Chapter 6. Commodity Forwards and Futures. Question 6.1. Question 6.2
|
|
|
- April Osborne
- 9 years ago
- Views:
Transcription
1 Chapter 6 Commodity Forwards and Futures Question 6.1 The spot price of a widget is $ With a continuously compounded annual risk-free rate of 5%, we can calculate the annualized lease rates according to the formula: F 0,T = S 0 ( r l ) T e δ F0, T S = ( r l ) 0 T e δ F ln S 0, T 0 = (r δ l ) T δ l = r F S 1 ln 0, T T 0 Time to expiration Forward price Annualized lease rate 3 months $ months $ months $ months $ The lease rate is less than the risk-free interest rate. The forward curve is upward sloping, thus the prices of exercise 6.1 are an example of contango. Question 6.2 The spot price of oil is $32.00 per barrel. With a continuously compounded annual risk-free rate of 2%, we can again calculate the lease rate according to the formula: F 1 ln 0, T δ l = r T S0 83
2 84 Part Two/Forwards, Futures, and Swaps Time to expiration Forward price Annualized lease rate 3 months $ months $ months $ months $ The lease rate is higher than the risk-free interest rate. The forward curve is downward sloping, thus the prices of exercise 6.2 are an example of backwardation. Question 6.3 The question asks us to find the lease rate such that F 0,T = S 0. We take our pricing formula, F 0,T = ( r ) S 0 l T e δ ( r ), and immediately see that the sought equality is established if l T e δ = 1, which is guaranteed for any T > 0 if and only if r = δ. If the lease rate were 3.5%, the lease rate would be higher than the risk-free interest rate. Therefore, a graph of forward prices would be downward sloping, and thus there would be backwardation. Question 6.4 a) As we need to borrow a pound of copper to sell it short, we must pay the lender the lease rate for the time we borrow the asset, i.e., until expiration of the contract in one year. After one year, we have to pay back one pound of copper, which will cost us S T, the uncertain future pound of copper price, plus the leasing costs: Total payment = S T + S T e = S T e 0.05 = S T. It does not make sense to store a pound of copper in equilibrium, because even if we have an active lease market for pounds of copper, the lease rate is smaller than the risk-free interest rate. Lending money at 10 percent is more profitable than lending pounds of copper at 5 percent. b) The equilibrium forward price is calculated according to our pricing formula: ( r ) F 0,T = S 0 l T e δ = $3.00 e ( ) 1 = $ = $3.1538, which is the price given in the exercise. c) Copper need not be stored because there is a constant supply of copper. If the forward price was greater than 3.316, then a copper producer will find it profitable to sell forward production. d) As the textbook points out, the reverse cash-and-carry arbitrage does not put a lower bound on the forward price. The lender will require a lease payment and can use the forward price to determine the lease rate.
3 Chapter 6/Commodity Forwards and Futures 85 Question 6.5 a) The spot price of gold is $ per ounce. With a continuously compounded annual riskfree rate of 5 percent, and at a one-year forward price of , we can calculate the lease rate according to the formula: 1 F0, T δ l = r ln = 0.05 ln = T S0 300 b) Suppose gold cannot be loaned. Then our cash and carry arbitrage is: Transaction Time 0 Time T = 1 Short forward S T Buy gold $300 S T 0.05 $300 $ Total The forward price bears an implicit lease rate. Therefore, if we try to engage in a cash and carry arbitrage but we do not have access to the gold loan market and thus to the additional revenue on our long gold position, it is not possible for us to replicate the forward price. We incur a loss. c) If gold can be loaned, we engage in the following cash and carry arbitrage: Transaction Time 0 Time T = 1 Short forward S T Buy tailed gold $ S T position, $ $ Total 0 0 Therefore, we now just break even: Since the forward was fairly priced, taking the implicit lease rate into account, this result should not surprise us. Question 6.6 a) The forward prices reflect a market for widgets in which seasonality is important. Let us look at two examples, one with constant demand and seasonal supply, and another one with constant supply and seasonal demand. One possible explanation might be that widgets are extremely difficult to produce and that they need one key ingredient that is only available during July/August. However, the demand for the widget is constant throughout the year. In order to be able to sell the widgets
