GeoDa: An Introduction to Spatial Data Analysis
|
|
|
- Elinor Joseph
- 9 years ago
- Views:
Transcription
1 GeoDa: An Introduction to Spatial Data Analysis Luc Anselin, Ibnu Syabri and Youngihn Kho Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign Urbana, IL USA May 5, 2004 Abstract This paper presents an overview of GeoDa TM, a free software program intended to serve as a user-friendly and graphical introduction to spatial analysis for non-gis specialists. It includes functionality ranging from simple mapping to exploratory data analysis, the visualization of global and local spatial autocorrelation, and spatial regression. A key feature of GeoDa is an interactive environment that combines maps with statistical graphics, using the technology of dynamically linked windows. A brief review of the software design is given, as well as some illustrative examples that highlight distinctive features of the program in applications dealing with public health, economic development, real estate analysis and criminology. Key Words: geovisualization, exploratory spatial data analysis, spatial outliers, smoothing, spatial autocorrelation, spatial regression. 1 Introduction The development of specialized software for spatial data analysis has seen rapid growth since the lack of such tools was lamented in the late 1980s by Haining This research was supported in part by US National Science Foundation Grant BCS , to the Center for Spatially Integrated Social Science (csiss) and by grant RO1 CA from the National Cancer Institute. In addition, this research was made possible in part through a Cooperative Agreement between the Center for Disease Control and Prevention (CDC) and the Association of Teachers of Preventive Medicine (ATPM), award number TS The contents of the paper are the responsibility of the authors and do not necessarily reflect the official views of NSF, NCI, the CDC or ATPM. Special thanks go to Oleg Smirnov for his assistance with the implementation of the spatial regression routines, and to Julie Le Gallo and Julia Koschinsky for preparing, respectively, the data set for the European convergence study and for the Seattle house prices.geoda TM is a trademark of Luc Anselin.
2 GeoDa 2 (1989) and cited as a major impediment to the adoption and use of spatial statistics by GIS researchers. Initially, attention tended to focus on conceptual issues, such as how to integrate spatial statistical methods and a GIS environment (loosely vs. tightly coupled, embedded vs. modular, etc.), and which techniques would be most fruitfully included in such a framework. Familiar reviews of these issues are represented in, among others, Anselin and Getis (1992), Goodchild et al. (1992), Fischer and Nijkamp (1993), Fotheringham and Rogerson (1993, 1994), Fischer et al. (1996), and Fischer and Getis (1997). Today, the situation is quite different, and a fairly substantial collection of spatial data analysis software is readily available, ranging from niche programs, customized scripts and extensions for commercial statistical and GIS packages, to a burgeoning open source effort using software environments such as R, Java and Python. This is exemplified by the growing contents of the software tools clearing house maintained by the U.S.-based Center for Spatially Integrated Social Science (CSISS). 1 CSISS was established in 1999 as a research infrastructure project funded by the U.S. National Science Foundation in order to promote a spatial analytical perspective in the social sciences (Goodchild et al. 2000). It was readily recognized that a major instrument in disseminating and facilitating spatial data analysis would be an easy to use, visual and interactive software package, aimed at the non-gis user and requiring as little as possible in terms of other software (such as GIS or statistical packages). GeoDa is the outcome of this effort. It is envisaged as an introduction to spatial data analysis where the latter is taken to consist of visualization, exploration and explanation of interesting patterns in geographic data. The main objective of the software is to provide the user with a natural path through an empirical spatial data analysis exercise, starting with simple mapping and geovisualization, moving on to exploration, spatial autocorrelation analysis, and ending up with spatial regression. In many respects, GeoDa is a reinvention of the original SpaceStat package (Anselin 1992), which by now has become quite dated, with only a rudimentary user interface, an antiquated architecture and performance constraints for medium and large data sets. The software was redesigned and rewritten from scratch, around the central concept of dynamically linked graphics. This means that different views of the data are represented as graphs, maps or tables with selected observations in one highlighted in all. In that respect, GeoDa is similar to a number of other modern spatial data analysis software tools, although it is quite distinct in its combination of user friendliness with an extensive range of incorporated methods. A few illustrative comparisons will help clarify its position in the current spatial analysis software landscape. In terms of the range of spatial statistical techniques included, GeoDa is most alike to the collection of functions developed in the open source R environment. For example, descriptive spatial autocorrelation measures, rate smoothing and spatial regression are included in the spdep package, as described by Bivand and 1 See
3 GeoDa 3 Gebhardt (2000), Bivand (2002a,b), and Bivand and Portnov (2004). In contrast to R, GeoDa is completely driven by a point and click interface and does not require any programming. It also has more extensive mapping capability (still somewhat experimental in R) and full linking and brushing in dynamic graphics, which is currently not possible in R due to limitations in its architecture. On the other hand, GeoDa is not (yet) customizable or extensible by the user, which is one of the strengths of the R environment. In that sense, the two are seen as highly complementary, ideally with more sophisticated users graduating to R after being introduced to the techniques in GeoDa. 