Multi-LED Package design, fabrication and thermalanalysis

Size: px
Start display at page:

Download "Multi-LED Package design, fabrication and thermalanalysis"

Transcription

1 Multi-LED Package design, fabrication and thermalanalysis R.H. Poelma 1, S. Tarashioon 1, H.W. van Zeijl 1, S. Goldbach 2, J.L.J. Zijl 3 and G.Q. Zhang 1,2 1 Delft University of Technology, Delft, The Netherlands 2 Philips Lighting, Eindhoven, The Netherlands. 3 Fico/Besi, Duiven, The Netherlands. Abstract: An ultra-thin multi-led package is designed, manufactured and its thermal performance is characterized. The objective of this study is to develop an efficient thermal modelling approach for this system which can be used for optimization of the thermal-performance of future ultra-thin designs. A high-resolution thermal imaging camera, and thermo couples were used to measure the temperature distribution of the multi-led package and the LED-die temperature for different operating powers. Finally, we compare the thermal measurements with the Finite element simulation results. It is concluded that the modelling approach can assist in the thermal optimization of future multi-led package designs. Keywords: LED, packaging, optics molding, high-resolution thermal imaging, thermal modeling and measurements. 1 Introduction Light emitting diodes (LEDs) are currently the most energy efficient light sources available. Consequentially, high brightness LEDs become the cheapest light source over time compared to incandescent light bulbs and compact fluorescent lamps for lighting applications [1, 2]. However, the thermal management of high brightness multi-led packages is still a challenge that can be improved. Currently, about 65% to 85% of the input power of the best commercial available high brightness LEDs is converted into heat while the rest is transformed into light [3, 4]. Improving the heat dissipation from the LEDs is crucial for reducing the LED junction temperature. The temperature is the primary factor influencing the total lifetime, the power efficiency and droop of LEDs [3-5]. Modelling the thermal performance of electronic systems and optimization of the design, is becoming a useful tool which can reduce the development time and improve the quality of the final product. For this study we designed and fabricated a novel ultra-thin multi-led package which is briefly discussed in section 2. In section 3 we perform thermal measurements on the multi-led package at different operating powers. In section 4 we discuss, and validate the thermal model of the system. Finally, we give conclusions on how to thermally optimize future designs of multi-led packages. 2 Multi-LED package design and fabrication Market research has shown that lighting application areas for retail and hospitality have demanding requirements for new LED spots in terms of thickness, lumen output, colour rendering index (CRI), efficacy and lifetime [2]. The lifetime of electrical systems is strongly affected by the temperature. The temperature is driven upwards by the miniaturization and increasing power density of the multi-led packages. Therefore, long lifetime is arguably the most difficult requirement to achieve. Consequently, no luminaire system or LED-spot is available that meets these specific requirements. The aim of this paper is to design a system for this application area. Table 1 gives an overview of the stringent user requirements for the LED-spot for retail and hospitality.

2 Table 1: User requirements for LED-Spot for retail and hospitality applications. Parameters Values Lateral size mm Thickness 1-5 mm Lumen output lm Efficacy K Lifetime 50k hours (a) 90mm 8mm 90mm 35mm 35mm A specific LED type was chosen that can meet the requirements, see Table 2 for the LED properties. A grid array (4 x 4) of this LED type are placed inside a simplified package. The specific LED performance and electrical properties are given in Table 2. The power of these LEDs and their efficiency rating are used for the calculation of the amount of energy that is transformed into heat. (b) (c) Table 2: LED properties Parameters Values Max. T junc 135 o C Power 2 Watt Voltage 2.8 V Current o C Efficiency 83% (d) 2.1 Geometric parameters Figure 1a shows a schematic illustration of the design of the LED package placed on the fin heat sink. Figure 1b shows the multi-led package after the silicone molding step and Figure 1c shows the package after interconnect patterning. The substrate material is a Cu foil with thickness t Cu = 70µm. The silicone thickness is t S = 1mm. The assembly of the LED package on the passively cooled copper heat sink is shown in Figure 1d. The package is glued using a thermal adhesive. Finally the working sample is shown in Figure 1e. Figure 2 shows the fabrication steps. We start by: 1) Solder resist and solder paste deposition using stencil printing. 2) The second step is connecting the LEDs to the foil by pick and place and solder reflow. 3) The third step is Silicone encapsulation of the LEDs and Cu foil performed by the company Besi/Fico, The Netherlands. 4) The final step is the Cu foil backside patterning and interconnect fabrication. (e) Figure 1: a) Schematic illustration of the multi-led package placed on the fin-heatsink showing the locations of the thermo couples, and. b) Package after LED placement and silicone molding and before interconnect patterning. c) Package after interconnect patterning. d) Final assembly on the passively cooled copper heat sink. e) Illumination at low power.