4 86 Part Two/Forwards, Futures, and Swaps throughout the year, widgets must be stored after production in August. The forward curve reflects the ever increasing storage costs of widgets until the next production cycle arrives. Once produced, widget prices fall again to the spot price. Another story that is consistent with the observed prices of widgets is that widgets are in particularly high demand during the summer months. The storage of widgets may be costly, which means that widget producers are reluctant to build up inventory long before the summer. Storage occurs slowly over the winter months and inventories build up sharply just before the highest demand during the summer months. The forward prices reflect those storage cycle costs. b) Let us take the December Year 0 forward price as a proxy for the spot price in December Year 0. We can then calculate with our cash and carry arbitrage tableau: Transaction Time 0 Time T = 3/12 Short March forward S T Buy December 3.00 S T Forward (= Buy spot) Pay storage cost 0.03 Total We can calculate the annualized rate of return as: = e(r ) T ln = r 3/12 r = which is the prevailing risk-free interest rate of This result seems to make sense. c) Let us again take the December Year 0 forward price as a proxy for the spot price in December Year 0. We can then calculate with our cash and carry arbitrage tableau: Transaction Time 0 Time T= 9/12 Short Sep forward S T Buy spot 3.00 S T Pay storage cost Sep 0.03 FV(Storage Jun) FV(Storage Mar) Total
5 Chapter 6/Commodity Forwards and Futures 87 We can calculate the annualized rate of return as: = e(r ) T ln = r 9/12 r = This result does not seem to make sense. We would earn a negative annualized return of 16 percent on such a cash and carry arbitrage. Therefore, it is likely that our naive calculations do not capture an important fact about the widget market. In particular, we will buy and hold the widget through a time where the forward curve indicates that there is a significant convenience yield attached to widgets. It is tempting, although premature, to conclude that a reverse cash and carry arbitrage may make a positive 16 percent annualized return. Question 6.7 deals with this aspect. Question 6.7 a) Let us take the December Year 0 forward price as a proxy for the spot price in December Year 0. We can then calculate a reverse cash and carry arbitrage tableau: Transaction Time 0 Time T = 3/12 Long March forward 0 S T Short widget S T Lend money Total We need to receive 0.03 as a compensation from the lender of the widget. This cost reflects the storage cost of the widget that the lender does not need to pay. The lease rate is negative. b) Let us take the December Year 0 forward price as a proxy for the spot price in December Year 0. We can then calculate a reverse cash and carry arbitrage tableau: Transaction Time 0 Time T = 9/12 Long Sept forward 0 S T Short widget S T Lend money Total Although we free the lender of the widget of the burden to pay three times storage costs, we still need to pay him This reflects the fact that we hold the widget through the period in which widgets are valuable (as reflected by the forward contracts) and are returning it at a time it is worth less. The lender is only willing to do so if we compensate him for the opportunity cost.
6 88 Part Two/Forwards, Futures, and Swaps Question 6.8 a) The first possibility is a simple cash and carry arbitrage: Transaction Time 0 Time T = 3/12 Short March forward S T Buy December 3.00 S T forward (= Buy spot) 6% Pay storage cost 0.03 Total The second possibility involves using the June futures contract. It is a forward cash-and-carry strategy: Transaction Time = T(1) = 3/12 Time = T(2) = 6/12 Short March forward 3.10 ST (1) ST(2) Buy June forward 0 ST(2) % Receive storage cost Total We can use the June futures in our calculations and claim to receive storage costs because it is easy to show that the value of it is reflecting the negative lease rate of the storage costs. b) It is not possible to undertake an arbitrage with the futures contracts that expire prior to September Year 1. A decrease in the September futures value means that we would need to buy the September futures contract, and any arbitrage strategy would need some short position in the widget. However, the drop in the futures price in September indicates that there is a significant convenience yield factored into the futures price over the period June September. As we have no information about it, it is not possible for us to guarantee that we will find a lender of widgets at a favorable lease rate to follow through our arbitrage trading program. The decrease in the September futures may in fact reflect an increase in the opportunity costs of widget owners. Question 6.9 If the February corn forward price is $2.80, the observed forward price is too expensive relative to our theoretical price of $ We will therefore sell the February contract short, and create a synthetic long position, engaging in cash and carry arbitrage:
7 Chapter 6/Commodity Forwards and Futures 89 Transaction Nov Dec Jan Feb Short Feb forward ST Buy spot 2.50 ST Borrow purchasing cost Pay storage cost Dec, borrow storage cost Pay storage cost Jan, borrow storage cost Pay storage cost Feb 0.05 Total We made an arbitrage profit of 0.07 dollar. If the February corn forward price is $2.65, the observed forward price is too low relative to our theoretical price of $ We will, therefore, buy the February contract and create a synthetic short position, engaging in reverse cash and carry arbitrage: Transaction Nov Dec Jan Feb Long Feb forward 0 ST 2.65 Sell spot 2.50 ST Lend short sale proceeds Receive storage cost Dec, lend them 0.05 Receive storage cost Jan, lend them 0.05 Receive cost Feb Total We made an arbitrage profit of $0.08. It is important to keep in mind that we ignored any convenience yield that there may exist to holding the corn. We assumed the convenience yield is zero.
