Übungen zu Kommunikationssysteme Multicast

Size: px
Start display at page:

Download "Übungen zu Kommunikationssysteme Multicast"

Transcription

1 Übungen zu Kommunikationssysteme Multicast Peter Bazan, Gerhard Fuchs, David Eckhoff

2 Multicast Classification Example Applications Principles Multicast via Unicast Application-layer Multicast Network Multicast Application-Layer vs. Network Multicast IP Multicast Addressing Layer 2 Aspects Protocols (overview & theory: local/wide area protocols, multicast trees) Protocols (implementation examples: ICMP, DVMRP, PIM DM/SM) Java example Übungen zu Kommunikationssysteme: Multicast 2

3 Classification Multicast is a type of group communication where one sender communicates with many receivers (1:m) Group communication: Multiple partners communicate in a closed group. One differentiating factor is the number of participating sender and receiver. Types of group communication: Unicast: 1:1 Concast: m:1 Multicast: 1:m Multipeer: m:n (typically emulated using multicast) Übungen zu Kommunikationssysteme: Multicast 3

4 Multicast Classification Example Applications Principles Multicast via Unicast Application-layer Multicast Network Multicast Application-Layer vs. Network Multicast IP Multicast Addressing Layer 2 Aspects Protocols (overview & theory: local/wide area protocols, multicast trees) Protocols (implementation examples: ICMP, DVMRP, PIM DM/SM) Java example Übungen zu Kommunikationssysteme: Multicast 4

5 Example Applications TV broadcast time synchronization (NTP) distribution of data (e.g. stock exchange rates) Receiver Receiver Sender Receiver Receiver Übungen zu Kommunikationssysteme: Multicast 5

6 Example Applications Multipeer Applications video conferences multiplayer games Sender Receiver Sender Receiver Sender Receiver Übungen zu Kommunikationssysteme: Multicast 6

7 Multicast Classification Example Applications Principles Multicast via Unicast Application-layer Multicast Network Multicast Application-Layer vs. Network Multicast IP Multicast Addressing Layer 2 Aspects Protocols (overview & theory: local/wide area protocols, multicast trees) Protocols (implementation examples: ICMP, DVMRP, PIM DM/SM) Java example Übungen zu Kommunikationssysteme: Multicast 7

8 Principles Multicast via Unicast source sends N unicast datagrams, one addressed to each of N receivers multicast sender routers forward unicast datagrams multicast receiver (red) not a multicast receiver (grey) Übungen zu Kommunikationssysteme: Multicast 8

9 Principles Application-layer Multicast end systems involved in multicast copy and forward unicast datagrams among themselves Übungen zu Kommunikationssysteme: Multicast 9

10 Principles Network Multicast Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers Multicast routers (red) duplicate and forward multicast datagrams Übungen zu Kommunikationssysteme: Multicast 10

11 Principles Application-Layer vs. Network Multicast Source Source n point-to-point connections single multicast connection Unicast receivers Multicast receivers Übungen zu Kommunikationssysteme: Multicast 11

12 Multicast Classification Example Applications Principles Multicast via Unicast Application-layer Multicast Network Multicast Application-Layer vs. Network Multicast IP Multicast Addressing Layer 2 Aspects Protocols (overview & theory: local/wide area protocols, multicast trees) Protocols (implementation examples: ICMP, DVMRP, PIM DM/SM) Java example Übungen zu Kommunikationssysteme: Multicast 12

13 IP Multicast Addressing multicast group concept: use of indirection hosts addresses IP datagram to multicast group routers forward multicast datagrams to hosts that have joined that multicast group multicast group Übungen zu Kommunikationssysteme: Multicast 13

14 IP Multicast Addressing class D Internet addresses reserved for multicast: host group semantics: o anyone can join (receive) multicast group o anyone can send to multicast group o no network-layer identification to hosts of members needed: infrastructure to deliver mcast-addressed datagrams to all hosts that have joined that multicast group Übungen zu Kommunikationssysteme: Multicast 14

15 IP Multicast Addressing Multicast addresses = Class D addresses address range: /4 only for destination address source address is still the unicast source address Link-Local multicast addresses only available in the subnet (will not be forwarded) address range: /24 reserved addresses (examples): all systems all routers OSPF routers OSPF designated routers Übungen zu Kommunikationssysteme: Multicast 15

16 IP Multicast Addressing Globally scoped addresses are to be used globally in the internet Source-specific multicast /8 GLOP addresses (RFC2770) /8 reserved for statically defined addresses by organizations that already have an AS number reserved address: 233.<AS>.0/24 Administratively scoped addresses /8 like RFC1918 addresses for local use only not routed in the internet Übungen zu Kommunikationssysteme: Multicast 16

