MACHINING CENTER

HIGH PRODUCTION DUAL DRIVE HORIZONTAL MACHINING CENTER HIGH PRODUCTION DUAL DRIVE HORIZONTAL MACHINING CENTER 14001 認 可 登 錄 14001 認 可 登 錄 1 Introducing all new H630B high speed horizontal machining center. Incorporates state of the art Dual Drive technology

More information

Computer-Aided Numerical Control (CNC) Programming and Operation; Lathe Introduction, Advanced Mills

Computer-Aided Numerical Control (CNC) Programming and Operation; Lathe Introduction, Advanced Mills 1 of 6 9/9/2014 3:59 PM I. Catalog Information Credit- Degree applicable Effective Quarter: Fall 2014 MCNC 75B Computer-Aided Numerical Control (CNC) Programming and Operation; Lathe Introduction, Advanced

More information

PPM Users Manual Signature Software 01-12-00

PPM Users Manual Signature Software 01-12-00 PPM Users Manual Signature Software 0-2-00 PPM User Manual /8/02 Software Versions: 0.0.27 Contents. Introduction 2 2. Parameters 3 2. Overload Limit...4 2.2 Relative Upper Limit...4 2.3 Relative Lower

More information

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

More information

NX CAM TURBOMACHINERY MILLING PRODUCT REVIEW

NX CAM TURBOMACHINERY MILLING PRODUCT REVIEW Dr. Charles Clarke PRODUCT REVIEW Market drivers...3 Existing specialist applications...3 A new generation of software that provides flexibility...4 Specialized operations for blisks and impellers...4

More information

PBZ Heavy. PBZ Heavy. CNC Gantry-Type Machining Center. Power - Performance - Precision. www.knuth-usa.com

PBZ Heavy. PBZ Heavy. CNC Gantry-Type Machining Center. Power - Performance - Precision. www.knuth-usa.com CNC Gantry-Type Machining Center Power - Performance - Precision Travel X-axis up to 244 in Y-axis up to 126 in Z-axis up to 39 in Strong Machine bed, dual columns and fixed bridge ensure a rigid frame

More information

RAPID DIAL TEST INDICATORS

RAPID DIAL TEST INDICATORS RAPID DIAL TEST INDICATORS The Verdict Rapid presents the dial face inclined to the workpiece surface ensuring good visual accessibility obviating parallax error. Rapids incorporate a rear swivel spigot

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Servo/Hydraulic Press Brake. HG Series HG 5020, HG 8025, HG 1303, HG 1703 HG 1704, HG 2203, HG 2204

Servo/Hydraulic Press Brake. HG Series HG 5020, HG 8025, HG 1303, HG 1703 HG 1704, HG 2203, HG 2204 Servo/Hydraulic Press Brake HG Series HG 5020, HG 8025, HG 1303, HG 1703 HG 1704, HG 2203, HG 2204 The HG Series Press Brake An ultra-high precision, high-speed compact bending solution featuring an advanced

More information

Chapter 2: Computer Aided Manufacturing TECH 4/53350 1

Chapter 2: Computer Aided Manufacturing TECH 4/53350 1 Chapter 2: CNC Fundamentals & Vocabulary Computer Aided Manufacturing TECH 4/53350 1 CNC Learning objectives The Cartesian Coordinate System Motion Direction of CNC Mill and Lathe Types of Coordinate System

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

SAMSUNG Machine Tools

SAMSUNG Machine Tools SAMSUNG Machine Tools VERTICAL MACHINING CENTER SMEC Co., Ltd. 666, Gasul-ri, Daesan-myeon, Changwon-si Gyeongsangnam-do, Korea 641-921 Tel +82 55 250 4800 Fax +82 55 253 5355 http://www.esmec.com www.esmec.com

More information

CNC HARDWARE & TOOLING BASICS

CNC HARDWARE & TOOLING BASICS Computer Aided Manufacturing (CAM) CNC HARDWARE & TOOLING BASICS Assoc. Prof. Dr. Tamer S. Mahmoud 1. Parts of CNC Machine Tools Any CNC machine tool essentially consists of the following parts: Part Program,

More information

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE Cable Processor Module overview WARNING! When tipping the Cable Processor Module back, (after removing the toggle arm pin), use extreme caution not to drop

More information

Setting up the DeskCNC controller.