3 Copper foil Stencil print Cure Stencil print Pick & Place Solder reflow Molding Photo-etch Test Solder resist Solder paste LED package Silicone Optics Interconnects Figure 2: Process flowchart of the multi-led package. Due to the low cost and high reliability, fin heat sinks in natural convection and radiation are still widely used for cooling in various applications [6]. Furthermore, the modelling of passively cooled heat sinks is well-defined and helps in characterizing the thermal performance of the package assembly. Therefore, we connect the LED package to a 9 cm by 9 cm Copper polished heat sink using a thermal dielectric adhesive as is shown in Figure 1. The heat sink has a base thickness of t b = 2 mm, 55 plate fins with a length L fin of 21 mm, a fin thickness of t fin = 300 µm and a fin pitch of 1.6 mm. This approach has the possibility of reducing the effective thermal resistance between the LED-die and the heat sink and improving the thermal performance. Between the heatsink and the LED package we placed a 550 µm thick Silicon wafer, coated with a 500 nm thick electrically insulating Nitride film. 3 Thermal measurements We use two measurement techniques to characterize the temperature distribution of the LED package for different operating power in a temperature controlled environment (T Room = 297 K ). One method consists of measuring the temperature using thermocouples placed on the locations:, and on the heat sink, see Figure 1a. The other approach is using a thermal imaging camera to characterize the heat distribution over the surface and estimate the LED junction temperature. The orientation of passively cooled heat sinks strongly affects their efficiency, we have considered the worst-case horizontal scenario (Figure 3) and have compared the results to the thermal model. The points of interest are the maximum temperature and the location of hotspots. The LED package mounted on the Cu heat sink is placed horizontally in a temperature controlled environment and is allowed to be cooled by natural convection. The thermal imaging camera is placed directly above the package to get a top view of the system. Figure 3a shows the measurement setup and Figure 3b shows the thermal image of the system. The thermal imager used was the Fluke Ti10, which has a spatial resolution of 2.5mRad and an accuracy of ±5 O C on non-reflective surfaces. (a) (b) Figure 3: a) Measurement setup. b) Thermal image of the multi-led package at an input power of respectively 35 Watt. The color indicates the surface temperature. Figure 3b shows that the top row of LEDs have a slightly higher temperature. This is probably caused by the soldered wires that prevented a good

4 thermal contact. The measurement results are discussed in more detail and compared to the simulation results in Section 4. 4 Thermal simulation 4.1 Model description The differential form of Fourier s law, gives the relationship between q the heat flux, k the thermal conductivity of a solid material and T the corresponding temperature gradient [7, 8]: T+ kq= 0 (4.1) The temperature gradient and heat flux are defined by the prescribed boundary conditions and the material properties. Finite element simulation is used to study the thermal performance of the LED package containing a square 4 x 4 LED array. We study how the heat generation in the LEDs defined by Q LED, affects the temperature T of the system and we compare the results to the measurements. Contact resistance between the LED package and heat sink is defined by the thermal conductivity and thickness of the thermal adhesive, respectively: k TIM = 0.1 W/mK and t TIM = 140 µm. The material thermal conductivity of the silicone, copper and silicon are respectively: 0.26, 400 and 130 W/mK. The initial temperature and that of the surroundings is 297 Kelvin. Figure 4, shows the different film thickness of the materials. The thermal interface material is between the heat sink and the silicon and between the copper foil and the silicon. tsi Q LED h c,0 Figure 4: Side-view of the LED package and the corresponding geometric parameters. 4.2 Boundary conditions Symmetry boundary conditions can be applied that reduce the size of the model to one fourth of its original size. On all the exposed surfaces of the heat sink and package a heat flux is prescribed that allows for convective heat transfer to the surroundings. The heat transfer coefficient h, depends on ts = 1mm h c t = 70µ tb = 2mm 500µ m = 21mm Cu Lfin the surface orientation and temperature. The heat transfer coefficient [7] of a surface in ambient air is estimated by, Txy (, ) n T(, ) n s xy T 0 hci, = C = C L fin L fin (4.2) where T s (x,y) is the surface temperature on location (x,y) and T 0 is the ambient temperature. Table 3 shows the constants and exponents for the calculation of the heat transfer coefficient for different surface orientations. The length of the fin is defined by L fin, which is 21 mm when the heat sink is horizontal and 90 mm when vertical. Table 3: The values of constant C and exponent n for different surface orientations. Plate orientation C n Vertical Horizontal (Top-side) Horizontal (Bottom-side) Thermal radiation can be ignored for the polished Cu heat sink since the surface emissivity coefficient is about 0.05 [-]. The heat transfer coefficient as predicted by Eq. 4.2 is plotted in Figure 5 for the three different orientations. Heat transfer coeficient h c (W/(m 2 K)) Vertical plate 2 Top-side horizontal plate Bottom-side horizontal plate Surface temperature T s (K) Figure 5: Heat transfer coefficient plotted against different temperatures of the surface and for several orientations. The ambient temperature is 300 K. Figure 5 shows that restriction of the airflow by changing the orientation strongly affects the efficiency of the heat sink. For the simulations and experiments we therefore simulate and test for the worst case scenario to define the maximum operating condition of the package.

5 4.3 Simulation and measurement results Figure 6: Temperature distribution of a 4x4 LED array (only a quarter shown) at 40 Watt operating power. The package is horizontally orientated, worst case. Temperature (K) LED temperature Contact resistance Simulation Measurement Arc-length (m) Figure 7: Temperature profile measured by the IR camera compared to the numerical simulation. The profile is measured along the cross-section - for the horizontal orientation of the heat sink at operating power of 35 Watt. Figure 6 shows the numerical simulation result of the LED package placed on the heat sink operating at 40 Watts. The high temperature gap of about 15 Kelvin is caused by the thermal contact resistance. Figure 7 shows the comparison between the simulation and the measurements of the IR camera. There is a good agreement between the model and the measurement. The differences can be explained by Joule heating of the interconnects that were not accounted for in the model. Furthermore, the IR temperature measurement is influenced by the different emissivity coefficients of the materials of the package and heat sink material. The IR camera doesn t distinguish between the different emissivity coefficients and therefore a small measurement error can be introduced of +- 2 Kelvin. Figure 8 compares the temperature measurements of the thermocouples with the numerical simulation for increasing operating power. The temperature reading of and overlap although they are positioned in different locations. Temperature (K) Thermocouple, and measurements Simulation Operating Power (W) Figure 8: Temperature at the measurement locations - for increasing operating power compared to simulation. Figure 8 shows that the measurements with the thermocouples are in good agreement with the simulation. The package appears to heat up at a higher rate than the model predicts. We assume this can be explained by the Joule heating of the wire interconnects that were not accounted for. 5 Conclusions An ultra-thin multi-led package was designed, manufactured and its thermal performance was studied. There is a good agreement between the thermal simulation and experiment when the model accounts for a high thermal resistance between the LED package and the heat sink. The simulation and experimental results show that the best way to optimize the thermal performance is by reducing the contact thermal resistance. The results of this study will help in the design of larger and more complex packages leading to high lumen spots up to 5000 lumens using high brightness LEDs. Acknowledgements The authors would like to thank CATRENE L Project CA502 SEEL Solutions for Energy-Efficient Lighting - for financial support and the people from DEMO and DIMES TU Delft for their help and technical expertise.