17 IP Multicast Addressing thresholds are used to limit multicast traffic to a particular region same principle as in IP unicast TTL scope Initial TTL value TTL threshold Local net 1 - Site Region World Übungen zu Kommunikationssysteme: Multicast 17

18 IP Multicast Layer 2 Aspects Multicast IP addresses are mapped to special Ethernet MAC addresses The last 23 Bit of the IP Address are mapped to the MAC Address (x) Octet 0 Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 xxxxxxx1 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx broadcast / multicast bit Übungen zu Kommunikationssysteme: Multicast 18

19 IP Multicast Layer 2 Aspects Why 23 Bit? In the early 90s Steve Deering tried to get 16 Organizationally Unique Identifiers (OUI s) from the IEEE but could not pay for it. Any problems? 32 IP multicast addresses can be mapped to a single ethernet address. This may lead to performance problems! 32 Bit 28 Bit IP multicast address Header: Ethernet multicast address Header: e e-7f Bit 48 Bit Übungen zu Kommunikationssysteme: Multicast 19

20 IP Multicast Layer 2 Aspects Normal case: multicast = broadcast, i.e. flooding trough the LAN IGMP snooping Intelligent switches process all multicast packets, look for IGMP messages and analyze them Prerequisite for a broad use: layer-3-aware switches Cisco Group Management Protocol (CGMP) Intelligence only at the router, which informs its local switches No processing power at the switch is required Übungen zu Kommunikationssysteme: Multicast 20

21 IP Multicast Protocols Overview local protocol (IGMP) host interacts with local mcast router to mediate the membership to a multicast group mcast router administrates tables about the membership IGMP IGMP IGMP Übungen zu Kommunikationssysteme: Multicast 21

22 IP Multicast Protocols Overview wide-area protocol (e.g., PIM, DVMRP, MOSPF) local router interacts with other routers to mediate the receive of the mcast datagram flow organize and build multicast trees between each other datagrams are send from the root of the tree to the leaves wide-area multicast routing Übungen zu Kommunikationssysteme: Multicast 22

23 IP Multicast Protocols Theory Goal: find a tree (or trees) connecting routers having local mcast group members tree: not all paths between routers used, loop free shared-tree: same tree used by all group members source-based: different tree from each sender to rcvrs Shared tree Source-based trees Übungen zu Kommunikationssysteme: Multicast 23

24 IP Multicast Protocols Theory Approaches for building mcast trees: source-based tree: one tree per source shortest path trees reverse path forwarding group-shared tree: group uses one tree minimal spanning (Steiner) center-based trees Übungen zu Kommunikationssysteme: Multicast 24

25 IP Multicat Protocols Theory (Shortest Path Tree) mcast forwarding tree: tree of shortest path routes from source to all receivers Dijkstra s algorithm S: source R1 1 R R4 5 R5 LEGEND router with attached group member router with no attached group member R3 R6 6 R7 i link used for forwarding, i indicates order link added by algorithm Übungen zu Kommunikationssysteme: Multicast 25

26 IP Multicast Protocols Theory (Reverse Path Forwarding) relies on router s knowledge of unicast shortest path from it to sender each router has simple forwarding behavior: if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram Übungen zu Kommunikationssysteme: Multicast 26

27 IP Multicast Protocols Theory (Reverse Path Forwarding) S: source R2 R1 R4 R5 LEGEND router with attached group member router with no attached group member R3 R6 R7 datagram will be forwarded datagram will not be forwarded result is a source-specific reverse SPT may be a bad choice with asymmetric links Übungen zu Kommunikationssysteme: Multicast 27

28 IP Multicast Protocols Theory (Reverse Path Forwarding) Pruning: forwarding tree contains subtrees with no mcast group members no need to forward datagrams down subtree prune msgs sent upstream by router with no downstream group members S: source LEGEND R1 R4 router with attached group member R3 R2 R6 P P R7 R5 P router with no attached group member prune message links with multicast forwarding Übungen zu Kommunikationssysteme: Multicast 28

29 IP Multicast Protocols Theory (Steiner Tree) Shared-Tree Steiner Tree: minimum cost tree connecting all routers with attached group members problem is NP-complete excellent heuristics exists not used in practice: computational complexity information about entire network needed monolithic: rerun whenever a router needs to join/leave Übungen zu Kommunikationssysteme: Multicast 29

30 IP Multicast Protocols Theory (Center-based trees) single delivery tree shared by all one router identified as center of tree to join: edge router sends unicast join-msg addressed to center router join-msg processed by intermediate routers and forwarded towards center join-msg either hits existing tree branch for this center, or arrives at center path taken by join-msg becomes new branch of tree for this router Übungen zu Kommunikationssysteme: Multicast 30