8 90 Part Two/Forwards, Futures, and Swaps Question 6.10 Our best bet for the current spot price is the first available forward price, properly discounted by taking the interest rate and the lease rate into account, and by ignoring any storage cost and convenience yield (because we do not have any information on it): F 0,T = S 0 ( r l ) T e δ S 0 = F 0,T ( r l ) T e δ S 0 = e ( ) 1 = = Question 6.11 There are 42 gallons of oil in one barrel. For each of these production ratios, we have to buy oil and sell gasoline and heating oil. We calculate for the 2:1:1 split: Profit = $2/gallon 1 gallon + $1.80/gallon 1 gallon 2 $80/42 = :2:1 split: Profit = $2/gallon 2 gallons + $1.80/gallon 1 gallon 3 $80/42 = :3:2 split: Profit = $2/gallon 3 gallons + $1.80/gallon 2 gallons 5 $80/42 = The 3:2:1 split maximizes profits With these prices, we calculate for the 2:1:1 split: Profit = $1.80/gallon 1 gallon + $2.10/gallon 1 gallon 2 $80/42 = :2:1 split: Profit = $1.80/gallon 2 gallons + $2.10/gallon 1 gallon 3 $80/42 = :3:2 split: Profit = $1.80/gallon 3 gallons + $2.10/gallon 2 gallons 5 $80/42 = Now, the 2:1:1 split maximizes profit. You would expect the heating oil to be the most expensive in winter, and hence the 2:1:1 split to be most profitable in winter. People drive more and need less heating oil during the summer, so then you would choose a split with the highest fraction of gasoline, the 3:2:1. Question 6.12 a) Widgets do not deteriorate over time and are costless to store; therefore, the lender does not save anything by lending me the widget. On the other hand, there is a constant demand and flexible production there is no seasonality. Therefore, we should expect that the convenience yield is very close to the risk-free rate, merely compensating the lender for the opportunity cost.
9 Chapter 6/Commodity Forwards and Futures 91 b) Demand varies seasonally, but the production process is flexible. Therefore, we would expect that producers anticipate the seasonality in demand, and adjust production accordingly. Again, the lease rate should not be much higher than the risk-free rate. c) Now we have the problem that the demand for widgets will spike up without an appropriate adjustment of production. Let us suppose that widget demand is high in June, July, and August. Then, we will face a substantial lease rate if we were to borrow the widget in May and return it in September: We would deprive the merchant of the widget when he would need it most (and could probably earn a significant amount of money on it), and we would return it when the season is over. We most likely pay a substantial lease rate. On the other hand, suppose we want to borrow the widget in January and return it in June. Now we return the widget precisely when the merchant needs it and have it over a time where demand is low, and he is not likely to sell it. The lease rate is likely to be very small. However, those stylized facts are weakened by the fact that the merchant can costlessly store widgets, so the smart merchant has a larger inventory when demand is high, offsetting the above effects at a substantial amount. d) Suppose that production is very low during June, July, and August. Let us think about borrowing the widget in May and returning it in September. We do again deprive the merchant of the widget when he needs it most, because with a constant demand, less production means widgets become a comparably scarce resource and increase in price. Therefore, we pay a higher lease rate. The opposite effects can be observed for a widgetborrowing from January to June. Again, these stylized facts are offset by the above mentioned inventory considerations. e) If widgets cannot be stored, the seasonality problems become very severe, leading to larger swings in the lease rate due to the impossibility of managing inventory.