6 References 1. Lee, S.-J., et al., High-Brightness GaN-Based Light-Emitting Diodes on Si Using Wafer Bonding Technology. Applied Physics Express, (6). 2. Agrawal, V., et al., Solid State Lighting LED Manufacturing Roundtable Summary, 2011, U.S. Department of Energy. p Cheng, T., et al., Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. International Journal of Thermal Sciences, (1): p Efremov, A., et al., Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, (5): p Wang, J., et al., High-efficiency diode lasers at high output power. Applied Physics Letters, (11): p Sahray, D., et al., Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation. Journal of Heat Transfer, (1): p Mills, A.F., Basic Heat and Mass Transfer1999: Prentice Hall. 8. Öchsner, A., M. Tane, and H. Nakajima, Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals: Numerical and analytical methods. Materials Letters, (21-22): p

Discontinued. LUXEON V Portable. power light source. Introduction

Discontinued. LUXEON V Portable. power light source. Introduction Preliminary Technical Datasheet DS40 power light source LUXEON V Portable Introduction LUXEON is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability

More information

Everline Module Application Note: Round LED Module Thermal Management

Everline Module Application Note: Round LED Module Thermal Management Everline Module Application Note: Round LED Module Thermal Management PURPOSE: Use of proper thermal management is a critical element of Light Emitting Diode (LED) system design. The LED temperature directly

More information

Welcome to this presentation on LED System Design, part of OSRAM Opto Semiconductors LED 101 series.

Welcome to this presentation on LED System Design, part of OSRAM Opto Semiconductors LED 101 series. Welcome to this presentation on LED System Design, part of OSRAM Opto Semiconductors LED 101 series. 1 To discuss the design challenges of LED systems we look at the individual system components. A basic

More information

Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA etc.) (High Temperature Applications)

Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA etc.) (High Temperature Applications) VISHAY SFERNICE Resistive Products Application Note ABSTRACT On our thin film chips resistors and arrays the main path for the heat, more than 90 %, is conduction through the body of the component, the

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

PHASED OUT. LED light engine / OLED LED compact. Umodule SLE G4 6mm R SNC, SLE G4 10mm R SNC umodule SLE ESSENCE

PHASED OUT. LED light engine / OLED LED compact. Umodule SLE G4 6mm R SNC, SLE G4 10mm R SNC umodule SLE ESSENCE w LED light engine / OLED Product description For general lighting application Typ. luminous flux category: 3/6/8/1,2 lm High efficacy up to 133 lm/w for the LED module at tp = 25 C Small LES (light emitting

More information

C4246 120W COB Series

C4246 120W COB Series High Performance LED Module SemiLEDs C4246 120W COB is a high performance LED module with high thermal conductivity and reliability for demanding lighting applications. It is an easy to assemble light

More information

C1919 15W COB Series

C1919 15W COB Series High Performance LED Module SemiLEDs C1919 15W COB is a high performance LED module with high thermal conductivity and reliability for demanding lighting applications. It is an easy to assemble light source

More information

Current Limiting Power Resistors for High-Power LED Module Lighting Applications

Current Limiting Power Resistors for High-Power LED Module Lighting Applications Current Limiting Power Resistors for High-Power LED Module Lighting Applications PWR263 An ongoing trend toward miniaturization of virtually all electronics is accompanied by the demand for a reduction

More information

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2 CHAPTER 6 THERMAL DESIGN CONSIDERATIONS page Introduction 6-2 Thermal resistance 6-2 Junction temperature 6-2 Factors affecting 6-2 Thermal resistance test methods 6-3 Test procedure 6-3 Forced air factors

More information

The Effect of Forced Air Cooling on Heat Sink Thermal Ratings

The Effect of Forced Air Cooling on Heat Sink Thermal Ratings zpero 1 The Effect of Forced Air Cooling on Heat Sink Thermal Ratings By Paul Bachman, Fellow Engineer & Ronnie Haiduk, Applications Engineer, Crydom, Inc. ABSTRACT A heat sink s ability to dissipate thermal

More information

Surface Mount Technology cooling for high volumes applications by: Cesare Capriz Aavid Thermalloy via XXV Aprile 32 Cadriano (BO) ITALY

Surface Mount Technology cooling for high volumes applications by: Cesare Capriz Aavid Thermalloy via XXV Aprile 32 Cadriano (BO) ITALY Surface Mount Technology cooling for high volumes applications by: Cesare Capriz Aavid Thermalloy via XXV Aprile 32 Cadriano (BO) ITALY Abstract: The automotive technology is fast moving in integrating

More information

LZC-00MC40. LedEngin, Inc. High Luminous Efficacy RGB LED Emitter. Key Features. Typical Applications. Description

LZC-00MC40. LedEngin, Inc. High Luminous Efficacy RGB LED Emitter. Key Features. Typical Applications. Description Key Features High Luminous Efficacy RGB LED Emitter LZC-MC4 Ultra-bright, Ultra-compact 4W RGB LED Full spectrum of brilliant colors with superior color mixing Small high density foot print 9.mm x 9.mm