31 IP Multicast Protocols Theory (Center-based trees) Suppose R6 chosen as center: LEGEND R1 3 R4 router with attached group member R3 R2 1 R6 2 R7 R5 1 router with no attached group member path order in which join messages generated Übungen zu Kommunikationssysteme: Multicast 31

32 IP Multicast Protocols Theory (Tunneling) Q: How to connect islands of multicast routers in a sea of unicast routers? physical topology logical topology mcast datagram encapsulated inside normal (non-multicastaddressed) datagram normal IP datagram sent thru tunnel via regular IP unicast to receiving mcast router receiving mcast router unencapsulates to get mcast datagram Übungen zu Kommunikationssysteme: Multicast 32

33 IP Multicast Protocols (IGMP) IGMP: Internet Group Management Protocol host: sends IGMP report when application joins mcast group IP_ADD_MEMBERSHIP socket option in the C socket library host need not explicitly unjoin group when leaving router: sends IGMP query at regular intervals host belonging to a mcast group must reply to query query report Übungen zu Kommunikationssysteme: Multicast 33

34 IP Multicast Protocols (IGMP) IGMP version 1 router: Host Membership Query msg broadcast on LAN to all hosts host: Host Membership Report msg to indicate group membership randomized delay before responding implicit leave via no reply to Query RFC 1112 IGMP v2: additions include last host replying to Query can send explicit Leave Group MSG router performs group-specific query to see if any hosts left in group RFC 2236 IGMP v3: The desired source (multicast sender) can be specified RFC 2933 Übungen zu Kommunikationssysteme: Multicast 34

35 IP Multicast Protocols (DVMRP) DVMRP: distance vector multicast routing protocol RFC1075 flood and prune: reverse path forwarding, source-based tree RPF tree based on DVMRP s own routing tables constructed by communicating DVMRP routers no assumptions about underlying unicast initial datagram to mcast group flooded everywhere via RPF routers not wanting group: send upstream prune msgs Übungen zu Kommunikationssysteme: Multicast 35

36 IP Multicast Protocols (DVMRP) soft state: DVMRP router periodically (1 min.) forgets branches are pruned: mcast data again flows down unpruned branch downstream router: reprune or else continue to receive data routers can quickly regraft to tree following IGMP join at leaf odds and ends commonly implemented in commercial routers Mbone routing done using DVMRP Übungen zu Kommunikationssysteme: Multicast 36

37 IP Multicast Protocols (PIM) Protocol Independent Multicast not dependent on any specific underlying unicast routing algorithm (works with all) two different multicast distribution scenarios: Dense: group members densely packed, in close proximity. bandwidth more plentiful Sparse: # networks with group members small wrt # interconnected networks group members widely dispersed bandwidth not plentiful Übungen zu Kommunikationssysteme: Multicast 37

38 IP Multicast Protocols (PIM) Consequences: Dense group membership by routers assumed until routers explicitly prune data-driven construction on mcast tree (e.g., RPF) bandwidth and nongroup-router processing profligate Sparse: no membership until routers explicitly join receiver- driven construction of mcast tree (e.g., center-based) bandwidth and non-grouprouter processing conservative Übungen zu Kommunikationssysteme: Multicast 38

39 IP Multicast Protocols (PIM-DM) flood-and-prune RPF, similar to DVMRP but underlying unicast protocol provides RPF info for incoming datagram less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm no list of PIM neighbors (receivers from the same router) request for pruning sent to all PIM local routers ( neighbors ) response to request to prune from any receiver delayed 3 seconds, so other PIM routers can override (if they want to receive packets) has protocol mechanism for router to detect it is a leafnode router Übungen zu Kommunikationssysteme: Multicast 39

40 IP Multicast Protocols (PIM-SM) center-based approach router sends join msg to rendezvous point (RP) intermediate routers update state and forward join after joining via RP, router can switch to source-specific tree increased performance: less concentration, shorter paths R3 R2 R1 join all data multicast from rendezvous point join R6 join R4 R5 R7 rendezvous point Übungen zu Kommunikationssysteme: Multicast 40

41 IP Multicast Protocols (PIM-SM) sender(s): unicast data to RP, which distributes down RProoted tree RP can extend mcast tree upstream to source the source need not to be a receiver! RP can send stop msg if no attached receivers no one is listening! R3 R2 R1 join all data multicast from rendezvous point join R6 join R4 R5 R7 rendezvous point Übungen zu Kommunikationssysteme: Multicast 41