Chapter 3: Commodity Forwards and Futures
Chapter 3: Commodity Forwards and Futures In the previous chapter we study financial forward and futures contracts and we concluded that are all alike. Each commodity forward, however, has some unique
Pricing Forwards and Futures
Pricing Forwards and Futures Peter Ritchken Peter Ritchken Forwards and Futures Prices 1 You will learn Objectives how to price a forward contract how to price a futures contract the relationship between
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT PROBLEM SETS 1. In formulating a hedge position, a stock s beta and a bond s duration are used similarly to determine the expected percentage gain or loss
Chapter 5 Financial Forwards and Futures
Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment
Determination of Forward and Futures Prices. Chapter 5
Determination of Forward and Futures Prices Chapter 5 Fundamentals of Futures and Options Markets, 8th Ed, Ch 5, Copyright John C. Hull 2013 1 Consumption vs Investment Assets Investment assets are assets
Finance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
The theory of storage and the convenience yield. 2008 Summer School - UBC 1
The theory of storage and the convenience yield 2008 Summer School - UBC 1 The theory of storage and the normal backwardation theory explain the relationship between the spot and futures prices in commodity
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
One Period Binomial Model
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
Chapter 1 - Introduction
Chapter 1 - Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of
(c) 2006-2014 Gary R. Evans. May be used for non-profit educational purposes only without permission of the author.
The futures markets Introduction and Mechanics, using Natural Gas as the example (c) 2006-2014 Gary R. Evans. May be used for non-profit educational purposes only without permission of the author. Forward
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
Notes for Lecture 2 (February 7)
CONTINUOUS COMPOUNDING Invest $1 for one year at interest rate r. Annual compounding: you get $(1+r). Semi-annual compounding: you get $(1 + (r/2)) 2. Continuous compounding: you get $e r. Invest $1 for
Simple Interest. and Simple Discount
CHAPTER 1 Simple Interest and Simple Discount Learning Objectives Money is invested or borrowed in thousands of transactions every day. When an investment is cashed in or when borrowed money is repaid,
Practice Set #1: Forward pricing & hedging.
Derivatives (3 credits) Professor Michel Robe What to do with this practice set? Practice Set #1: Forward pricing & hedging To help students with the material, eight practice sets with solutions shall
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
Chapter 2 An Introduction to Forwards and Options
Chapter 2 An Introduction to Forwards and Options Question 2.1. The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram
Lecture 5: Put - Call Parity
Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
(c) 2006-2014 Gary R. Evans. May be used for non-profit educational purposes only without permission of the author.
The futures markets Introduction and Mechanics (c) 2006-2014 Gary R. Evans. May be used for non-profit educational purposes only without permission of the author. Forward contracts... Forward contracts
Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk
Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,
LOCKING IN TREASURY RATES WITH TREASURY LOCKS
LOCKING IN TREASURY RATES WITH TREASURY LOCKS Interest-rate sensitive financial decisions often involve a waiting period before they can be implemen-ted. This delay exposes institutions to the risk that
Interest rate Derivatives
Interest rate Derivatives There is a wide variety of interest rate options available. The most widely offered are interest rate caps and floors. Increasingly we also see swaptions offered. This note will
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter - The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
a. What is the sum of the prices of all the shares in the index before the stock split? The equation for computing the index is: N P i i 1
7 Stock Index Futures: Introduction 44 Answers to Questions and Problems 1. Assume that the DJIA stands at 8340.00 and the current divisor is 0.25. One of the stocks in the index is priced at $100.00 and
Two-State Options. John Norstad. [email protected] http://www.norstad.org. January 12, 1999 Updated: November 3, 2011.