More information

P2N LED. High Power LED PRODUCT DATASHEET. Introduction. RoHS Compliant

P2N LED. High Power LED PRODUCT DATASHEET. Introduction. RoHS Compliant PRODUCT DATASHEET P2N LED High Power LED Introduction The P2N LED brings industry leading technology to the solid state lighting market with its high quality and performance. With a silicone lens, P2N

More information

Product Level Accelerated Lifetime Test for Indoor LED Luminaires

Product Level Accelerated Lifetime Test for Indoor LED Luminaires Product Level Accelerated Lifetime Test for Indoor LED Luminaires Sau Koh 1,2,3, Cadmus Yuan 3,4, Bo Sun 2,3, Bob Li 3, Xuejun Fan 5, G.Q. Zhang 1 1 Delft Institute of Microsystems and Nanoelectronics

More information

Thermal Management of Electronic Devices used in Automotive Safety A DoE approach

Thermal Management of Electronic Devices used in Automotive Safety A DoE approach Thermal Management of Electronic Devices used in Automotive Safety A DoE approach Vinod Kumar, Vinay Somashekhar and Srivathsa Jagalur Autoliv India Private Limited, Bangalore, India Abstract: Electronic

More information

LED light engine / OLED LED linear / area. Umodule STARK QLE G3 lens 270-1250 CLASSIC umodule QLE

LED light engine / OLED LED linear / area. Umodule STARK QLE G3 lens 270-1250 CLASSIC umodule QLE Umodule STARK QLE G3 lens 27-125 CLASSIC umodule QLE Product description Ideal for linear and panel lights Luminous flux range from 1, 1,21 lm LED system solution with outstanding system efficacy up to

More information

JD(Doug) Rooks Western Area Applications Manager

JD(Doug) Rooks Western Area Applications Manager AC vs DC LED Design/Benefits JD(Doug) Rooks Western Area Applications Manager Seoul Semiconductor Product Summary Acriche Side View LED Dot Matrix Z-Power LED Chip LED Lamp LED Custom Display Deep UV Top

More information

Thermal Management for Low Cost Consumer Products

Thermal Management for Low Cost Consumer Products Thermal Management for Low Cost Consumer Products TI Fellow Manager: Advanced Package Modeling and Characterization Texas Instruments rvin@ti.com Outline The challenges Stacked die, Package-on-Package,

More information

New Methods of Testing PCB Traces Capacity and Fusing

New Methods of Testing PCB Traces Capacity and Fusing New Methods of Testing PCB Traces Capacity and Fusing Norocel Codreanu, Radu Bunea, and Paul Svasta Politehnica University of Bucharest, Center for Technological Electronics and Interconnection Techniques,

More information

Contents. 12. Lot Number 10. 13. Reel Packing Structure 11. 14. Precaution for Use 13. 15. Hazard Substance Analysis 14. 16. Revision History 18

Contents. 12. Lot Number 10. 13. Reel Packing Structure 11. 14. Precaution for Use 13. 15. Hazard Substance Analysis 14. 16. Revision History 18 Rev : 00 ISSUE NO : DATE OF ISSUE : 2009. 04. 10 S P E C I F I CATION MODEL : SLHNNWW629T1S0U0S0 [Rank : (S0), (U0), (S0)] HIGH POWER LED - SUNNIX6 CUSTOMER : CUSTOMER CHECKED CHECKED APPROVED SAMSUNG

More information

Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems

Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems William G. Anderson 1, Sanjida Tamanna 2, David B. Sarraf 3, and Peter M. Dussinger 4 Advanced Cooling Technologies, Inc., Lancaster, PA, 17601

More information

50W EdiStar. Approved By Customer. Designer Checker Approval. Ultra High Power LED

50W EdiStar. Approved By Customer. Designer Checker Approval. Ultra High Power LED Ultra High Power LED 50W EdiStar EdiStar Emitter Approved By Customer Designer Checker Approval Date:2006/12/04 Version:Preliminary V0.1 4F, No. 800, Chung-Cheng Rd, Chung-Ho, Taipei 235, Taiwan Tel: 886-2-8227-6996

More information

U LED modules, converters and systems GENERAL ILLUMINATION. Umodule SPOT P330-2 umodule SPOT PHASED OUT NTC

U LED modules, converters and systems GENERAL ILLUMINATION. Umodule SPOT P330-2 umodule SPOT PHASED OUT NTC Product description Spotlights Downlights High-flux LED module Narrow colour temperature tolerance band Compact design Excellent thermal management 1 NTC for temperature control High-power LED in chip-on-board

More information

U LED modules, converters and systems GENERAL ILLUMINATION. Umodule SPOT P340-2 umodule SPOT PHASED OUT NTC 42.25 37 11 5.75 3.5 5.15 37.89 39.

U LED modules, converters and systems GENERAL ILLUMINATION. Umodule SPOT P340-2 umodule SPOT PHASED OUT NTC 42.25 37 11 5.75 3.5 5.15 37.89 39. Product description Spotlights Downlights High-flux LED module Narrow colour temperature tolerance band Compact design Excellent thermal management 1 NTC for temperature control High-power LED in chip-on-board

More information

T5 LongLast. GE Lighting DATA SHEET

T5 LongLast. GE Lighting DATA SHEET GE Lighting T5 LongLast DATA SHEET Linear Fluorescent Lamps T5 LongLast High Efficiency 14W, 21W, 28W, 35W T5 LongLast High Output 24W, 39W, 49W, 54W, 8W Product information T5 LongLast lamps are triphosphor

More information

How To Calculate Thermal Resistance On A Pb (Plastipo)

How To Calculate Thermal Resistance On A Pb (Plastipo) VISHAY BEYSCHLAG Resistive Products 1. INTRODUCTION Thermal management is becoming more important as the density of electronic components in modern printed circuit boards (PCBs), as well as the applied

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W (Preliminary)

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W (Preliminary) Technical Data Sheet High Power LED 1W (Preliminary) Features Feature of the device: small package with high efficiency Typical view angle: 150. Typical light flux output: 30 lm @ 350mA. ESD protection.