42 Sample multicast sender import sun.net.*; // Import some needed classes import java.net.*; int port = 5555; // Port to send to String mcastgroup = " "; // Multicast address // Create a socket MulticastSocket socket = new MulticastSocket(); // We are only sending data and not receiving, // so we don't have to join the multicast group String hi = Hello! // Create a DatagramPacket DatagramPacket packet = new DatagramPacket(hi.getBytes(), hi.length(), InetAddress.getByName(mcastGroup), port); socket.send(packet, timetolive); // Send the packet socket.close(); // Close the socket when finished Übungen zu Kommunikationssysteme: Multicast 42

43 Sample multicast receiver // Import some needed classes import sun.net.*; import java.net.*; int port = 5555; // Port to listen to String mcastgroup = " "; // Multicast address // Create a socket and bind it to the port MulticastSocket socket = new MulticastSocket(port); // join the multicast group socket.joingroup(inetaddress.getbyname(mcastgroup)); // Create a DatagramPacket and a receive data byte buffer[] = new byte[1024]; DatagramPacket packet = new DatagramPacket(buffer, buffer.length); socket.receive(packet); // Print the received data System.out.println("Received data from: + packet.getaddress().tostring() + ":" + packet.getport() + " with length: " + packet.getlength()); System.out.println(new String(packet.getData())); System.out.println(); // Leave the multicast group and close the socket socket.leavegroup(inetaddress.getbyname(mcastgroup)); socket.close(); Übungen zu Kommunikationssysteme: Multicast 43

IP Multicasting. Applications with multiple receivers

IP Multicasting. Applications with multiple receivers IP Multicasting Relates to Lab 10. It covers IP multicasting, including multicast addressing, IGMP, and multicast routing. 1 Applications with multiple receivers Many applications transmit the same data

More information

CHAPTER 10 IP MULTICAST

CHAPTER 10 IP MULTICAST CHAPTER 10 IP MULTICAST This chapter is about IP multicast, the network layer mechanisms in the Internet to support applications where data is sent from a sender to multiple receivers. The first section

More information

Introduction to IP Multicast Routing

Introduction to IP Multicast Routing Introduction to IP Multicast Routing by Chuck Semeria and Tom Maufer Abstract The first part of this paper describes the benefits of multicasting, the Multicast Backbone (MBONE), Class D addressing, and

More information

- Multicast - Types of packets

- Multicast - Types of packets 1 Types of packets - Multicast - Three types of packets can exist on an IPv4 network: Unicast A packet sent from one host to only one other host. A hub will forward a unicast out all ports. If a switch

More information

Internet Protocol Multicast

Internet Protocol Multicast 43 CHAPTER Chapter Goals Explain IP multicast addressing. Learn the basics of Internet Group Management Protocol (IGMP). Explain how multicast in Layer 2 switching works. Define multicast distribution

More information

Configuration Examples. D-Link Switches L3 Features and Examples IP Multicast Routing

Configuration Examples. D-Link Switches L3 Features and Examples IP Multicast Routing Configuration Examples D-Link Switches L3 Features and Examples IP Multicast Routing DVMRP + IGMP + IGMP Snooping PIM-DM + IGMP + IGMP Snooping RIP + Multicast routing Where is IGMP snooping located Multicast

More information

The Benefits of Layer 3 Routing at the Network Edge. Peter McNeil Product Marketing Manager L-com Global Connectivity

The Benefits of Layer 3 Routing at the Network Edge. Peter McNeil Product Marketing Manager L-com Global Connectivity The Benefits of Layer 3 Routing at the Network Edge Peter McNeil Product Marketing Manager L-com Global Connectivity Abstract This white paper covers where and when to employ Layer 3 routing at the edge

More information

order ateway Sicherheit im Internet, Patrick Lederer,, 18.05.2004

order ateway Sicherheit im Internet, Patrick Lederer,, 18.05.2004 B G order ateway M ulticast P rotocol 1 Abstract 1. Introduction 1. Introduction 2. Tasks and Rules of Border Routers 3. Implementations 4. Bidirectional Trees 4.1 Third Party Dependency 4.2 Method of

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

Objectives. The Role of Redundancy in a Switched Network. Layer 2 Loops. Broadcast Storms. More problems with Layer 2 loops

Objectives. The Role of Redundancy in a Switched Network. Layer 2 Loops. Broadcast Storms. More problems with Layer 2 loops ITE I Chapter 6 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Implement Spanning Tree Protocols LAN Switching and Wireless Chapter 5 Explain the role of redundancy in a converged

More information

Multicast: Conformance and Performance Testing

Multicast: Conformance and Performance Testing White Paper Multicast: Conformance and Performance Testing 26601 Agoura Road, Calabasas, CA 91302 Tel: 818.871.1800 Fax: 818.871.1805 www.ixiacom.com Contents 1. Introduction 1 2. What Is Multicast? 1

More information

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles. Data Networking and Architecture The course focuses on theoretical principles and practical implementation of selected Data Networking protocols and standards. Physical network architecture is described

More information

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup.