Two-State Options John Norstad [email protected] http://www.norstad.org January 12, 1999 Updated: November 3, 2011 Abstract How options are priced when the underlying asset has only two possible
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
Hedging Strategies Using
Chapter 4 Hedging Strategies Using Futures and Options 4.1 Basic Strategies Using Futures While the use of short and long hedges can reduce (or eliminate in some cases - as below) both downside and upside
Chapter 3 Market Demand, Supply, and Elasticity
Chapter 3 Market Demand, Supply, and Elasticity After reading chapter 3, MARKET DEMAND, SUPPLY, AND ELASTICITY, you should be able to: Discuss the Law of Demand and draw a Demand Curve. Distinguish between
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION 1. Cost Profit Call option, X = 95 12.20 10 2.20 Put option, X = 95 1.65 0 1.65 Call option, X = 105 4.70 0 4.70 Put option, X = 105 4.40 0 4.40 Call option, X
1 Present and Future Value
Lecture 8: Asset Markets c 2009 Je rey A. Miron Outline:. Present and Future Value 2. Bonds 3. Taxes 4. Applications Present and Future Value In the discussion of the two-period model with borrowing and
Chapter 2 Forward and Futures Prices
Chapter 2 Forward and Futures Prices At the expiration date, a futures contract that calls for immediate settlement, should have a futures price equal to the spot price. Before settlement, futures and
1 The Black-Scholes Formula
1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,
Introduction to Options. Commodity & Ingredient Hedging, LLC www.cihedging.com 312-596-7755
Introduction to Options Commodity & Ingredient Hedging, LLC www.cihedging.com 312-596-7755 Options on Futures: Price Protection & Opportunity Copyright 2009 Commodity & Ingredient Hedging, LLC 2 Option
Bonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 12 Bonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage I. Readings and Suggested Practice Problems II. Bonds Prices and Yields (Revisited)
Eurodollar Futures, and Forwards
5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging
Report for September 2015
Report for tember 2015 Issued tember 30, 2015 National Association of Credit Management Combined Sectors So much for that hoped for pattern of one bad month followed by a good one. This month s CMI is
An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub
An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub This article compares realized Henry Hub spot market prices for natural gas during the three
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on long-term bonds are geometric averages of present and expected future short rates. An upward sloping curve is
Forward Contracts and Forward Rates
Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16
Untangling F9 terminology
Untangling F9 terminology Welcome! This is not a textbook and we are certainly not trying to replace yours! However, we do know that some students find some of the terminology used in F9 difficult to understand.
Lecture 4: Futures and Options Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 4: Futures and Options Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Foreign Currency Futures Assume that
Fina4500 Spring 2015 Extra Practice Problems Instructions
Extra Practice Problems Instructions: The problems are similar to the ones on your previous problem sets. All interest rates and rates of inflation given in the problems are annualized (i.e., stated as
or enters into a Futures contract (either on the IPE or the NYMEX) with delivery date September and pay every day up to maturity the margin
Cash-Futures arbitrage processes Cash futures arbitrage consisting in taking position between the cash and the futures markets to make an arbitrage. An arbitrage is a trade that gives in the future some
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
What does the Dow Jones-UBS Commodity Index track?
Dow Jones-UBS Commodity Index FAQ What does the Dow Jones-UBS Commodity Index track? The Dow Jones-UBS Commodity Index is an index tracking the performance of a weighted group of exchange-traded futures
2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold
Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Lecture 09: Multi-period Model Fixed Income, Futures, Swaps
Lecture 09: Multi-period Model Fixed Income, Futures, Swaps Prof. Markus K. Brunnermeier Slide 09-1 Overview 1. Bond basics 2. Duration 3. Term structure of the real interest rate 4. Forwards and futures
1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises.
1. Solutions to PS 1: 1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises. 7. The bill has a maturity of one-half year, and an annualized
2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13
Problem 1.11. A cattle farmer expects to have 12, pounds of live cattle to sell in three months. The livecattle futures contract on the Chicago Mercantile Exchange is for the delivery of 4, pounds of cattle.
CHAPTER 22 Options and Corporate Finance
CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset
Paper F9. Financial Management. Friday 6 December 2013. Fundamentals Level Skills Module. The Association of Chartered Certified Accountants
Fundamentals Level Skills Module Financial Management Friday 6 December 2013 Time allowed Reading and planning: Writing: 15 minutes 3 hours ALL FOUR questions are compulsory and MUST be attempted. Formulae
Introduction to Futures Contracts
Introduction to Futures Contracts September 2010 PREPARED BY Eric Przybylinski Research Analyst Gregory J. Leonberger, FSA Director of Research Abstract Futures contracts are widely utilized throughout
BUSM 411: Derivatives and Fixed Income
BUSM 411: Derivatives and Fixed Income 2. Forwards, Options, and Hedging This lecture covers the basic derivatives contracts: forwards (and futures), and call and put options. These basic contracts are
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
Derivative Users Traders of derivatives can be categorized as hedgers, speculators, or arbitrageurs.