2 The use of dynamic linking and brushing as a central organizing technique for data visualization has a strong tradition in exploratory data analysis (EDA), going back to the notion of linked scatterplot brushing (Stuetzle 1987), and various methods for dynamic graphics outlined in Cleveland and McGill (1988). In geographical analysis, the concept of geographic brushing was introduced by Monmonier (1989) and made operational in the Spider/Regard toolboxes of Haslett, Unwin and associates (Haslett et al. 1990, Unwin 1994). Several modern toolkits for exploratory spatial data analysis (ESDA) also incorporate dynamic linking, and, to a lesser extent, brushing. Some of these rely on interaction with a GIS for the map component, such as the linked frameworks combining XGobi or XploRe with ArcView (Cook et al. 1996, 1997, Symanzik et al. 2000), the SAGE toolbox, which uses ArcInfo (Wise et al. 2001), and the DynESDA extension for ArcView (Anselin 2000), GeoDa s immediate predecessor. Linking in these implementations is constrained by the architecture of the GIS, which limits the linking process to a single map (in GeoDa, there is no limit on the number of linked maps). In this respect, GeoDa is similar to other freestanding modern implementations of ESDA, such as the cartographic data visualizer, or cdv (Dykes 1997), GeoVISTA Studio (Takatsuka and Gahegan 2002) and STARS (Rey and Janikas 2004). These all include functionality for dynamic linking, and to a lesser extent, brushing. They are built in open source programming environments, such as Tkl/Tk (cdv), Java (GeoVISTA Studio) or Python (STARS) and thus easily extensible and customizable. In contrast, GeoDa is (still) a closed box, but of these packages it provides the most extensive and flexible form of dynamic linking and brushing for both graphs and maps. Common spatial autocorrelation statistics, such as Moran s I and even the Local Moran are increasingly part of spatial analysis software, ranging from CrimeStat (Levine 2004), to the spdep and DCluster packages available on the open source Comprehensive R Archive Network (CRAN), 3 as well as commercial packages, such as the spatial statistics toolbox of the forthcoming release of ArcGIS 9.0 (ESRI 2004). However, at this point in time, none of these include the range and ease of construction of spatial weights, or the capacity to carry out sensitivity analysis and visualization of these statistics contained in GeoDa. Apart from the R spdep package, Geoda is the only one to contain functionality 2 Note that the CSISS spatial tools project is an active participant in the development of spatial data analysis methods in R, see, e.g., 3
4 GeoDa 4 for spatial regression modeling among the software mentioned here. A prototype version of the software (known as DynESDA) has been in limited circulation since early 2001 (Anselin et al. 2002a,b), but the first official release of a beta version of GeoDa occurred on February 5, The program is available for free and can be downloaded from the CSISS software tools web site ( main.php).the most recent version, i, was released in January The software has been well received for both teaching and research use and has a rapidly growing body of users. For example, after slightly more than a year since the initial release (i.e., as of the end of April 2004), the number of registered users exceeds 1,800, while increasing at a rate of about 150 new users per month. In the remainder of the paper, we first outline the design and briefly review the overall functionality of GeoDa. This is followed by a series of illustrative examples, highlighting features of the mapping and geovisualization capabilities, exploration in multivariate EDA, spatial autocorrelation analysis, and spatial regression. The paper closes with some comments regarding future directions in the development of the software. 2 Design and Functionality The design of GeoDa consists of an interactive environment that combines maps with statistical graphs, using the technology of dynamically linked windows. It is geared to the analysis of discrete geospatial data, i.e., objects characterized by their location in space either as points (point coordinates) or polygons (polygon boundary coordinates). The current version adheres to ESRI s shape file as the standard for storing spatial information. It contains functionality to read and write such files, as well as to convert ascii text input files for point coordinates or boundary file coordinates to the shape file format. It uses ESRI s MapObjects LT2 technology for spatial data access, mapping and querying. The analytical functionality is implemented in a modular fashion, as a collection of C++ classes with associated methods. In broad terms, the functionality can be classified into six categories: spatial data manipulation and utilities: data input, output, and conversion data transformation: variable transformations and creation of new variables mapping: choropleth maps, cartogram and map animation EDA: statistical graphics spatial autocorrelation: global and local spatial autocorrelation statistics, with inference and visualization spatial regression: diagnostics and maximum likelihood estimation of linear spatial regression models
5 GeoDa 5 The full set of functions is listed in Table 1 and is documented in detail in the GeoDa User s Guides (Anselin 2003, 2004). 4 The software implementation consists of two important components: the user interface and graphics windows on the one hand, and the computational engine on the other hand. In the current version, all graphic windows are based on Microsoft Foundation Classes (MFC) and thus are limited to MS Windows platforms. 5 In contrast, the computational engine (including statistical operations, randomization, and spatial regression) is pure C++ code and largely cross platform. The bulk of the graphical interface implements five basic classes of windows: histogram, box plot, scatter plot (including the Moran scatter plot), map and grid (for the table selection and calculations). The choropleth maps, including the significance and cluster maps for the local indicators of spatial autocorrelation (LISA) are derived from MapObjects classes. Three additional types of maps were developed from scratch and do not use MapObjects: the map movie (map animation), the cartogram, and the conditional maps. The three dimensional scatter plot is implemented with the OpenGL library. The functionality of GeoDa is invoked either through menu items or directly by clicking toolbar buttons, as illustrated in Figure 1. A number of specific applications are highlighted in the following sections, focusing on some distinctive features of the software. Figure 1: The opening screen with menu items and toolbar buttons 4 A Quicktime movie with a demonstration of the main features can be found at 5 Ongoing development concerns the porting of all MFC based classes to a cross-platform architecture, using wxwindows. See also Section 7.