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup. CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important network-layer

More information

Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM

Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM A Dell technical white paper Version 1.1 Victor Teeter Network Solutions Engineer This document is for informational purposes

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Layer 3 Routing User s Manual

Layer 3 Routing User s Manual User s Manual Second Edition, July 2011 www.moxa.com/product 2011 Moxa Inc. All rights reserved. User s Manual The software described in this manual is furnished under a license agreement and may be used

More information

Cisco CCNP 642 901 Optimizing Converged Cisco Networks (ONT)

Cisco CCNP 642 901 Optimizing Converged Cisco Networks (ONT) Cisco CCNP 642 901 Optimizing Converged Cisco Networks (ONT) Course Number: 642 901 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exams: Cisco CCNP Exam 642 901:

More information

Multicast for Enterprise Video Streaming

Multicast for Enterprise Video Streaming Multicast for Enterprise Video Streaming Protocols and Design Guide This document provides a network equipment neutral, technical overview of multicast protocols and a discussion of techniques and best

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM

Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM Rose Ann Cyril Post Graduate Student, Department of Information Technology, Rajagiri School of Engineering & Technology, Kerala,

More information

Computer Networks. Main Functions

Computer Networks. Main Functions Computer Networks The Network Layer 1 Routing. Forwarding. Main Functions 2 Design Issues Services provided to transport layer. How to design network-layer protocols. 3 Store-and-Forward Packet Switching

More information

College 5, Routing, Internet. Host A. Host B. The Network Layer: functions

College 5, Routing, Internet. Host A. Host B. The Network Layer: functions CSN-s 5/1 College 5, Routing, Internet College stof 1 Inleiding: geschiedenis, OSI model, standaarden, ISOC/IETF/IRTF structuur Secties: 1.2, 1.3, 1.4, 1.5 2 Fysieke laag: Bandbreedte/bitrate Secties:

More information

Microsoft Network Load Balancing and Cisco Catalyst Configuration

Microsoft Network Load Balancing and Cisco Catalyst Configuration Microsoft Network Load Balancing and Cisco Catalyst Configuration OVERVIEW... 2 UNICAST MODE... 2 MULTICAST MODE... 3 ANALYSIS... 4 CPU UTILIZATION... 4 CAPTURE PACKETS... 5 MICROSOFT READING... 6 MULTICAST

More information

Internet Protocols. Addressing & Services. Updated: 9-29-2012

Internet Protocols. Addressing & Services. Updated: 9-29-2012 Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is

More information

Border Gateway Protocol, Route Manipulation, and IP Multicast

Border Gateway Protocol, Route Manipulation, and IP Multicast C H A P T E R12 Border Gateway Protocol, Route Manipulation, and IP Multicast This chapter covers the Border Gateway Protocol (BGP), which is used to exchange routes between autonomous systems. It is most

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

04 Internet Protocol (IP)

04 Internet Protocol (IP) SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Design of An Global Multicast Demonstrator for Live Video Streaming on Adobe s Flash Platform

Design of An Global Multicast Demonstrator for Live Video Streaming on Adobe s Flash Platform UNIVERSITY OF OSLO Department of Informatics Design of An Global Multicast Demonstrator for Live Video Streaming on Adobe s Flash Platform Master Thesis (60 credits) Liping Huang April 25, 2013 Design

More information

Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007)

Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007) School of Business Eastern Illinois University Wide Area Networks (Week 11, Thursday 3/22/2007) Abdou Illia, Spring 2007 Learning Objectives 2 Distinguish between LAN and WAN Distinguish between Circuit

More information

Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission

Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission Majid Ashraf Derwesh Department of Electronics and Communication

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

VXLAN: Scaling Data Center Capacity. White Paper

VXLAN: Scaling Data Center Capacity. White Paper VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where

More information

Chapter 10 Link-State Routing Protocols

Chapter 10 Link-State Routing Protocols Chapter 10 Link-State Routing Protocols CCNA2-1 Chapter 10 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks

More information

Juniper / Cisco Interoperability Tests. August 2014

Juniper / Cisco Interoperability Tests. August 2014 Juniper / Cisco Interoperability Tests August 2014 Executive Summary Juniper Networks commissioned Network Test to assess interoperability, with an emphasis on data center connectivity, between Juniper

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

Indirection. science can be solved by adding another level of indirection" -- Butler Lampson. "Every problem in computer

Indirection. science can be solved by adding another level of indirection -- Butler Lampson. Every problem in computer Indirection Indirection: rather than reference an entity directly, reference it ( indirectly ) via another entity, which in turn can or will access the original entity A x B "Every problem in computer