OPTIONS THEORY Introduction The Financial Manager must be knowledgeable about derivatives in order to manage the price risk inherent in financial transactions. Price risk refers to the possibility of loss
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chatper 34 International Finance - Test Bank MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The currency used to buy imported goods is A) the
Discussion of Discounting in Oil and Gas Property Appraisal
Discussion of Discounting in Oil and Gas Property Appraisal Because investors prefer immediate cash returns over future cash returns, investors pay less for future cashflows; i.e., they "discount" them.
11 Option. Payoffs and Option Strategies. Answers to Questions and Problems
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expiration for various
Practice Problems on Money and Monetary Policy
Practice Problems on Money and Monetary Policy 1- Define money. How does the economist s use of this term differ from its everyday meaning? Money is the economist s term for assets that can be used in
9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)
Helyette Geman c0.tex V - 0//0 :00 P.M. Page Hedging the Risk of an Energy Futures Portfolio Carol Alexander This chapter considers a hedging problem for a trader in futures on crude oil, heating oil and
Preparing cash budgets
3 Preparing cash budgets this chapter covers... In this chapter we will examine in detail how a cash budget is prepared. This is an important part of your studies, and you will need to be able to prepare
Using Futures Markets to Manage Price Risk for Feeder Cattle (AEC 2013-01) February 2013
Using Futures Markets to Manage Price Risk for Feeder Cattle (AEC 2013-01) February 2013 Kenny Burdine 1 Introduction: Price volatility in feeder cattle markets has greatly increased since 2007. While
3. a. If all money is held as currency, then the money supply is equal to the monetary base. The money supply will be $1,000.
Macroeconomics ECON 2204 Prof. Murphy Problem Set 2 Answers Chapter 4 #2, 3, 4, 5, 6, 7, and 9 (on pages 102-103) 2. a. When the Fed buys bonds, the dollars that it pays to the public for the bonds increase
Chapter 6: Measuring the Price Level and Inflation. The Price Level and Inflation. Connection between money and prices. Index Numbers in General
Chapter 6: The Price Level and Measuring the Price Level and Microeconomic causes changes in individual markets can explain only a tiny fraction of price change For the most part, price rises came about
Two-State Model of Option Pricing
Rendleman and Bartter [1] put forward a simple two-state model of option pricing. As in the Black-Scholes model, to buy the stock and to sell the call in the hedge ratio obtains a risk-free portfolio.
Chapter 17. Preview. Introduction. Fixed Exchange Rates and Foreign Exchange Intervention
Chapter 17 Fixed Exchange Rates and Foreign Exchange Intervention Slides prepared by Thomas Bishop Copyright 2009 Pearson Addison-Wesley. All rights reserved. Preview Balance sheets of central banks Intervention
550.444 Introduction to Financial Derivatives
550.444 Introduction to Financial Derivatives Week of October 7, 2013 Interest Rate Futures Where we are Last week: Forward & Futures Prices/Value (Chapter 5, OFOD) This week: Interest Rate Futures (Chapter
Futures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
Capital Structure: Informational and Agency Considerations
Capital Structure: Informational and Agency Considerations The Big Picture: Part I - Financing A. Identifying Funding Needs Feb 6 Feb 11 Case: Wilson Lumber 1 Case: Wilson Lumber 2 B. Optimal Capital Structure:
Investments 320 Dr. Ahmed Y. Dashti Chapter 3 Interactive Qustions
Investments 320 Dr. Ahmed Y. Dashti Chapter 3 Interactive Qustions 3-1. A primary asset is an initial offering sold by a business, or government, to raise funds. A) True B) False 3-2. Money market instruments
Chapter 14 Foreign Exchange Markets and Exchange Rates
Chapter 14 Foreign Exchange Markets and Exchange Rates International transactions have one common element that distinguishes them from domestic transactions: one of the participants must deal in a foreign
Figure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
Futures Contracts. Futures. Forward Contracts. Futures Contracts. Delivery or final cash settlement usually takes place
Futures 1 Futures Contracts Forward Contracts Futures Contracts Forwards Private contract between 2 parties Not standardized Usually one specified contract date Settled at end of contract Delivery or final
What is Grain Merchandising, Hedging and Basis Trading?