6 GeoDa 6 Table 1: GeoDa Functionality Overview Category Functions Spatial Data data input from shape file (point, polygon) data input from text (to point or polygon shape) data output to text (data or shape file) create grid polygon shape file from text input centroid computation Thiessen polygons Data Transformation variable transformation (log, exp, etc.) queries, dummy variables (regime variables) variable algebra (addition, multiplication, etc.) spatial lag variable construction rate calculation and rate smoothing data table join Mapping generic quantile choropleth map standard deviational map percentile map outlier map (box map) circular cartogram map movie conditional maps smoothed rate map (EB, spatial smoother) excess rate map (standardized mortality rate, SMR) EDA histogram box plot scatter plot parallel coordinate plot three-dimensional scatter plot conditional plot (histogram, box plot, scatter plot) Spatial Autocorrelation spatial weights creation (rook, queen, distance, k-nearest) higher order spatial weights spatial weights characteristics (connectedness histogram) Moran scatterplot with inference bivariate Moran scatterplot with inference Moran scatterplot for rates (EB standardization) Local Moran significance map Local Moran cluster map bivariate Local Moran Local Moran for rates (EB standardization) Spatial Regression OLS with diagnostics (e.g., LM test, Moran s I) Maximum Likelihood spatial lag model Maximum Likelihood spatial error model predicted value map residual map
7 GeoDa 7 3 Mapping and Geovisualization The bulk of the mapping and geovisualization functionality consists of a collection of specialized choropleth maps, focused on highlighting outliers in the data, so-called box maps (Anselin 1999). In addition, considerable capability is included to deal with the intrinsic variance instability of rates, in the form of empirical Bayes (EB) or spatial smoothers. 6 As mentioned in Section 2, the mapping operations use the classes contained in ESRI s MapObjects, extended with the capability for linking and brushing. GeoDa also includes a circular cartogram, 7 map animation in the form of a map movie, and conditional maps. The latter are nine micro choropleth maps constructed by conditioning on three intervals for two conditioning variables, using the principles outlined in Becker et al. (1996) and Carr et al. (2002). 8 In contrast to the traditional choropleth maps, the cartogram, map movie and conditional maps do not use MapObjects classes, and were developed from scratch. We illustrate the rate smoothing procedure, outlier maps and linking operations. The objective in this analysis is to identify locations that have elevated mortality rates and to assess the sensitivity of the designation as outlier to the effect of rate smoothing. Using data on prostate cancer mortality in 156 counties contained in the Appalachian Cancer Network (ACN), for the period , we construct a box map by specifying the number of deaths as the numerator and the population as the denominator. 9 The resulting map for the crude rates (i.e., without any adjustments for differing age distributions or other relevant factors) is shown as the upper-left panel in Figure 2. Three counties are identified as outliers and shown in dark red. 10 These match the outliers selected in the box plot in the lower-left panel of the figure. The linking of all maps and graphs results in those counties also being cross-hatched on the maps. The upper-right panel in the Figure represents a smoothed rate map, where the rates were transformed by means of an Empirical Bayes procedure to remove the effect of the varying population at risk. As a result, the original outliers are no longer, but a different county is identified as having elevated risk. Also, a lower outlier is found as well, shown as dark blue in the box map. 11 Note that the upper outlier is barely distinguishable, due to the small area of the county in question. This is a common problem when working with admininistrative units. In order to remove the potentially misleading effect of area on the perception of interesting patterns, a circular cartogram is shown in the lower-right panel 6 The EB procedure is due to Clayton and Kaldor (1987), see also Marshall (1991) and Bailey and Gatrell (1995), pp For an alternative recent software implementation, see Anselin et al. (2004). Spatial smoothing is discussed at length in Kafadar (1996). 7 The cartogram is constructed using the non-linear cellular automata algorithm due to Dorling (1996). 8 The conditional maps are part of a larger set of conditional plots, which includes histograms, box plots and scatter plots. 9 Data obtained from the the National Cancer Institute SEER site (Surveillance, Epidemiology and End Results), 10 The respective counties are Cumberland, KY, Pocahontas, WV, and Forest, PA. 11 The new upper outlier is Ohio county, WV, the lower outlier is Centre county, PA.
8 GeoDa 8 of Figure 2, where the area of the circles is proportional to the value of the EB smoothed rate. The upper outlier is shown as a red circle, the lower outlier as a blue circle. The yellow circles are the counties that were outliers in the crude rate map, highlighted here as a result of linking with the other maps and graphs. 12 Figure 2: Linked box maps, box plot and cartogram, raw and smoothed prostate cancer mortality rates. 4 Multivariate EDA Multivariate exploratory data analysis is implemented in GeoDa through linking and brushing between a collection of statistical graphs. These include the usual histogram, box plot and scatter plot, but also a parallel coordinate plot (PCP) and three-dimensional scatter plot, as well as conditional plots (conditional histogram, box plot and scatter plot). We illustrate some of this functionality with an exploration of the relationships between economic growth and initial development, typical of the recent spatial regional convergence literature (for an overview, see Rey 2004). We use economic data over the period for 145 European regions, most of 12 Note that the outliers identified may be misleading since the rate analyzed is not adjusted for differences in age distribution. In other words, the outliers shown may simply be counties with a larger proportion of older males. A much more detailed analysis is necessary before any policy conclusions may be drawn.
9 GeoDa 9 them at the NUTS II level of spatial aggregation, except for a few at the NUTS I level (for Luxembourg and the United Kingdom). 13 Figure 3: Multivariate exploratory data analysis with linking and brushing. Figure 3 illustrates the various linked plots and map. The left-hand panel contains a simple percentile map (GDP per capital in 1989), and a threedimensional scatter plot (for the percent agricultural and manufacturing employment in 1989 as well as the GDP growth rate over the period ). In the top right-hand panel is a PCP for the growth rates in the two periods of interest ( and ) and the GDP per capita in the base year, the typical components of a convergence regression. In the bottom of the right-hand panel is a simple scatter plot of the growth rate in the full period ( ) on the base year GDP. Both plots on the right hand side illustrate the typical empirical phenomenon that higher GDP at the start of the period is associated with a lower growth rate. However, as demonstrated in the PCP (some of the lines suggest a positive relation between GDP and growth rate), the pattern is not uniform and there 13 The data are from the most recent version of the NewCronos Regio database by Eurostat. NUTS stands for Nomenclature of Territorial Units for Statistics and contains the definition of administrative regions in the EU member states. NUTS II level regions are roughly comparable to counties in the U.S. context and are available for all but two countries. Luxembourg constitutes only a single region. For the United Kingdom, data is not available at the NUTS II level, since these regions do not correspond to local governmental units.