More information

Faszination Licht. Entwicklungstrends im LED Packaging. Dr. Rafael Jordan Business Development Team. Dr. Rafael Jordan, Business Development Team

Faszination Licht. Entwicklungstrends im LED Packaging. Dr. Rafael Jordan Business Development Team. Dr. Rafael Jordan, Business Development Team Faszination Licht Entwicklungstrends im LED Packaging Dr. Rafael Jordan Business Development Team Agenda Introduction Hermetic Packaging Large Panel Packaging Failure Analysis Agenda Introduction Hermetic

More information

Bridgelux ES Rectangle Array Series

Bridgelux ES Rectangle Array Series Bridgelux ES Rectangle Array Series Product Data Sheet DS24 BXRA-xxx0800, BXRA-xxx1200, BXRA-xxx2000 BXRA-40E0950, BXRA-40E1350, BXRA-40E2200 BXRA-xxC1100, BXRA-xxC1600, BXRA-xxC2600 Introduction The Bridgelux

More information

New JEDEC thermal testing standards for high power LEDs

New JEDEC thermal testing standards for high power LEDs New JEDEC thermal testing standards for high power LEDs András Poppe, PhD Mentor Graphics Mechanical Analysis Division MicReD team also with Budapest University of Technology & Economics Department of

More information

LED light engine / OLED LED compact. Umodule STARK CLE 120-2000 CLASSIC / CLE 130-2500 CLASSIC umodule CLE

LED light engine / OLED LED compact. Umodule STARK CLE 120-2000 CLASSIC / CLE 130-2500 CLASSIC umodule CLE Umodule STARK CLE 12-2 CLASSIC / CLE 13-25 CLASSIC umodule CLE Product description Designed for diffuser downlights and wallmounted luminaires Ideal to realise simple luminarie designs For easy adaptation

More information

P2O LED. High Power LED PRODUCT DATASHEET. Introduction. RoHS Compliant

P2O LED. High Power LED PRODUCT DATASHEET. Introduction. RoHS Compliant P2O LED High Power LED Introduction The P2O LEDs from SemiLEDs utilize innovative MvpLED technology which delivers superior levels of optical performance and reliability. Use of state of the art silicone

More information

Bridgelux ES Array Series

Bridgelux ES Array Series Bridgelux ES Array Series Product Data Sheet Introduction The Bridgelux family of LED Array products delivers high performance, compact and cost-effective solidstate lighting solutions to serve the general

More information

Brilliant Mix System Design. Abstract

Brilliant Mix System Design. Abstract Brilliant Mix System Design Abstract Brilliant Mix refers to a light system containing a mix of high efficacious EQ white LEDs with amber red LEDs. Brilliant Mix allows high efficacious white light sources

More information

Characterization of Thermal Resistance Coefficient of High-power LEDs

Characterization of Thermal Resistance Coefficient of High-power LEDs Characterization of Thermal Resistance Coefficient of High-power LEDs Lalith Jayasinghe, Yimin Gu, and Nadarajah Narendran Lighting Research Center Rensselaer Polytechnic Institute, Troy, NY 1218 www.lrc.rpi.edu

More information

POWER FORUM, BOLOGNA 20-09-2012

POWER FORUM, BOLOGNA 20-09-2012 POWER FORUM, BOLOGNA 20-09-2012 Convertitori DC/DC ad alta densità di potenza e bassa impedenza termica. Massimo GAVIOLI. Senior Field Application Engineer. Intersil SIMPLY SMARTER Challenges when Designing

More information

Apples & Pears, a CELMA guiding paper: Why standardisation of performance criteria for LED luminaires is important

Apples & Pears, a CELMA guiding paper: Why standardisation of performance criteria for LED luminaires is important Apples & Pears, a CELMA guiding paper: Why standardisation of performance criteria for LED luminaires is important Enabling like-for-like comparison of LED luminaire performance starts with published initial

More information

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view. Rev. 1.

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view.  Rev. 1. Application Note PAC-006 By J. Lu, Y. Ding, S. Liu, J. Gong, C. Yue July 2012 Molded Chip Scale Package Assembly Guidelines Introduction to Molded Chip Scale Package A chip scale package (CSP) has direct

More information

Peltier Application Note

Peltier Application Note Peltier Application Note Early 19th century scientists, Thomas Seebeck and Jean Peltier, first discovered the phenomena that are the basis for today s thermoelectric industry. Seebeck found that if you

More information

Cree XLamp XP-G LEDs Data Sheet

Cree XLamp XP-G LEDs Data Sheet Cree XLamp XP-G LEDs Data Sheet The XLamp XP-G LED delivers unprecedented levels of light output and efficacy for a single die LED. The XLamp XP-G LED continues Cree s history of innovation in LEDs for

More information

N35L-U High Power LED

N35L-U High Power LED N35L-U High Power LED Introduction The N35L-U LED from SemiLEDs brings industry leading technology to the solid state lighting market with its high quality and performance. With a silicone lens, N35L-U