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Explicit Multicast Routing

Explicit Multicast Routing Explicit Multicast Routing Malik Mubashir HASSAN Stagiaire, ARMOR 2 IRISA Supervisors: Bernad Cousin Miklos Molnar 1 Plan Introduction of Group Communications Various types of Group Communications Multicast

More information

20. Switched Local Area Networks

20. Switched Local Area Networks 20. Switched Local Area Networks n Addressing in LANs (ARP) n Spanning tree algorithm n Forwarding in switched Ethernet LANs n Virtual LANs n Layer 3 switching n Datacenter networks John DeHart Based on

More information

VMware Virtual SAN Layer 2 and Layer 3 Network Topologies

VMware Virtual SAN Layer 2 and Layer 3 Network Topologies VMware Virtual SAN Layer 2 and Layer 3 Network Topologies Deployments TECHNICAL WHITE PAPER Table of Contents Introduction... 2 Network and vsphere Technologies... 2 Networking Related Technologies...

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

Ethernet (LAN switching)

Ethernet (LAN switching) Ethernet ( switching) 1 Outline Interconnection devices Bridges/ switches vs. Routers Bridges Learning Bridges Transparent bridges 2 1 Bridges/ switches Interconnect multiple, possibly with different type

More information

SSC - Communication and Networking Java Socket Programming (II)

SSC - Communication and Networking Java Socket Programming (II) SSC - Communication and Networking Java Socket Programming (II) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics Multicast in Java User Datagram

More information

The necessity of multicast for IPTV streaming

The necessity of multicast for IPTV streaming The necessity of multicast for IPTV streaming ARIANIT MARAJ, ADRIAN SHEHU Telecommunication Department Faculty of Information Technology, Polytechnic University of Tirana Tirana, Republic of Albania arianit.maraj@ptkonline.com,

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) SFWR 4C03: Computer Networks & Computer Security Jan 31-Feb 4, 2005 Lecturer: Kartik Krishnan Lecture 13-16 Internet Control Message Protocol (ICMP) The operation of the Internet is closely monitored by

More information

Introduction to LAN/WAN. Network Layer

Introduction to LAN/WAN. Network Layer Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services

More information

Interconnecting Cisco Networking Devices Part 2

Interconnecting Cisco Networking Devices Part 2 Interconnecting Cisco Networking Devices Part 2 Course Number: ICND2 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exam: 640 816: ICND2 Course Overview This course

More information

Routing. An Engineering Approach to Computer Networking

Routing. An Engineering Approach to Computer Networking Routing An Engineering Approach to Computer Networking What is it? Process of finding a path from a source to every destination in the network Suppose you want to connect to Antarctica from your desktop

More information

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing Dynamic Routing Protocols II OSPF Relates to Lab 4. This module covers link state routing and the Open Shortest Path First (OSPF) routing protocol. 1 Distance Vector vs. Link State Routing With distance

More information

SECURE IP MULTICASTING WITH ENCRYPTION KEY MANAGEMENT

SECURE IP MULTICASTING WITH ENCRYPTION KEY MANAGEMENT SECURE IP MULTICASTING WITH ENCRYPTION KEY MANAGEMENT Authors: Nadim Maharjan and Daryl Moten Advisor: Dr. Richard Dean Department of Electrical and Computer Engineering Morgan State University namah1@mymail.morgan.edu,

More information

Network Layer: Network Layer and IP Protocol

Network Layer: Network Layer and IP Protocol 1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols

More information

Multicast in IPv6. David Larrabeiti López Departament of Telematic Engineering University Carlos III, Madrid http:// ://www.uc3m.

Multicast in IPv6. David Larrabeiti López Departament of Telematic Engineering University Carlos III, Madrid http:// ://www.uc3m. Multicast in IPv6 David Larrabeiti López Departament of Telematic Engineering University Carlos III, Madrid http:// ://www.uc3m.es 1 Contents The Concept Applications IP multicast service model Multicast

More information

Multicast in Wireless Mesh Networks

Multicast in Wireless Mesh Networks Multicast in Wireless Mesh Networks JIN XU A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Science Graduate Programme in Computer

More information

Christian Huitema, Routing in the Internet, Prentice Hall, 1995. Crowcroft/Handley/Wakeman, Internetworking Multimedia, 2000.

Christian Huitema, Routing in the Internet, Prentice Hall, 1995. Crowcroft/Handley/Wakeman, Internetworking Multimedia, 2000. Multicast 1 2 Overview applications models host APIs LAN (IGMP, LAN switches) intra-domain routing inter-domain routing address allocation the MBONE Additional references (some are dated!): Stephen A.