Setting up the DeskCNC controller. 1) Determine the steps to linear motion ratios for each axis. 2 2) Determine Maximum velocity (speed). 3 3) Setting up the software Machine Tab 4 4) Setting up the software DeskCNC Setup Tab 5 5) Setting

More information

Electron S.R.L. B55 CNC TRAINING MACHINES

Electron S.R.L. B55 CNC TRAINING MACHINES Electron S.R.L. Design Production & Trading of Educational Equipment B55 CNC TRAINING MACHINES Specifications may change without notice Page 1 of 12 File B55 MODULAR TRAINING SYSTEM FOR THE STUDY OF CNC

More information

H6C-M Mill CNC Controller

H6C-M Mill CNC Controller H6C-M Mill CNC Controller Manual (Suitable for the controller: H6C-M H6CL-M H9C-M H9CL-M) Ver Jan, 2011 HUST Automation Inc. No. 80 Kon Yei Road, Toufen, Miaoli, Taiwan Tel: 886-37-623242 Fax: 886-37-

More information

for MANUAL MILLING MACHINES

for MANUAL MILLING MACHINES UC RIVERSIDE MECHANICAL ENGINEERING DEPARTMENT MACHINE SHOP STANDARD OPERATING PROCEDURES for MANUAL MILLING MACHINES REVISION: V5 DATE: 11-15-2011 TABLE OF CONTENTS SECTION TOPIC(S) PAGE Basic Capabilities

More information

Milling Tools These are the tools currently available for use with the milling machine

Milling Tools These are the tools currently available for use with the milling machine Jason Ward Page 1 of 5 Milling Tools These are the tools currently available for use with the milling machine T1 Milling Tool The missile-shaped T1 milling tools are the highest precision of T-Tech's milling

More information

CNCTRAIN OVERVIEW CNC Simulation Systems 1995 2008

CNCTRAIN OVERVIEW CNC Simulation Systems 1995 2008 CNCTRAIN OVERVIEW CNC Simulation Systems 1995 2008 p2 Table of Contents Getting Started 4 Select a control system 5 Setting the Best Screen Layout 6 Loading Cnc Files 7 Simulation Modes 9 Running the Simulation

More information

Signature Norman Crepeau Special Condition Subject to prior sale Johnford ST60B. CNC Turning Center

Signature Norman Crepeau Special Condition Subject to prior sale Johnford ST60B. CNC Turning Center Mr. Will Rood B & B Precise Products 25 Neck Road Benton, ME 04901 Date June 3, 2008 Quote # 06032008 Valid for 30 Days Quoted by Norman Signature Norman Crepeau Special Condition Subject to prior sale

More information

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

More information

OD 1401 9 PRECISION MEASURING INSTRUMENTS

OD 1401 9 PRECISION MEASURING INSTRUMENTS SUBCOURSE EDITION OD 1401 9 PRECISION MEASURING INSTRUMENTS PRECISION MEASURING INSTRUMENTS SUBCOURSE OD1401 EDITION 9 Unites States Army Combined Arms Support Command Fort Lee, VA 23801-1809 5 CREDIT

More information

LOCATION DEPENDENCY OF POSITIONING ERROR IN A 3-AXES CNC MILLING MACHINE

LOCATION DEPENDENCY OF POSITIONING ERROR IN A 3-AXES CNC MILLING MACHINE th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 214) December 12 th 14 th, 214, IIT Guwahati, Assam, India LOCATION DEPENDENCY OF POSITIONING ERROR IN

More information

Section. Tolerances. Aluminum Extrusion Manual. 4th Edition

Section. Tolerances. Aluminum Extrusion Manual. 4th Edition Section 8 Tolerances Aluminum Extrusion Manual 4th Edition Section 8 How straight is straight enough? How flat is flat enough? How uniform must a wall thickness be in order to be acceptable? These are