More information

EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE

EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE Vivek Khaire, Dr. Avijit Goswami Applied Thermal Technologies India 3rd Floor,C-Wing,Kapil Towers, Dr. Ambedkar Road, Pune- 411 1 Maharashtra,

More information

50 W Power Resistor, Thick Film Technology, TO-220

50 W Power Resistor, Thick Film Technology, TO-220 50 W Power Resistor, Thick Film Technology, TO-220 FEATURES 50 W at 25 C heatsink mounted Adjusted by sand trimming Leaded or surface mount versions High power to size ratio Non inductive element Material

More information

Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies

Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies Sandy Kumar, Ph.D. Director of Technology American Standard Circuits, Inc 3615 Wolf Road

More information

Cree XLamp XM-L LED 10,000-Lumen High-Bay Reference Design

Cree XLamp XM-L LED 10,000-Lumen High-Bay Reference Design application note Cree XLamp XM-L LED 10,000-Lumen High-Bay Reference Design CLD-AP96 rev 0A Table of Contents Introduction... 1 Design approach/objectives... 2 The 6-step methodology... 2 1. Define lighting

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Features. High Brightness LED Light source

Features. High Brightness LED Light source www.edison-opto.com Solid-State Lighting Series 6W MR16 DATASHEET Features High Brightness LED Light source Ecologically Friendly Energy Efficient General Information... 1 Product Dimensions... 2 Product

More information

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488 Generic Thermal Analysis for Phone and Tablet Systems Siva P. Gurrum, Darvin R. Edwards, Thomas Marchand-Golder, Jotaro Akiyama, Satoshi Yokoya, Jean-Francois Drouard, Franck Dahan Texas Instruments, Inc.,

More information

Cree XLamp Long-Term Lumen Maintenance

Cree XLamp Long-Term Lumen Maintenance Cree XLamp Long-Term Lumen Maintenance July 29 This application note outlines Cree s long-term testing methodology and provides Cree s guidance on mean L 7 lifetimes for XLamp XR-E LED lamps in a wide

More information

How To Make An Led Lamp For An Older M16 Lamp

How To Make An Led Lamp For An Older M16 Lamp Cree XLamp XP-E MR16 Reference Design CLD-AP-76 REV 0 INTRODUCTION It is a challenge to design an efficient, high lumen, small form factor, solid-state luminaire at a reasonable cost. The limited space

More information

SP-06 SinkPAD-II Rebel 25mm Round LED Assembly

SP-06 SinkPAD-II Rebel 25mm Round LED Assembly The SP-06 series of high brightness (HB) LED assemblies include a single Rebel LED soldered to a 25mm Round SinkPAD-II board. The SinkPAD-II features second-generation technology that minimizes thermal

More information

Cree XLamp MX-6 LEDs Data Sheet

Cree XLamp MX-6 LEDs Data Sheet Cree XLamp MX-6 LEDs Data Sheet The Cree XLamp MX-6 LED provides the proven lighting-class performance and reliability of Cree XLamp LEDs in a flat-top PLCC package. The XLamp MX-6 LED continues Cree s

More information

Iterative calculation of the heat transfer coefficient

Iterative calculation of the heat transfer coefficient Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, via Panfilio, 17 44121 Ferrara Aim The plate temperature of a cooling heat sink is an important parameter

More information

Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor

Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor Phil Ebbert, VP of Engineering, Riedon Inc. Introduction Not all resistors are the same and

More information

Thermal diffusivity and conductivity - an introduction to theory and practice

Thermal diffusivity and conductivity - an introduction to theory and practice Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com

More information

T5 Watt-Miser Linear Fluorescent lamps

T5 Watt-Miser Linear Fluorescent lamps GE Lighting T5 Watt-Miser Linear Fluorescent lamps DATA SHEET T5 Watt-Miser High Efficiency 13W, 20W, 26W, 33W T5 Watt-Miser High Output 21W, 36W, 46W, 51W, 76W Product information T5 Watt-Miser lamps

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Available in white (2,600 K to 8,300 K CCT) Maximum drive current: 1000 ma. Wide viewing angle: 120. Electrically neutral thermal path

Available in white (2,600 K to 8,300 K CCT) Maximum drive current: 1000 ma. Wide viewing angle: 120. Electrically neutral thermal path PRODUCT FAMILY DATA SHEET CLD-23 REV 3 Cree XLamp MX-6 LEDs PRODUCT DESCRIPTION The Cree XLamp MX-6 LED provides the proven lighting-class performance and reliability of Cree XLamp LEDs in a flat-top PLCC

More information

Welcome to this presentation on Thermal Characteristics of LEDs, part of OSRAM Opto Semiconductors LED Fundamentals series.

Welcome to this presentation on Thermal Characteristics of LEDs, part of OSRAM Opto Semiconductors LED Fundamentals series. Welcome to this presentation on Thermal Characteristics of LEDs, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at the basics of thermal management in LED

More information

LINEAR SYSTEM 3000K 4000K 5000K 6000K 7000K

LINEAR SYSTEM 3000K 4000K 5000K 6000K 7000K Tunable White Brightness dimmable RGB adjustable 2500K - 7000K 5% - Colours and sequences Biorhythmic lighting Vitalisation and Recreation 2 control modes Excellent CRI DALI DT8, NeoLink CRI>90 2500K 7000K

More information

Embedding components within PCB substrates

Embedding components within PCB substrates Embedding components within PCB substrates Max Clemons, Altium - March 19, 2014 Continued pressure for electronic devices that provide greater functionality in ever-smaller formfactors is not only providing

More information

OLED display. Ying Cao

OLED display. Ying Cao OLED display Ying Cao Outline OLED basics OLED display A novel method of fabrication of flexible OLED display Potentials of OLED Suitable for thin, lightweight, printable displays Broad color range Good