10 GeoDa 10 is a suggestion of heterogeneity. A further exploration of this heterogeneity can be carried out by brushing any one of these graphs. For example, in Figure 3, a selection box in the three-dimensional scatter plot is moved around (brushing) which highlights the selected observations in the map (cross-hatched) and in the PCP, clearly showing opposite patterns in subsets of the selection. Furthermore, in the scatter plot, the slope of the regression line can be recalculated for a subset of the data without the selected locations, to assess the sensitivity of the slope to those observations. In the example shown here, the effect on convergence over the whole period is minimal ( vs ), but other selections show a more pronounced effect. Further exploration of these patterns does suggest a degree of spatial heterogeneity in the convergence results (for a detailed investigation, see Le Gallo and Dall erba 2003). 5 Spatial Autocorrelation Analysis Spatial autocorrelation analysis includes tests and visualization of both global (test for clustering) and local (test for clusters) Moran s I statistic. The global test is visualized by means of a Moran scatterplot (Anselin 1996), in which the slope of the regression line corresponds to Moran s I. Significance is based on a permutation test. The traditional univariate Moran scatterplot has been extended to depict bivariate spatial autocorrelation as well, i.e., the correlation between one variable at a location, and a different variable at the neighboring locations (Anselin et al. 2002a). In addition, there also is an option to standardize rates for the potentially biasing effect of variance instability (see Assunção and Reis 1999). Local analysis is based on the Local Moran statistic (Anselin 1995), visualized in the form of significance and cluster maps. It also includes several options for sensitivity analysis, such as changing the number of permutations (to as many as 9999), re-running the permutations several times, and changing the significance cut off value. This provides an ad hoc approach to assess the sensitivity of the results to problems due to multiple comparisons (i.e., how stable is the indication of clusters or outliers when the significance barrier is lowered). The maps depict the locations with significant Local Moran statistics (LISA significance maps) and classify those locations by type of association (LISA cluster maps). Both types of maps are available for brushing and linking. In addition to these two maps, the standard output of a LISA analysis includes a Moran scatter plot and a box plot depicting the distribution of the local statistic. Similar to the Moran scatter plot, the LISA concept has also been extended to a bivariate setup and includes an option to standardize for variance instability of rates. The functionality for spatial autocorrelation analysis is rounded out by a range of operations to construct spatial weights, using either boundary files (contiguity based) or point locations (distance based). A connectivity histogram helps in identifying potential problems with the neighbor structure, such as
11 GeoDa 11 islands (locations without neighbors). We illustrate spatial autocorrelation analysis with a study of the spatial distribution of 692 house sales prices for 1997 in Seattle, WA. This is part of a broader investigation into the effect of subsidized housing on the real estate market. 14 For the purposes of this example, we only focus on the univariate spatial distribution, and the location of any significant clusters or spatial outliers in the data. Figure 4: LISA cluster maps and significance maps. The original house sales data are for point locations, which, for the purposes of this analysis are converted to Thiessen polygons. This allows a definition of neighbor based on common boundaries between the Thiessen polygons. On the left hand panel of Figure 4, two LISA cluster maps are shown, depicting the locations of significant Local Moran s I statistics, classified by type of spatial association. The dark red and dark blue locations are indications of spatial clusters (respectively, high surrounded by high, and low surrounded by low). 15 In contrast, the light red and light blue are indications of spatial outliers (respectively, high surrounded by low, and low surrounded by high). The bottom 14 The data are from the King County (Washington State) Department of Assessments. 15 More precisely, the locations highlighted show the core of a cluster. The cluster itself can be thought of as consisting of the core as well as the neighbors. Clearly some of these clusters are overlapping.
12 GeoDa 12 map uses the default significance of p = 0.05, whereas the top map is based on p = 0.01 (after carrying out 9999 permutations). The matching significance map is in the top right hand panel of Figure 4. Significance is indicated by darker shades of green, with the darkest corresponding to p = Note how the tighter significance criterion eleminates some (but not that many) locations from the map. In the bottom right hand panel of the Figure, the corresponding Moran scatterplot is shown, with the most extreme high-high locations selected. These are shown as cross-hatched polygons in the maps, and almost all obtain highly significant (at p = ) local Moran s I statistics. The overall pattern depicts a cluster of high priced houses on the East side, with a cluster of low priced houses following an axis through the center. Put in context, this is not surprising, since the East side represents houses with a lake view, while the center cluster follows a highway axis and generally corresponds with a lower income neighborhood. Interestingly, the pattern is not uniform, and several spatial outliers can be distinguished. Further investigation of these patterns would require a full hedonic regression analysis. 6 Spatial Regression As of version i, GeoDa also includes a limited degree of spatial regression functionality. The basic diagnostics for spatial autocorrelation, heteroskedasticity and non-normality are implemented for the standard ordinary least squares regression. Estimation of the spatial lag and spatial error models is supported by means of the Maximum Likelihood (ML) method (see Anselin and Bera 1998, for a review of the technical issues). In addition to the estimation itself, predicted values and residuals are calculated and made available for mapping. The ML estimation in GeoDa distinguishes itself by the use of extremely efficient algorithms, that allow the estimation of models for very large data sets. The standard eigenvalue simplification is used (Ord 1975) for data sets up to 1,000 observations. Beyond that, the sparse algorithm of Smirnov and Anselin (2001) is used, which exploits the characteristic polynomial associated with the spatial weights matrix. This algorithm allows estimation of very large data sets in reasonable time. In addition, GeoDa implements the recent algorithm of Smirnov (2003) to compute the asymptotic variance matrix for all the model coefficients (i.e., including both the spatial and non-spatial coefficients). This involves the inversion of a matrix of the dimensions of the data sets. To date, GeoDa is the only software that provides such estimates for large data sets. All estimation methods employ sparse spatial weights, but they are currently constrained to weights that are intrinsically symmetric (e.g., excluding k-nearest neighbor weights). The regression routines have been successfully applied to real data sets of more than 300,000 observations (with estimation and inference completed in a few minutes). By comparison, a spatial regression for the US counties takes a few seconds. We illustrate the spatial regression capabilities with a partial replication and extension of the homicide model used in Baller et al. (2001) and Messner and