More information

CHAPTER 10 LAN REDUNDANCY. Scaling Networks

CHAPTER 10 LAN REDUNDANCY. Scaling Networks CHAPTER 10 LAN REDUNDANCY Scaling Networks CHAPTER 10 10.0 Introduction 10.1 Spanning Tree Concepts 10.2 Varieties of Spanning Tree Protocols 10.3 Spanning Tree Configuration 10.4 First-Hop Redundancy

More information

CHAPTER. IP Multicast Configuration

CHAPTER. IP Multicast Configuration CHAPTER 7 IP Multicast Configuration 258 Chapter 7 Introduction The previous chapters have discussed in great detail the methods of transmitting unicast and broadcast streams through the campus network.

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) 100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) Course Overview This course provides students with the knowledge and skills to implement and support a small switched and routed network.

More information

A Modified Shared-tree Multicast Routing Protocol in Ad Hoc Network

A Modified Shared-tree Multicast Routing Protocol in Ad Hoc Network Journal of Computing and Information Technology - CIT 13, 25, 3, 177 193 177 A Modified Shared-tree Multicast Routing Protocol in Ad Hoc Network Ziping Liu 1 and Bidyut Gupta 2 1 Computer Science Department,

More information

Network layer: Overview. Network layer functions IP Routing and forwarding

Network layer: Overview. Network layer functions IP Routing and forwarding Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Distance Vector Multicast Routing Protocol

Distance Vector Multicast Routing Protocol T. Pusateri INTERNET DRAFT Juniper Networks Obsoletes: RFC 1075 August 2000 draft-ietf-idmr-dvmrp-v3-10 Expires: February 4, 2001 Distance Vector Multicast Routing Protocol Status of this Memo This document

More information

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

640-816: Interconnecting Cisco Networking Devices Part 2 v1.1

640-816: Interconnecting Cisco Networking Devices Part 2 v1.1 640-816: Interconnecting Cisco Networking Devices Part 2 v1.1 Course Introduction Course Introduction Chapter 01 - Small Network Implementation Introducing the Review Lab Cisco IOS User Interface Functions

More information

Networking 4 Voice and Video over IP (VVoIP)

Networking 4 Voice and Video over IP (VVoIP) Networking 4 Voice and Video over IP (VVoIP) Course Objectives This course will give delegates a good understanding of LANs, WANs and VVoIP (Voice and Video over IP). It is aimed at those who want to move

More information

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób) QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS

OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea (meclavea@brocade.com) Senior Solutions Architect, Brocade Communications Inc. Jim Allen (jallen@llnw.com) Senior Architect, Limelight

More information

IP Routing Features. Contents

IP Routing Features. Contents 7 IP Routing Features Contents Overview of IP Routing.......................................... 7-3 IP Interfaces................................................ 7-3 IP Tables and Caches........................................

More information

4m. MONITORING OF ETHERNET/IP NETWORK TRAFFIC.

4m. MONITORING OF ETHERNET/IP NETWORK TRAFFIC. 4m. MONITORING OF ETHERNET/IP NETWORK TRAFFIC. Wireshark (see Section 6) is a network packet analyser. It is used to: troubleshoot network problems, examine security problems, debug protocol implementations,

More information

Internet Protocol version 4 Part I

Internet Protocol version 4 Part I Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents

More information

Implementing IPv6 Multicast

Implementing IPv6 Multicast Implementing IPv6 Multicast Last Updated: July 31, 2012 Traditional IP communication allows a host to send packets to a single host (unicast transmission) or to all hosts (broadcast transmission). IPv6

More information

Chapter 6 Configuring IP

Chapter 6 Configuring IP Chapter 6 Configuring IP This chapter describes the Internet Protocol (IP) parameters on HP ProCurve routing switches and switches and how to configure them. After you add IP addresses and configure other

More information

SSVVP SIP School VVoIP Professional Certification

SSVVP SIP School VVoIP Professional Certification SSVVP SIP School VVoIP Professional Certification Exam Objectives The SSVVP exam is designed to test your skills and knowledge on the basics of Networking, Voice over IP and Video over IP. Everything that

More information

Multicast Over Wireless Networks

Multicast Over Wireless Networks Multicast Over Wireless Networks How to ensure the participation of mobile users (no matter how disruptive the circumstances), especially for mobile commerce applications distributed over multiple networks.