More information

GE FANUC 18i CONTROL OPERATOR MANUAL

GE FANUC 18i CONTROL OPERATOR MANUAL GE FANUC OPERATOR MANUAL GE FANUC 18i CONTROL OPERATOR MANUAL FADAL MACHINING CENTERS, LLC Corporate Office...phone (818) 407-1400... fax (818) 407-0020 Service / Parts...phone (818) 727-2100... fax (818)

More information

CNC Milling Engraving machine G4030A Instruction manual

CNC Milling Engraving machine G4030A Instruction manual CNC Milling Engraving machine G4030A Instruction manual 1. Safety notes Every machine controlled by computer (PC) can be really dangerous for human life and health. Comply with bolow rules and use Your

More information

Optimized NC programming for machinery and heavy equipment. Summary NX CAM software redefines manufacturing productivity with a full range of NC

Optimized NC programming for machinery and heavy equipment. Summary NX CAM software redefines manufacturing productivity with a full range of NC Siemens PLM Software NX CAM for machinery Optimized NC programming for machinery and heavy equipment Benefits Effectively program any type of machinery part Program faster Reduce air cutting Automate programming

More information

Training Document for Integrated Automation Solutions Totally Integrated Automation (TIA) Module S01 Fundamentals of CNC Programming with SinuTrain

Training Document for Integrated Automation Solutions Totally Integrated Automation (TIA) Module S01 Fundamentals of CNC Programming with SinuTrain Training Document for Integrated Automation Solutions Totally Integrated Automation (TIA) Module S01 Fundamentals of CNC Programming with SinuTrain T I A Training Document Page 1 of 53 Module S01 This

More information

TEACHING TOMORROW S INDUSTRY LEADERS TODAY. Manufacturing Small Parts on Machining Centers

TEACHING TOMORROW S INDUSTRY LEADERS TODAY. Manufacturing Small Parts on Machining Centers TEACHING TOMORROW S INDUSTRY LEADERS TODAY Tech Tip # 14 July 2007 Written by: Phil Rasey, Stiles Education s Machining Center Specialist Audience: Introductory Machine \ Process: CNC Machining Centers

More information

Raised Panel Doors Made Simple With Freud s 2+2 Raised Panel Bit Set

Raised Panel Doors Made Simple With Freud s 2+2 Raised Panel Bit Set Raised Panel Doors Made Simple With Freud s 2+2 Raised Panel Bit Set Congratulations on your purchase of Freud s world class 2 + 2 Raised Panel Bit Set. This revolutionary design combines two small wings

More information

Precision Measuring Tools. Participant Self-Paced Workbook

Precision Measuring Tools. Participant Self-Paced Workbook Precision Measuring Tools Participant Self-Paced Workbook Introduction Course Purpose The purpose of this course is to introduce you to precision measuring tools. In this course you will learn about decimals

More information

ENGINEERING METROLOGY

ENGINEERING METROLOGY ENGINEERING METROLOGY ACADEMIC YEAR 92-93, SEMESTER ONE COORDINATE MEASURING MACHINES OPTICAL MEASUREMENT SYSTEMS; DEPARTMENT OF MECHANICAL ENGINEERING ISFAHAN UNIVERSITY OF TECHNOLOGY Coordinate Measuring

More information

[ means: Save time, money and space! MAXXMILL 500. Vertical milling center for 5-side machining

[ means: Save time, money and space! MAXXMILL 500. Vertical milling center for 5-side machining [ E[M]CONOMY] means: Save time, money and space! MAXXMILL 500 Vertical milling center for 5-side machining MAXXMILL 500 MAXXMILL 500 is the ideal vertical milling center for the for the 5-axis operation

More information

Zenbot CNC User s guide www.zenbotcnc.com

Zenbot CNC User s guide www.zenbotcnc.com Zenbot CNC User s guide www.zenbotcnc.com Note: If at any point you are unsure what to do or would like assistance, don t hesitate to email service@zenbotcnc.com, or call 559-901-8329. Customer satisfaction