13 GeoDa 13 Figure 5: Maximum Likelihood estimation of the spatial error model. Anselin (2004). These studies assessed the extent to which a classic regression specification, well-known in the ciminology literature, is robust to the explicit consideration of spatial effects. The model relates county homicide rates to a number of socio-economic explanatory variables. In the original study, a full ML analysis of all US continental counties was precluded by the constraints on the eigenvalue-based SpaceStat routines. Instead, attention focused on two subsets of the data containing 1412 counties in the US South and 1673 counties in the non-south. In Figure 5, we show the result of the ML estimation of a spatial error model of county homicide rates for the complete set of 3085 continental US counties in The explanatory variables are the same as before: a Southern dummy variable, a resource deprivation index, a population structure indicator,
14 GeoDa 14 unemployment rate, divorce rate and median age. 16 The results confirm a strong positive and significant spatial autoregressive coefficient (ˆλ = 0.29). Relative to the OLS results (e.g., Messner and Anselin 2004, Table 7.1., p. 137), the coefficient for unemployment has become insignificant, illustrating the misleading effect spatial error autocorrelation may have on inference using OLS estimates. The model diagnostics also suggest a continued presence of problems with heteroskedasticity. However, GeoDa currently does not include functionality to deal with this. 7 Future Directions GeoDa is a work in progress and still under active development. This development proceeds along three fronts. First and foremost is an effort to make the code cross-platform and open source. This requires considerable change in the graphical interface, moving from the Microsoft Foundation Classes (MFC) that are standard in the various MS Windows flavors, to a cross-platform alternative. The current efforts use wxwindows, which operates on the same code base with a native GUI flavor in Windows, MacOS X and Linux/Unix. Making the code open source is currently precluded by the reliance on proprietary code in ESRI s MapObjects. Moreover, this involves more than simply making the source code available, but entails considerable reorganization and streamlining of code (refactoring), to make it possible for the community to effectively participate in the development process. A second strand of development concerns the spatial regression functionality. While currently still fairly rudimentary, the inclusion of estimators other than ML and the extension to models for spatial panel data are in progress. Finally, the functionality for ESDA itself is being extended to data models other than the discrete locations in the lattice case. Specifically, exploratory variography is being added, as well as the exploration of patterns in flow data. Given its initial rate of adoption, there is a strong indication that GeoDa is indeed providing the introduction to spatial data analysis that makes it possible for growing numbers of social scientists to be exposed to an explicit spatial perspective. Future development of the software should enhance this capability and it is hoped that the move to an open source environment will involve an international community of like minded developers in this venture. References Anselin, L. (1992). SpaceStat, a Software Program for Analysis of Spatial Data. National Center for Geographic Information and Analysis (NCGIA), Univer- 16 See the original papers for technical details and data sources. In Baller et al. (2001), a different set of spatial weights was used than in this example, but the conclusions of the specification tests are the same. Specifically, using the county contiguity, the robust Lagrange Multiplier tests are 1.24 for the Lag alternative, and for the Error alternative, strongly suggesting the latter as the proper alternative.
15 GeoDa 15 sity of California, Santa Barbara, CA. Anselin, L. (1995). Local indicators of spatial association LISA. Geographical Analysis, 27: Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Fischer, M., Scholten, H., and Unwin, D., editors, Spatial Analytical Perspectives on GIS in Environmental and Socio- Economic Sciences, pages Taylor and Francis, London. Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. In Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W., editors, Geographical Information Systems: Principles, Techniques, Management and Applications, pages John Wiley, New York, NY. Anselin, L. (2000). Computing environments for spatial data analysis. Journal of Geographical Systems, 2(3): Anselin, L. (2003). GeoDa 0.9 User s Guide. Spatial Analysis Laboratory (SAL). Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL. Anselin, L. (2004). GeoDa 0.95i Release Notes. Spatial Analysis Laboratory (SAL). Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL. Anselin, L. and Bera, A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In Ullah, A. and Giles, D. E., editors, Handbook of Applied Economic Statistics, pages Marcel Dekker, New York. Anselin, L. and Getis, A. (1992). Spatial statistical analysis and geographic information systems. The Annals of Regional Science, 26: Anselin, L., Kim, Y.-W., and Syabri, I. (2004). Web-based spatial analysis tools for the exploration of spatial data. Journal of Geographical Systems, 6. forthcoming. Anselin, L., Syabri, I., and Smirnov, O. (2002a). Visualizing multivariate spatial correlation with dynamically linked windows. In Anselin, L. and Rey, S., editors, New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting. Center for Spatially Integrated Social Science (CSISS), University of California, Santa Barbara. CD-ROM. Anselin, L., Syabri, I., Smirnov, O., and Ren, Y. (2002b). Visualizing spatial autocorrelation with dynamically linked windows. Computing Science and Statistics, 33. CD-ROM. Assunção, R. and Reis, E. A. (1999). A new proposal to adjust Moran s I for population density. Statistics in Medicine, 18:
16 GeoDa 16 Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis. John Wiley and Sons, New York, NY. Baller, R., Anselin, L., Messner, S., Deane, G., and Hawkins, D. (2001). Structural covariates of U.S. county homicide rates: Incorporating spatial effects. Criminology, 39(3): Becker, R. A., Cleveland, W., and Shyu, M.-J. (1996). The visual design and control of Trellis displays. Journal of Computational and Graphical Statistics, 5: Bivand, R. (2002a). Implementing spatial data analysis software tools in R. In Anselin, L. and Rey, S., editors, New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting. Center for Spatially Integrated Social Science (CSISS), University of California, Santa Barbara. CD-ROM. Bivand, R. (2002b). Spatial econometrics functions in R: Classes and methods. Journal of Geographical Systems, 4(4): Bivand, R. and Gebhardt, A. (2000). Implementing functions for spatial statistical analysis using the R language. Journal of Geographical Systems, 2(3): Bivand, R. S. and Portnov, B. A. (2004). Exploring spatial data analysis techniques using R: The case of observations with no neighbors. In Anselin, L., Florax, R. J., and Rey, S. J., editors, Advances in Spatial Econometrics: Methodology, Tools and Applications, pages Springer-Verlag, Berlin. Carr, D. B., Chen, J., Bell, S., Pickle, L., and Zhang, Y. (2002). Interactive linked micromap plots and dynamically conditioned choropleth maps. In Anselin, L. and Rey, S., editors, New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting. Center for Spatially Integrated Social Science (CSISS), University of California, Santa Barbara. CD-ROM. Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of agestandardized relative risks for use in disease mapping. Biometrics, 43: Cleveland, W. S. and McGill, M. (1988). Wadsworth, Pacific Grove, CA. Dynamic Graphics for Statistics. Cook, D., Majure, J., Symanzik, J., and Cressie, N. (1996). Dynamic graphics in a GIS: A platform for analyzing and exploring multivariate spatial data. Computational Statistics, 11: Cook, D., Symanzik, J., Majure, J. J., and Cressie, N. (1997). Dynamic graphics in a GIS: More examples using linked software. Computers and Geosciences, 23: Dorling, D. (1996). Area Cartograms: Their Use and Creation. CATMOG 59, Institute of British Geographers.