More information

Thin Film Chip Resistors and Arrays for High Temperature Applications Up to +230 C

Thin Film Chip Resistors and Arrays for High Temperature Applications Up to +230 C CARTS USA 2010, New Orleans, Louisiana, March 15-18, 2010 Thin Film Chip Resistors and Arrays for High Temperature Applications Up to +230 C By Dr. Claude Flassayer Vishay Sfernice ABSTRACT With their

More information

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process Lynne Michaelson, Krystal Munoz, Jonathan C. Wang, Y.A. Xi*, Tom Tyson, Anthony Gallegos Technic Inc.,

More information

8-bit Atmel Microcontrollers. Application Note. Atmel AVR211: Wafer Level Chip Scale Packages

8-bit Atmel Microcontrollers. Application Note. Atmel AVR211: Wafer Level Chip Scale Packages Atmel AVR211: Wafer Level Chip Scale Packages Features Allows integration using the smallest possible form factor Packaged devices are practically the same size as the die Small footprint and package height

More information

Data Sheet. Nationstar LED

Data Sheet. Nationstar LED Data Sheet Nationstar LED 1 Table of Contents General Informations:... 3 Electrical and Flux Characteristics... 3 Color Wavelength Diagram:... 6 Mechanical Dimensions:... 7 Electrical Connection:... 7

More information

Intel Quark SoC X1000

Intel Quark SoC X1000 Thermal and Mechanical Design Guide April 2014 Document Number: 330259-001 Legal Lines and Disclaimers INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR

More information

The Latest in LED Lighting Test Methods and Standards. Jianzhong Jiao, Ph.D. OSRAM Opto Semiconductors Inc.

The Latest in LED Lighting Test Methods and Standards. Jianzhong Jiao, Ph.D. OSRAM Opto Semiconductors Inc. The Latest in LED Lighting Test Methods and Standards Jianzhong Jiao, Ph.D. OSRAM Opto Semiconductors Inc. EPA Energy Star Products Partner Meeting Oct. 22, 2012 2 Outline Introduction Updates for LED

More information

Thermal Analysis, Heat Sink Design and Performance Verification for GE Fanuc Intelligent Platform s WANic 3860 Packet Processor PCI Card

Thermal Analysis, Heat Sink Design and Performance Verification for GE Fanuc Intelligent Platform s WANic 3860 Packet Processor PCI Card CASE STUDY Thermal Analysis, Heat Sink Design and Performance Verification for GE Fanuc Intelligent Platform s WANic 3860 Packet Processor PCI Card Challenge When GE Fanuc Intelligent Platforms, a leading

More information

5W HI-POWER LED SPECIFICATION

5W HI-POWER LED SPECIFICATION 5W HI-POWER LED SPECIFICATION HPG8b-495xWHCx Drawn by Checked by Approved by RoHS Conformity DATE:2013/4/9 REV:A HUEY JANN High Power 5W LED is made of GaInN chips with precise package technique which

More information

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M Miniaturizing Flexible Circuits for use in Medical Electronics Nate Kreutter 3M Drivers for Medical Miniaturization Market Drivers for Increased use of Medical Electronics Aging Population Early Detection

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

Product family data sheet

Product family data sheet Cree XLamp MX-6 LEDs Product family data sheet CLD-DS23 Rev 3A Product Description The Cree XLamp MX-6 LED provides the proven lightingclass performance and reliability of Cree XLamp LEDs in a flat-top

More information

Reliability of the DRAGON Product Family Application Note

Reliability of the DRAGON Product Family Application Note Reliability of the DRAGON Product Family Application Note Introduction This application note provides an overview of the performance of the DRAGON product family (in this case, LEDs without plastic lenses)

More information

Power Resistor Thick Film Technology

Power Resistor Thick Film Technology Power Resistor Thick Film Technology LTO series are the extension of RTO types. We used the direct ceramic mounting design (no metal tab) of our RCH power resistors applied to semiconductor packages. FEATURES

More information

Trace Layer Import for Printed Circuit Boards Under Icepak

Trace Layer Import for Printed Circuit Boards Under Icepak Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of

More information

Effect of design parameters on temperature rise of windings of dry type electrical transformer

Effect of design parameters on temperature rise of windings of dry type electrical transformer Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University

More information

Cree XLamp XP-G LEDs PRODUCT FAMILY DATA SHEET PRODUCT DESCRIPTION FEATURES TABLE OF CONTENTS CLD-DS20 REV 4

Cree XLamp XP-G LEDs PRODUCT FAMILY DATA SHEET PRODUCT DESCRIPTION FEATURES TABLE OF CONTENTS CLD-DS20 REV 4 PRODUCT FAMILY DATA SHEET CLD-DS20 REV 4 Cree XLamp XP-G LEDs PRODUCT DESCRIPTION The XLamp XP-G LED delivers unprecedented levels of light output and efficacy for a single die LED. The XLamp XP-G LED

More information

Cree XLamp XR-E LED. Table of Contents. CLD-DS05 Rev 16B. Product family data sheet

Cree XLamp XR-E LED. Table of Contents. CLD-DS05 Rev 16B. Product family data sheet Cree XLamp XR-E LED Product family data sheet CLD-DS05 Rev 16B Product Description The XLamp XR-E LED is leading the LED lighting revolution with its unprecedented lighting-class brightness, efficacy,

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

LED light engine / OLED LED linear /area. Umodule STARK LLE-24-560-1300 CLASSIC STARK LLE. Ordering data

LED light engine / OLED LED linear /area. Umodule STARK LLE-24-560-1300 CLASSIC STARK LLE. Ordering data Ideal for linear and panel lights Luminous flux range from 1,25 1,57 lm LED system solution with outstanding system efficacy up to 113 lm/w, consisting of linear LED module and dimmable LED control gear