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Interconnecting Cisco Network Devices 1 Course, Class Outline

Interconnecting Cisco Network Devices 1 Course, Class Outline www.etidaho.com (208) 327-0768 Interconnecting Cisco Network Devices 1 Course, Class Outline 5 Days Interconnecting Cisco Networking Devices, Part 1 (ICND1) v2.0 is a five-day, instructorled training course

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Internet Packets. Forwarding Datagrams

Internet Packets. Forwarding Datagrams Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed

More information

Chapter 3. Enterprise Campus Network Design

Chapter 3. Enterprise Campus Network Design Chapter 3 Enterprise Campus Network Design 1 Overview The network foundation hosting these technologies for an emerging enterprise should be efficient, highly available, scalable, and manageable. This

More information

CS335 Sample Questions for Exam #2

CS335 Sample Questions for Exam #2 CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to

More information

BUILDING MPLS-BASED MULTICAST VPN SOLUTION. DENOG3 Meeting, 20.10.2011/Frankfurt Carsten Michel

BUILDING MPLS-BASED MULTICAST VPN SOLUTION. DENOG3 Meeting, 20.10.2011/Frankfurt Carsten Michel BUILDING MPLS-BASED MULTICAST VPN SOLUTION DENOG3 Meeting, 20.10.2011/Frankfurt Carsten Michel Agenda Multicast VPN (mvpn) Overview L3VPN Multicast Solution using PIM/GRE (Draft-Rosen) MPLS Multicast Building

More information

Definition. A Historical Example

Definition. A Historical Example Overlay Networks This lecture contains slides created by Ion Stoica (UC Berkeley). Slides used with permission from author. All rights remain with author. Definition Network defines addressing, routing,

More information

hp ProLiant network adapter teaming

hp ProLiant network adapter teaming hp networking june 2003 hp ProLiant network adapter teaming technical white paper table of contents introduction 2 executive summary 2 overview of network addressing 2 layer 2 vs. layer 3 addressing 2

More information

What is VLAN Routing?

What is VLAN Routing? Application Note #38 February 2004 What is VLAN Routing? This Application Notes relates to the following Dell product(s): 6024 and 6024F 33xx Abstract Virtual LANs (VLANs) offer a method of dividing one

More information

Can PowerConnect Switches Be Used in IP Multicast Networks?

Can PowerConnect Switches Be Used in IP Multicast Networks? PowerConnect Application Note #6 January 2004 Can PowerConnect Switches Be Used in IP Multicast Networks? This Application Note relates to the following Dell PowerConnect products: PowerConnect 33xx PowerConnect

More information

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities) QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p

More information

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem

More information

Internetworking. Problem: There is more than one network (heterogeneity & scale)

Internetworking. Problem: There is more than one network (heterogeneity & scale) Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results. May 1, 2009

Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results. May 1, 2009 Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results May 1, 2009 Executive Summary Juniper Networks commissioned Network Test to assess interoperability between its EX4200 and EX8208

More information

Link Failure Recovery. for MPLS Networks with Multicasting

Link Failure Recovery. for MPLS Networks with Multicasting Link Failure Recovery for MPLS Networks with Multicasting A Thesis Presented to the faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements

More information

- Hubs vs. Switches vs. Routers -

- Hubs vs. Switches vs. Routers - 1 Layered Communication - Hubs vs. Switches vs. Routers - Network communication models are generally organized into layers. The OSI model specifically consists of seven layers, with each layer representing

More information

EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE

EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE EXECUTIVE SUMMARY Enterprise network managers are being forced to do more with less. Their networks are growing in size and complexity. They need

More information

Clustering. Configuration Guide IPSO 6.2

Clustering. Configuration Guide IPSO 6.2 Clustering Configuration Guide IPSO 6.2 August 13, 2009 Contents Chapter 1 Chapter 2 Chapter 3 Overview of IP Clustering Example Cluster... 9 Cluster Management... 11 Cluster Terminology... 12 Clustering

More information

TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems

TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven

More information

Designing and Developing Scalable IP Networks

Designing and Developing Scalable IP Networks Designing and Developing Scalable IP Networks Guy Davies Telindus, UK John Wiley & Sons, Ltd Contents List of Figures List of Tables About the Author Acknowledgements Abbreviations Introduction xi xiii

More information

INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1)

INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1) INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1) COURSE OVERVIEW: Interconnecting Cisco Networking Devices, Part 1 (ICND1) v2.0 is a five-day, instructor-led training course that teaches learners

More information

IP Multicast and IGMP: Hewlett-Packard Procurve Switch 4108GL Default Behavior, Address Mapping, and Reserved Addresses

IP Multicast and IGMP: Hewlett-Packard Procurve Switch 4108GL Default Behavior, Address Mapping, and Reserved Addresses IP Multicast and IGMP: Hewlett-Packard Procurve Switch 4108GL Default Behavior, Address Mapping, and Reserved Addresses This article applies to the following Hewlett-Packard Procurve Switch: 4108GL (J4865A)

More information