17 GeoDa 17 Dykes, J. A. (1997). Exploring spatial data representation with dynamic graphics. Computers and Geosciences, 23: ESRI (2004). An Overview of the Spatial Statistics Toolbox. ArcGIS 9.0 Online Help System (ArcGIS 9.0 Desktop, Release 9.0, June 2004). Environmental Systems Research Institute, Redlands, CA. Fischer, M. and Nijkamp, P. (1993). Geographic Information Systems, Spatial Modelling and Policy Evaluation. Springer-Verlag, Berlin. Fischer, M. M. and Getis, A. (1997). Recent Development in Spatial Analysis. Springer-Verlag, Berlin. Fischer, M. M., Scholten, H. J., and Unwin, D. (1996). Spatial Analytical Perspectives on GIS. Taylor and Francis, London. Fotheringham, A. S. and Rogerson, P. (1993). GIS and spatial analytical problems. International Journal of Geographical Information Systems, 7:3 19. Fotheringham, A. S. and Rogerson, P. (1994). Spatial Analysis and GIS. Taylor and Francis, London. Goodchild, M. F., Anselin, L., Appelbaum, R., and Harthorn, B. (2000). Toward spatially integrated social science. International Regional Science Review, 23(2): Goodchild, M. F., Haining, R. P., Wise, S., and others (1992). Integrating GIS and spatial analysis problems and possibilities. International Journal of Geographical Information Systems, 6: Haining, R. (1989). Geography and spatial statistics: Current positions, future developments. In Macmillan, B., editor, Remodelling Geography, pages Basil Blackwell, Oxford. Haslett, J., Wills, G., and Unwin, A. (1990). SPIDER an interactive statistical tool for the analysis of spatially distributed data. International Journal of Geographic Information Systems, 4: Kafadar, K. (1996). Smoothing geographical data, particularly rates of disease. Statistics in Medicine, 15: Le Gallo, J. and Dall erba, S. (2003). Evaluating the temporal and spatial heterogeneity of the European convergence process, Technical report, Université Montesquieu-Bordeaux IV, Pessac Cedex, France. Levine, N. (2004). The CrimeStat program: Characteristics, use and audience. Geographical Analysis. Forthcoming. Marshall, R. J. (1991). Mapping disease and mortality rates using Empirical Bayes estimators. Applied Statistics, 40:
18 GeoDa 18 Messner, S. F. and Anselin, L. (2004). Spatial analyses of homicide with areal data. In Goodchild, M. and Janelle, D., editors, Spatially Integrated Social Science, pages Oxford University Press, New York, NY. Monmonier, M. (1989). Geographic brushing: Enhancing exploratory analysis of the scatterplot matrix. Geographical Analysis, 21:81 4. Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70: Rey, S. J. (2004). Spatial analysis of regional income inequality. In Goodchild, M. F. and Janelle, D., editors, Spatially Integrated Social Science, pages Oxford University Press, Oxford. Rey, S. J. and Janikas, M. V. (2004). STARS: Space-time analysis of regional systems. Geographical Analysis. forthcoming. Smirnov, O. (2003). Computation of the information matrix for models of spatial interaction. Technical report, Regional Economics Applications Laboratory (REAL), University of Illinois, Urbana-Champaign, IL. Smirnov, O. and Anselin, L. (2001). Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach. Computational Statistics and Data Analysis, 35: Stuetzle, W. (1987). Plot windows. Journal of the American Statistical Association, 82: Symanzik, J., Cook, D., Lewin-Koh, N., Majure, J. J., and Megretskaia, I. (2000). Linking ArcView and XGobi: Insight behind the front end. Journal of Computational and Graphical Statistics, 9(3): Takatsuka, M. and Gahegan, M. (2002). GeoVISTA Studio: A codeless visual programming environment for geoscientific data analysis and visualization. Computers and Geosciences, 28: Unwin, A. (1994). REGARDing geographic data. In Dirschedl, P. and Osterman, R., editors, Computational Statistics, pages Physica Verlag, Heidelberg. Wise, S., Haining, R., and Ma, J. (2001). Providing spatial statistical data analysis functionality for the GIS user: the SAGE project. International Journal of Geographic Information Science, 15(3):
GeoDa: An Introduction to Spatial Data Analysis
Geographical Analysis ISSN 0016-7363 GeoDa: An Introduction to Spatial Data Analysis Luc Anselin 1, Ibnu Syabri 2, Youngihn Kho 1 1 Spatial Analysis Laboratory, Department of Geography, University of Illinois,
New Tools for Spatial Data Analysis in the Social Sciences
New Tools for Spatial Data Analysis in the Social Sciences Luc Anselin University of Illinois, Urbana-Champaign [email protected] edu Outline! Background! Visualizing Spatial and Space-Time Association!