More information

DirectFET TM - A Proprietary New Source Mounted Power Package for Board Mounted Power

DirectFET TM - A Proprietary New Source Mounted Power Package for Board Mounted Power TM - A Proprietary New Source Mounted Power Package for Board Mounted Power by Andrew Sawle, Martin Standing, Tim Sammon & Arthur Woodworth nternational Rectifier, Oxted, Surrey. England Abstract This

More information

Excerpt Direct Bonded Copper

Excerpt Direct Bonded Copper xcerpt irect Bonded Copper Presented by ouglas C. Hopkins, Ph.. 312 Bonner Hall University at Buffalo Buffalo, Y 14620-1900 607-729-9949, fax: 607-729-7129 Authors thank Curamik lectronics A member of

More information

Cree XLamp LED Operating Capacity

Cree XLamp LED Operating Capacity Cree XLamp LED Operating Capacity Application Note CLD-AP89 rev 0D Table of Contents Introduction and executive summary... 1 What is LED operating capacity?... 2 Design approach/objectives... 2 The 6-step

More information

Handling and Processing Details for Ceramic LEDs Application Note

Handling and Processing Details for Ceramic LEDs Application Note Handling and Processing Details for Ceramic LEDs Application Note Abstract This application note provides information about the recommended handling and processing of ceramic LEDs from OSRAM Opto Semiconductors.

More information

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Table of Contents Page Method...2 Thermal characteristics of SMDs...2 Adhesives...4 Solder pastes...4 Reflow profiles...4 Rework...6

More information

Direct Attach DA700 LEDs CxxxDA700-Sxx000

Direct Attach DA700 LEDs CxxxDA700-Sxx000 Direct Attach DA7 LEDs CxxxDA7-Sxx Data Sheet Cree s Direct Attach DA7 LEDs are the next generation of solid-state LED emitters that combine highly efficient InGaN materials with Cree s proprietary device

More information

High-ohmic/high-voltage resistors

High-ohmic/high-voltage resistors FEATURES High pulse loading capability Small size. APPLICATIONS Where high resistance, high stability and high reliability at high voltage are required High humidity environment White goods Power supplies.

More information

LED Luminaire Design Guide

LED Luminaire Design Guide Application Note CLD-AP15 rev 0D Table of Contents Introduction... 1 Design Approach... 2 Design Process... 3 1. Define Lighting Requirements... 4 2. Define Design Goals... 5 3. Estimate Efficiencies of

More information

Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 1 DS-0042

Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 1 DS-0042 ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 Features High Color rendering index Follow ANSI C78.788.2008 Chromaticity co-ordinates High flux per LED Good color uniformity Industry

More information

High flux for outdoor applications

High flux for outdoor applications General Illumination LUXEON R High flux for outdoor applications LUXEON R brings illumination grade LED light sources to outdoor and industrial lighting applications and makes it easier than ever to design

More information

30 GHz 5-Bit Phase Shifter TGP2100

30 GHz 5-Bit Phase Shifter TGP2100 August, 28 3 GHz -Bit Phase Shifter TGP2 Key Features and Performance Positive Control Voltage Single-Ended Logic CMOS Compatible Frequency Range: 28-32 GHz.2µm phemt 3MI Technology Chip dimensions:.88

More information

Ampacity simulation of a high voltage cable to connecting off shore wind farms

Ampacity simulation of a high voltage cable to connecting off shore wind farms Ampacity simulation of a high voltage cable to connecting off shore wind farms Eva Pelster 1, Dr. David Wenger 1 1 Wenger Engineering GmbH, Einsteinstr. 55, 89077 Ulm, mail@wenger-engineering.com Abstract:

More information

CHM-27 COB Arrays White LED

CHM-27 COB Arrays White LED CHM-27 COB Arrays White LED Features: Table of Contents Technology Overview...2 Test Specifications...2 Chromaticity Bins...3 Product Ordering & Shipping Part Numbers...4 Product Typical Flux Range. 5

More information

Flux CCT. CRI SDCM (lm) (K) (V) (ma) (W) (lm/w)

Flux CCT. CRI SDCM (lm) (K) (V) (ma) (W) (lm/w) www.osram.com PrevaLED Flex Linear Pre-assembled connector every 1ft (281mm) Dimension (l x w x h): 5620mm x 40mm x 5mm on a reel Features Module efficacy: up to 153 lm/w Luminous flux: 1100 lm at 281

More information

MP-1919 XNOVA Cube TM SMD LED

MP-1919 XNOVA Cube TM SMD LED MP-1919 XNOVA Cube TM SMD LED Features: Table of Contents Technology Overview.... 2 Product Selection Table... 3 Operating Characteristics.. 4 Chromaticity Binning.... 5 Chromaticity Diagram.... 6 Characteristic

More information

Fortimo LED Line Gen3

Fortimo LED Line Gen3 LED Line 1 ft 1100 lm 1R LV3 Datasheet Fortimo LED Line Gen3 Fortimo LED Line systems are designed to produce pure white light for general lighting applications with high efficiency levels. The Fortimo

More information

HSMtec. Intelligent Printed Circuit Boards for innovative LED products. Copyright, Häusermann GmbH, 2012

HSMtec. Intelligent Printed Circuit Boards for innovative LED products. Copyright, Häusermann GmbH, 2012 Intelligent Printed Circuit Boards for innovative LED products Copyright, Häusermann GmbH, 2012 Häusermann GmbH I A-3571 Gars am Kamp I Zitternberg 100 I Tel.: +43 2985 2141-9620 I Fax: +43 2985 2141-333

More information