More information

A Short Course on Wheel Alignment

A Short Course on Wheel Alignment A Short Course on Wheel Alignment In its most basic form, a wheel alignment consists of adjusting the angles of the wheels so that they are perpendicular to the ground and parallel to each other. The purpose

More information

Section 15: Diagnostics

Section 15: Diagnostics Section 15: Diagnostics Diagnostic System Commands To enter the Diagnostic System, enter the DI command. The Diagnostic System recognizes the following commands: Table 1: Diagnostic Commands COMMAND CE

More information

User Guide LUXXOR VIDEO MICROSCOPE. 2 Luxxor Video Microscope Set Up

User Guide LUXXOR VIDEO MICROSCOPE. 2 Luxxor Video Microscope Set Up 2 Luxxor Video Microscope Set Up User Guide LUXXOR VIDEO MICROSCOPE Column When removed from its packaging, the Luxxor Video Microscope will be configured as shown, with the Vertical Slide and Slide Stop

More information

Electric Landing Gear controllers and sequencer LGC12 / LGC 13C

Electric Landing Gear controllers and sequencer LGC12 / LGC 13C Electric Landing Gear controllers and sequencer LGC12 / LGC 13C Users Guide. Torrent d en Puig, 31. 08358, Arenys de Munt, Barcelona,Catalonia,Spain E-mail: info@xicoy.com. Fax: +34 933 969 743 web: www.xicoy.com

More information

WL-400 Milling Machine Operator s Manual

WL-400 Milling Machine Operator s Manual WL-400 Milling Machine Operator s Manual. www.levil.com techsupport@levil.com (407) 542-3971 Introduction This manual covers the safety, usage and maintenance of the tabletops CNC milling machines manufactured

More information

ME 1355 CAD/CAM LABORATORY CNC MILLING PROGRAM. Study of G Codes and M Codes to Write Manual Part Programming for Fanuc Control Systems

ME 1355 CAD/CAM LABORATORY CNC MILLING PROGRAM. Study of G Codes and M Codes to Write Manual Part Programming for Fanuc Control Systems ME 1355 CAD/CAM LABORATORY CNC MILLING PROGRAM Ex.No.1 Study of G Codes and M Codes to Write Manual Part Programming for Fanuc Control Systems PREPARATORY FUNCTION ( G CODES ) The preparatory functions

More information

http://www.i-max.top

http://www.i-max.top http://www.i-max.top Intelligent NC. Simple to operate, like a press. Requires no special skill Secure clamping of complex shapes Multi-task machining without reclamping Program supply system for quick

More information

RollerMouse Red plus. User Guide

RollerMouse Red plus. User Guide RollerMouse Red plus User Guide Thank you for giving us an opportunity to help you work more comfortably and efficiently. Contour Design has been striving to build the best mouse since 1995. I m proud

More information

Table of Contents Getting Started... 3 The Motors... 4 The Control Board... 5 Setting up the Computer with Mach3... 6 Starting up the Equipment...

Table of Contents Getting Started... 3 The Motors... 4 The Control Board... 5 Setting up the Computer with Mach3... 6 Starting up the Equipment... User Manual Table of Contents Getting Started... 3 The Motors... 4 The Control Board... 5 Setting up the Computer with Mach3... 6 Starting up the Equipment... 12 G-Code Example... 13 2 Getting Started

More information

What software do I need to run a CNC mill?

What software do I need to run a CNC mill? The premier source of tooling, parts, and accessories for bench top machinists. What software do I need to run a CNC mill? Creating a part on a CNC mill is a three phase process. The part is drawn in a

More information

Lesson 6: Measuring Trees

Lesson 6: Measuring Trees Review and Introduction Lesson 6: Measuring Trees In Lesson 4 and Lesson 5, you learned how to establish either a fixed plot or a variable plot. With your plot established and your in trees tallied, now

More information

The Speed of Live and the Accuracy of Fixed

The Speed of Live and the Accuracy of Fixed The Speed of Live and the Accuracy of Fixed SG10A CYLINDER HEAD SEAT & GUIDE MACHINE Light Weight Work Head The SG10A has a light weight work head for fast and accurate centering for the minimum concentricity.