Grain Merchandising What is Grain Merchandising, Hedging and Basis Trading? Grain merchandising describes the process of buying and selling grain. Agribusiness firms that merchandise grain include grain
Equity-index-linked swaps
Equity-index-linked swaps Equivalent to portfolios of forward contracts calling for the exchange of cash flows based on two different investment rates: a variable debt rate (e.g. 3-month LIBOR) and the
Monetary Policy and Mortgage Interest rates
Monetary Policy and Mortgage Interest rates July 2014 Key Points: Monetary policy, which operates through changes in the official cash rate (OCR), is the main lever of macroeconomic management in Australia
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
ECON 4110: Sample Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Economists define risk as A) the difference between the return on common
SOLUTION1. exercise 1
exercise 1 Stock BBB has a spot price equal to 80$ and a dividend equal to 10$ will be paid in 5 months. The on year interest rate is equal to 8% (c.c). 1. Calculate the 6 month forward price? 2. Calculate
Study Questions for Chapter 9 (Answer Sheet)
DEREE COLLEGE DEPARTMENT OF ECONOMICS EC 1101 PRINCIPLES OF ECONOMICS II FALL SEMESTER 2002 M-W-F 13:00-13:50 Dr. Andreas Kontoleon Office hours: Contact: [email protected] Wednesdays 15:00-17:00 Study
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The Fed uses three policy tools to manipulate the money supply:, which affect reserves
Supply and Demand in the Market for Money: The Liquidity Preference Framework
APPENDIX 3 TO CHAPTER 4 Supply and Demand in the arket for oney: The Liquidity Preference Framework Whereas the loanable funds framework determines the equilibrium interest rate using the supply of and
Swap Rate Curve Strategies with Deliverable Interest Rate Swap Futures
Swap Rate Curve Strategies with Deliverable Interest Rate Swap By James Boudreault, CFA Research & Product Development Table of Contents I. Introduction II. Swap Curve: Level, Slope, and Shape III. Trading
PETROLEUM WATCH September 16, 2011 Fossil Fuels Office Fuels and Transportation Division California Energy Commission
PETROLEUM WATCH September 16, 2011 Fossil Fuels Office Fuels and Transportation Division California Energy Commission Summary As of September 14, retail regular-grade gasoline prices in California increased
Estimating Risk free Rates. Aswath Damodaran. Stern School of Business. 44 West Fourth Street. New York, NY 10012. [email protected].
Estimating Risk free Rates Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] Estimating Risk free Rates Models of risk and return in finance start
Lecture 3: Put Options and Distribution-Free Results
OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option
Forwards, Swaps and Futures
IEOR E4706: Financial Engineering: Discrete-Time Models c 2010 by Martin Haugh Forwards, Swaps and Futures These notes 1 introduce forwards, swaps and futures, and the basic mechanics of their associated
Fixed-Income Securities. Assignment
FIN 472 Professor Robert B.H. Hauswald Fixed-Income Securities Kogod School of Business, AU Assignment Please be reminded that you are expected to use contemporary computer software to solve the following
A Model of Housing Prices and Residential Investment
A Model of Prices and Residential Investment Chapter 9 Appendix In this appendix, we develop a more complete model of the housing market that explains how housing prices are determined and how they interact
PERPETUITIES NARRATIVE SCRIPT 2004 SOUTH-WESTERN, A THOMSON BUSINESS
NARRATIVE SCRIPT 2004 SOUTH-WESTERN, A THOMSON BUSINESS NARRATIVE SCRIPT: SLIDE 2 A good understanding of the time value of money is crucial for anybody who wants to deal in financial markets. It does
Lecture 5: Forwards, Futures, and Futures Options
OPTIONS and FUTURES Lecture 5: Forwards, Futures, and Futures Options Philip H. Dybvig Washington University in Saint Louis Spot (cash) market Forward contract Futures contract Options on futures Copyright