GeoDa 0.9 User s Guide
GeoDa 0.9 User s Guide Luc Anselin Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign Urbana, IL 61801 http://sal.agecon.uiuc.edu/ and
Exploring Spatial Data with GeoDa TM : A Workbook
Exploring Spatial Data with GeoDa TM : A Workbook Luc Anselin Spatial Analysis Laboratory Department of Geography University of Illinois, Urbana-Champaign Urbana, IL 61801 http://sal.uiuc.edu/ Center for
Spatial Analysis with GeoDa Spatial Autocorrelation
Spatial Analysis with GeoDa Spatial Autocorrelation 1. Background GeoDa is a trademark of Luc Anselin. GeoDa is a collection of software tools designed for exploratory spatial data analysis (ESDA) based
Exploring Spatial Data with GeoDa TM : A Workbook
Exploring Spatial Data with GeoDa TM : A Workbook Luc Anselin Spatial Analysis Laboratory Department of Geography University of Illinois, Urbana-Champaign Urbana, IL 61801 http://sal.agecon.uiuc.edu/ Center
Creating and Manipulating Spatial Weights
Creating and Manipulating Spatial Weights Spatial weights are essential for the computation of spatial autocorrelation statistics. In GeoDa, they are also used to implement Spatial Rate smoothing. Weights
Introduction to Exploratory Data Analysis
Introduction to Exploratory Data Analysis A SpaceStat Software Tutorial Copyright 2013, BioMedware, Inc. (www.biomedware.com). All rights reserved. SpaceStat and BioMedware are trademarks of BioMedware,
17 Interactive techniques and exploratory spatial data analysis
17 Interactive techniques and exploratory spatial data analysis L ANSELIN This chapter reviews the ideas behind interactive and exploratory spatial data analysis and their relation to GIS. Three important
Lab 7. Exploratory Data Analysis
Lab 7. Exploratory Data Analysis SOC 261, Spring 2005 Spatial Thinking in Social Science 1. Background GeoDa is a trademark of Luc Anselin. GeoDa is a collection of software tools designed for exploratory
An Introduction to Point Pattern Analysis using CrimeStat
Introduction An Introduction to Point Pattern Analysis using CrimeStat Luc Anselin Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign
Spatial Data Analysis Using GeoDa. Workshop Goals
Spatial Data Analysis Using GeoDa 9 Jan 2014 Frank Witmer Computing and Research Services Institute of Behavioral Science Workshop Goals Enable participants to find and retrieve geographic data pertinent
EXPLORING SPATIAL PATTERNS IN YOUR DATA
EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Obesity in America: A Growing Trend
Obesity in America: A Growing Trend David Todd P e n n s y l v a n i a S t a t e U n i v e r s i t y Utilizing Geographic Information Systems (GIS) to explore obesity in America, this study aims to determine
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort [email protected] Motivation Location matters! Observed value at one location is
Geovisualization. Geovisualization, cartographic transformation, cartograms, dasymetric maps, scientific visualization (ViSC), PPGIS
13 Geovisualization OVERVIEW Using techniques of geovisualization, GIS provides a far richer and more flexible medium for portraying attribute distributions than the paper mapping which is covered in Chapter
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]
An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R)
DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R) Ernst
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Teaching Multivariate Analysis to Business-Major Students
Teaching Multivariate Analysis to Business-Major Students Wing-Keung Wong and Teck-Wong Soon - Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis
Introduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
Multiple Regression: What Is It?
Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.
Spatial Analysis of Five Crime Statistics in Turkey
Spatial Analysis of Five Crime Statistics in Turkey Saffet ERDOĞAN, M. Ali DERELİ, Mustafa YALÇIN, Turkey Key words: Crime rates, geographical information systems, spatial analysis. SUMMARY In this study,
Exploratory Data Analysis with MATLAB
Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton
NetSurv & Data Viewer
NetSurv & Data Viewer Prototype space-time analysis and visualization software from TerraSeer Dunrie Greiling, TerraSeer Inc. TerraSeer Software sales BoundarySeer for boundary detection and analysis ClusterSeer
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
An Introduction to Spatial Regression Analysis in R. Luc Anselin University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.
An Introduction to Spatial Regression Analysis in R Luc Anselin University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu May 23, 2003 Introduction This note contains a brief introduction and
Density Distribution Sunflower Plots
Density Distribution Sunflower Plots William D. Dupont* and W. Dale Plummer Jr. Vanderbilt University School of Medicine Abstract Density distribution sunflower plots are used to display high-density bivariate
Data Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
Using kernel methods to visualise crime data
Submission for the 2013 IAOS Prize for Young Statisticians Using kernel methods to visualise crime data Dr. Kieran Martin and Dr. Martin Ralphs [email protected] [email protected] Office
Spatial Data Analysis
14 Spatial Data Analysis OVERVIEW This chapter is the first in a set of three dealing with geographic analysis and modeling methods. The chapter begins with a review of the relevant terms, and an outlines
How To Teach A Spatial Analysis Course
Course Outline SO 8243 Spatial Analysis of Social Data Semester: TBA Dr. Frank M. Howell Office: 324-A Etheredge Hall Phone: 662.325.7872 Office Hours: TBA E-mail: [email protected] (other times by appointment
Geographically weighted visualization interactive graphics for scale-varying exploratory analysis
Geographically weighted visualization interactive graphics for scale-varying exploratory analysis Chris Brunsdon 1, Jason Dykes 2 1 Department of Geography Leicester University Leicester LE1 7RH [email protected]
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
7 Time series analysis
7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are
There are six different windows that can be opened when using SPSS. The following will give a description of each of them.
SPSS Basics Tutorial 1: SPSS Windows There are six different windows that can be opened when using SPSS. The following will give a description of each of them. The Data Editor The Data Editor is a spreadsheet
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Scatter Plots with Error Bars
Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each
Geographically Weighted Regression
Geographically Weighted Regression CSDE Statistics Workshop Christopher S. Fowler PhD. February 1 st 2011 Significant portions of this workshop were culled from presentations prepared by Fotheringham,
Overview of Factor Analysis
Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?