More information

The Bonelle Tool and Cutter Grinder

The Bonelle Tool and Cutter Grinder The Bonelle Tool and Cutter Grinder The grinder was constructed about 1987 and exhibited at the 89th Model Engineering exhibition where it was awarded a bronze medal (see ME Vol164 No 3868 page 273). Subsequently

More information

H6C-T Lathe CNC Controller

H6C-T Lathe CNC Controller H6C-T Lathe CNC Controller Manual Ver Mar., 2011 HUST Automation Inc. No. 80 Kon Yei Road, Toufen, Miaoli, Taiwan Tel: 886-37-623242 Fax: 886-37- 623241 Table of Contents TABLE OF CONTENTS 1 H6C-T Main

More information

Making Better Medical Devices with Multisensor Metrology

Making Better Medical Devices with Multisensor Metrology Making Better Medical Devices with Multisensor Metrology by Nate J. Rose, Chief Applications Engineer, Optical Gaging Products (OGP) Multisensor metrology is becoming a preferred quality control technology

More information

CNC 8055 MC. Self-teaching manual REF. 1010

CNC 8055 MC. Self-teaching manual REF. 1010 CNC 8055 MC Self-teaching manual REF. 1010 All rights reserved. No part of this documentation may be transmitted, transcribed, stored in a backup device or translated into another language without Fagor

More information

User Manual V5.0.0 1

User Manual V5.0.0 1 User Manual V5.0.0 1 Introduction... 4 Safety... 4 Initial setup... 4 Setup Wizard... 4 Linear units... 5 Angular units... 5 Feed rate... 5 Plasma cutting... 5 Rotary cutting... 5 Multiple drawings...

More information

:: fast. precise. clean GRAPHITE MACHINING USING HIGH TECHNOLOGY CNC MILLING.

:: fast. precise. clean GRAPHITE MACHINING USING HIGH TECHNOLOGY CNC MILLING. :: fast. precise. clean GRAPHITE MACHINING USING HIGH TECHNOLOGY CNC MILLING. made in Germany Welcome to the world of imes-icore. Productivity and economy redefined! Customers continually de- THE FREE

More information

RENISHAW measuring OMP 40 system EN3M0-0 Edgecam Advanced Milling ENS-M0-G EdgeCam Solid Machinist for Granite

RENISHAW measuring OMP 40 system EN3M0-0 Edgecam Advanced Milling ENS-M0-G EdgeCam Solid Machinist for Granite 1 Horizontal Machining Center MATSUURA Model: H-Plus 300 PC 5 Year: 2008 Control: Matsuura G-Tech 30i No. of pallets: 5 Size (each) 300 x 300 mm. Table indexation: 1 Index speed: 1,5 sek./90 Index speed:

More information

Data we can obtain from a FANUC CNC

Data we can obtain from a FANUC CNC Data we can obtain from a FANUC CNC Contents Axis and Spindle Data 2 CNC Program Functions.. 3 CNC File Data.. 5 Tool Life Management Functions. 6 Tool Life Management Data. 7 CNC Operation History. 8

More information

This chapter describes the specifications of the embedded Ethernet function for Series 16i/18i/21i/160i/180i/210i/160is/180is/210is B.

This chapter describes the specifications of the embedded Ethernet function for Series 16i/18i/21i/160i/180i/210i/160is/180is/210is B. B 63525EN/02 8 EMBEDDED ETHERNET FUNCTION 8. EMBEDDED ETHERNET FUNCTION This chapter describes the specifications of the embedded Ethernet function for Series 16i/18i/21i/160i/180i/210i/160is/180is/210is

More information

Equipment Manual. for. Operation of Automatic Polishing Plate Control on the PM5 Precision Lapping & Polishing Machine.

Equipment Manual. for. Operation of Automatic Polishing Plate Control on the PM5 Precision Lapping & Polishing Machine. Equipment Manual for Operation of Automatic Polishing Plate Control on the PM5 Precision Lapping & Polishing Machine Ref: BE-01-53-5 PREFACE: PM5 auto-lap/pol MACHINES The PM5 auto-lap/pol features two

More information