GIS Tutorial 1. Lecture 2 Map design
GIS Tutorial 1 Lecture 2 Map design Outline Choropleth maps Colors Vector GIS display GIS queries Map layers and scale thresholds Hyperlinks and map tips 2 Lecture 2 CHOROPLETH MAPS Choropleth maps Color-coded
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
Marketing Mix Modelling and Big Data P. M Cain
1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
Introduction to the North Carolina SIDS data set
Introduction to the North Carolina SIDS data set Roger Bivand October 9, 2007 1 Introduction This data set was presented first in Symons et al. (1983), analysed with reference to the spatial nature of
Exploratory Spatial Data Analysis
Exploratory Spatial Data Analysis Part II Dynamically Linked Views 1 Contents Introduction: why to use non-cartographic data displays Display linking by object highlighting Dynamic Query Object classification
Data analysis and regression in Stata
Data analysis and regression in Stata This handout shows how the weekly beer sales series might be analyzed with Stata (the software package now used for teaching stats at Kellogg), for purposes of comparing
CARTOGRAPHIC VISUALIZATION FOR SPATIAL ANALYSIS. Jason Dykes Department of Geography, University of Leicester, Leicester, LE2 ITF, U.K.
POSTER SESSIONS 257 CARTOGRAPHIC VISUALIZATION FOR SPATIAL ANALYSIS Jason Dykes Department of Geography, University of Leicester, Leicester, LE2 ITF, U.K. Abstract Characteristics of Visualization in Scientific
Treatment of Spatial Autocorrelation in Geocoded Crime Data
Treatment of Spatial Autocorrelation in Geocoded Crime Data Krista Collins, Colin Babyak, Joanne Moloney Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada KA 0T6 Abstract In
Advances in the Application of Geographic Information Systems (GIS) Carmelle J. Terborgh, Ph.D. ESRI Federal/Global Affairs
Advances in the Application of Geographic Information Systems (GIS) Carmelle J. Terborgh, Ph.D. ESRI Federal/Global Affairs Highlights GIS in our World Advancements in GIS Visualization and Analysis Geographic
Geographical Information Systems (GIS) and Economics 1
Geographical Information Systems (GIS) and Economics 1 Henry G. Overman (London School of Economics) 5 th January 2006 Abstract: Geographical Information Systems (GIS) are used for inputting, storing,
Descriptive Statistics
Descriptive Statistics Descriptive statistics consist of methods for organizing and summarizing data. It includes the construction of graphs, charts and tables, as well various descriptive measures such
Centre for Central Banking Studies
Centre for Central Banking Studies Technical Handbook No. 4 Applied Bayesian econometrics for central bankers Andrew Blake and Haroon Mumtaz CCBS Technical Handbook No. 4 Applied Bayesian econometrics
Intro to GIS Winter 2011. Data Visualization Part I
Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience
Getting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
Using Spatial Statistics In GIS
Using Spatial Statistics In GIS K. Krivoruchko a and C.A. Gotway b a Environmental Systems Research Institute, 380 New York Street, Redlands, CA 92373-8100, USA b Centers for Disease Control and Prevention;
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
BYLINE: Michael F. Goodchild, University of California, Santa Barbara, www.geog.ucsb.edu/~good
TITLE: SPATIAL DATA ANALYSIS BYLINE: Michael F. Goodchild, University of California, Santa Barbara, www.geog.ucsb.edu/~good SYNONYMS: spatial analysis, geographical data analysis, geographical analysis
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary
Multivariate Analysis of Ecological Data
Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology
Week 1. Exploratory Data Analysis
Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam
Vector Time Series Model Representations and Analysis with XploRe
0-1 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin [email protected] plore MulTi Motivation
Choosing a classification method
Chapter 6 Symbolizing your data 103 Choosing a classification method ArcView offers five classification methods for making a graduated color or graduated symbol map: Natural breaks Quantile Equal area
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
Tableau Data Visualization Cookbook
Tableau Data Visualization Cookbook Ashutosh Nandeshwar Chapter No. 4 "Creating Multivariate Charts" In this package, you will find: A Biography of the author of the book A preview chapter from the book,
ArcGIS Geostatistical Analyst: Statistical Tools for Data Exploration, Modeling, and Advanced Surface Generation
ArcGIS Geostatistical Analyst: Statistical Tools for Data Exploration, Modeling, and Advanced Surface Generation An ESRI White Paper August 2001 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL
Note 2 to Computer class: Standard mis-specification tests
Note 2 to Computer class: Standard mis-specification tests Ragnar Nymoen September 2, 2013 1 Why mis-specification testing of econometric models? As econometricians we must relate to the fact that the
SAS Analyst for Windows Tutorial
Updated: August 2012 Table of Contents Section 1: Introduction... 3 1.1 About this Document... 3 1.2 Introduction to Version 8 of SAS... 3 Section 2: An Overview of SAS V.8 for Windows... 3 2.1 Navigating
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA
CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA Summer 2013, Version 2.0 Table of Contents Introduction...2 Downloading the
IBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
CHARTS AND GRAPHS INTRODUCTION USING SPSS TO DRAW GRAPHS SPSS GRAPH OPTIONS CAG08
CHARTS AND GRAPHS INTRODUCTION SPSS and Excel each contain a number of options for producing what are sometimes known as business graphics - i.e. statistical charts and diagrams. This handout explores
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Standard errors of marginal effects in the heteroskedastic probit model
Standard errors of marginal effects in the heteroskedastic probit model Thomas Cornelißen Discussion Paper No. 320 August 2005 ISSN: 0949 9962 Abstract In non-linear regression models, such as the heteroskedastic
Spreadsheet software for linear regression analysis
Spreadsheet software for linear regression analysis Robert Nau Fuqua School of Business, Duke University Copies of these slides together with individual Excel files that demonstrate each program are available
A Basic Introduction to Missing Data
John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item
Gun Availability and Crime in West Virginia: An Examination of NIBRS Data
Gun Availability and Crime in West Virginia: An Examination of NIBRS Data Presentation at the BJS/JRSA Conference October, 2008 Stephen M. Haas, WV Statistical Analysis Center John P. Jarvis, FBI Behavioral
COMMON CORE STATE STANDARDS FOR
COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in
Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING
Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL
