Effiziente Simulation von Aeroschallquellen. Roland Ewert Technische Akustik Institut für Aerodynamik und Strömungstechnik DLR Braunschweig

Size: px
Start display at page:

Download "Effiziente Simulation von Aeroschallquellen. Roland Ewert Technische Akustik Institut für Aerodynamik und Strömungstechnik DLR Braunschweig"

Transcription

1 DLR.de Folie 1 > Vortrag > Ewert werkstattgespräch_ewert.pptx > Effiziente Simulation von Aeroschallquellen Roland Ewert Technische Akustik Institut für Aerodynamik und Strömungstechnik DLR Braunschweig

2 DLR.de Folie 2 > Vortrag > Ewert werkstattgespräch_ewert.pptx > Sources of exterior/interior (interaction) noise at aircraft Re-Number of order 10mio! slat wing tip flap side edge landing gear wheel bay (cavities) Jet-Flap Interaction Jet Noise

3 Chart 3 Computational Aeroacoustic (CAA) Simulation Physical problems to be treated in aeroacoustics Sound generation broadband Sound generation broadband / tonal (1) Vortex shedding (2) Parker modes Sound generated by flows Aeroacoustics Sound propagation through flows (1) Sound-flow interactions (2) Fluid-acoustic feedback mechanisms (e.g. Cavity Noise)

4 Sound propagation CAA Codes PIANO and DISCO - PIANO code of DLR based on structured multi-block (SMB) meshes + finite differences - Dispersion Relation Preserving (DRP) scheme (Tam & Webb 1993) Volume discretization, moving medium 30P30N, PIANO SMB mesh (2-D) McDonnell Douglas (now Boeing) 30P30N profile - Discontinuous Galerkin methods for CAA (Bauer et al. 2011) - Simplified mesh generation based on unstructured meshes with high-order methods 30P30N, unstructured mesh (2-D, triangles) Disco (DGM) M. Bauer et al., 2011

5 CAA Code PIANO Sound propagation in flow Linearized Euler Equations (LEE) Acoustic Perturbation Equations (APE*) Linearized Navier-Stokes (LNS) Non-linear Euler Equations in perturbation form Non-linear Navier-Stokes in perturbation form (NLPE) prime : fluctuations over given flow Volume discretization, moving medium Sources to force sound LEE 0 : Mean-flow from steady RANS *JCP 188, 2003

6 CAA Code PIANO Sound propagation in flow Modellierung Propeller als rotierende Quellen (Input: RANS) Volume discretization, moving medium vorticity of 3 rotating point forces NWB test propeller induced leading edge sound flap sound sound field of 3 rotating point forces sound field of 3 rotating point forces + plate interaction Dierke, Delfs, Lenffers, Buchholz,Almoneit (Bürgernahes Flugzeug) CAA PIANO

7 Boundary Element Method - Memory 6 elements per wave length Number of triangle elements N, Surface A λ 2 A N 6 λ 2 A340: 341 Hz, 4000 Hz, 2 A 2250m 4 N N Matrix Elements: Single precision storage: Bytes, approx TB Memory Also working memory needed Tianhe-2 (1 of TOP500) has about 1024 TB Memory... 15

8 Fast Multipole Method Iterative solution of BEM equation Acceleration of matrix-vector product from O(N^2) to O(N log(n)) Splitting of every row of product into near and far field terms Calculation of far field interactions by a series expansion Far field contributions are collected and distributed over an Octree covering the geometry Example: Full scale aircraft (surface 582 m^2) 2,170,000 Triangles Wavelength 0.1 m (3410 Hz) 48 GB total memory (4 nodes) 150s for one iteration step on 32 cores (Opteron 2.7 GHz) 200 iteration steps (conjugate residual method)

9 Source: urans Sound: FMM BEM

10 Chart 10 Computational Aeroacoustic (CAA) Simulation Physical problems to be treated in aeroacoustics Sound generation broadband Sound generation broadband / tonal (1) Vortex shedding (2) Parker modes Sound generated by flows Aeroacoustics Sound propagation through flows (1) Sound-flow interactions (2) Fluid-acoustic feedback mechanisms (e.g. Cavity Noise)

11 Chart 11 Aeroacoustic Sound Sources From CFD RANS TAU RSM LES AIA Aachen Example: LuFo FREQUENZ

12 DLR.de Folie 12 > Vortrag > Ewert werkstattgespräch_ewert.pptx > /19 Vorhersage von Aeroschallquellen Turbulence related noise prediction Increasing computational complexity and time Increasing modeling assumptions Semi-empirical models Stochastic sound sources Scale resolving simulation BPM (NAFNoise) Hybrid RANS/CAA DNS/ LES Approach pursued by AS-TEA

13 DLR.de Chart 13 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Vorhersage von Aeroschallquellen RANS basiert: First-Principle + Prise Empirie

14 DLR.de Chart 14 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Sound generation from stochastic turbulence CAA Simulation of High-Lift Noise CAA validation DGM CAA solver DISCO SMB CAA solver PIANO DNW LLF experiment EU OPENAIR, M. Pott-Pollenske, M. Herr

15 DLR.de Chart 15 Vorticity from RANS derived vorticity correlation tensor Garski & Bernard:

16 DLR.de Chart 16 FRPM reconstructed vorticity correlations

17 Chart 17 Breitbandlärmvorhersage für turbulente Quellen Airframe Noise 2.5-D / 3-D 2-D Jet Noise Combustion Noise Haystacking / Spectral Broadening Surface excitation

18 Grenzschichtinduzierte Druckfluktuationen auf Rumpfoberfläche CFD-CAA (TAU/FRPM/PIANO) Simulation A320 ATRA vs. Flugversuch Herausforderungen: Einfluss Druckgradient Einfluss Machzahl Lufo-SIMKAB Hu, Appel, Herr

19 Prediction of jet flap interference (JFI) noise FRPM jet noise model to cover non axis-symmetric problems and installation effects AIAA , AIAA (FRPM literature: AIAA , AIAA ) full 3D FRPM jet noise model Development of relaxation source terms for forced eddy simulation AIAA to capture additional JFI noise sources Tam & Auriault source JFI noise maximum Eddy relaxation source Ewert, Neifeld

20 AIRBUS DEUTSCHLAND GmbH. Alle Rechte vorbehalten. Vertrauliches und geschütztes Dokument. FRPM sources combined with Fast Multipole Solver AP1320 COMPANOS Geschwindigkeitsrandbedingung für FM-BEM Code aus FRPM Fernfeldspektrum einer Simulation eines 2,5D-Flügelsegments zur Validierung Induced fluctuating velocities on FRPM domain Boundary condition for FM-BEM: Result: Farfield spectrum underneath slat FM-BEM sound propagation code Seite 20

21 DLR.de Chart 21 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Deterministic noise source model / Tones / Feed Back Tones (flow-acoustic feedback) not resolved AoA=18 Re=1.3e6 c=0.3m Ma=0.15 Broadband part of spectrum resolved F15 modified Acoustic Perturbation Equations (APE) Vortex Sound Sources CFD / RANS 2+1-D Synthetic Turbulence

22 DLR.de Chart 22 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Teilskalenauflösende Simulation The non-linear terms of the Navier-Stokes equations in perturbation form are the sources of the LEE (no source left ) Navier-Stokes, perturbation form?... Linearized Euler Equations (LEE)... Non-linear Sound Sources CFD / RANS 3+1-D Synthetic Turbulence

23 Unsteadiness (Spectral Content) fully prescribed (current situation) Physical Quality of Solution DLR.de Chart 23 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Teilskalenauflösende Simulation RANS URANS DES LES DNS combined physical quality unsteadiness prescribed part resolved part control parameter, grid dependent Computational Effort CAA with RANS based deterministic source model

24 DLR.de Chart 24 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Relaxation Source Term Test CAA Simulation of High-Lift Noise (AIAA ) DNW LLF experiment EU OPENAIR, M. Pott-Pollenske, M. Herr

25 DLR.de Folie 25 > Vortrag > Autor Dokumentname > Datum Danke für Ihre Aufmerksamkeit!

26 DLR.de Airfoil Trailing-Edge Noise Christof Rautmann AIAA Atlanta /19 Results NACA0012 (BANCII) CAA 1/3 octave band SPL spectra NACA0012; Ma=0.165; α=0, 4, 6 α=0 α=4 α=6 good agreement with experimental data AoA influence on spectra reproduced

27 DLR.de Folie 27 > Vortrag > Ewert werkstattgespräch_ewert.pptx > Sources of exterior noise at aircraft Re-Number of order 10mio! slat wing tip flap side edge landing gear wheel bay (cavities) Jet-Flap Interaction Jet Noise

28 DLR.de Chart 28 > AIAA 2014 > Ewert Presentation_AIAA_ewert.pptx > Teilskalenauflösende Simulation Goal: Partly scale resolving simulation by resolving unsteady perturbation dynamics on given mesh forced by 3+1-D synthetic turbulence (flowacoustic feedback becomes feasible) Goal: Smooth transition between regions with deterministic source mode and partly scale resolving simulation use LEE (first step) and Navier-Stokes equations in perturbation form How to couple 3+1-D synthetic turbulence with equations? Hydrodynamic instabilities possible Linearized Euler Equations (LEE) Non-linear Sound Sources CFD / RANS 3+1-D Synthetic Turbulence

Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling

Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling H. Dechipre a, M. Hartmann a, J. W Delfs b and R. Ewert b a Volkswagen AG, Brieffach 1777, 38436 Wolfsburg,

More information

CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise)

CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) Arne Stuermer & Jianping Yin Institute of Aerodynamics & Flow Technology DLR Braunschweig Germany 14th CEAS-ASC Workshop October

More information

Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology

Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology N. Kroll, C.-C. Rossow DLR, Institute of Aerodynamics and Flow Technology DLR Institute of Aerodynamics and

More information

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

Module 6 Case Studies

Module 6 Case Studies Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required

More information

Computational Fluid Dynamics Research Projects at Cenaero (2011)

Computational Fluid Dynamics Research Projects at Cenaero (2011) Computational Fluid Dynamics Research Projects at Cenaero (2011) Cenaero (www.cenaero.be) is an applied research center focused on the development of advanced simulation technologies for aeronautics. Located

More information

CFD Applications using CFD++ Paul Batten & Vedat Akdag

CFD Applications using CFD++ Paul Batten & Vedat Akdag CFD Applications using CFD++ Paul Batten & Vedat Akdag Metacomp Products available under Altair Partner Program CFD++ Introduction Accurate multi dimensional polynomial framework Robust on wide variety

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

XFlow CFD results for the 1st AIAA High Lift Prediction Workshop

XFlow CFD results for the 1st AIAA High Lift Prediction Workshop XFlow CFD results for the 1st AIAA High Lift Prediction Workshop David M. Holman, Dr. Monica Mier-Torrecilla, Ruddy Brionnaud Next Limit Technologies, Spain THEME Computational Fluid Dynamics KEYWORDS

More information

Introductory FLUENT Training

Introductory FLUENT Training Chapter 10 Transient Flow Modeling Introductory FLUENT Training www.ptecgroup.ir 10-1 Motivation Nearly all flows in nature are transient! Steady-state assumption is possible if we: Ignore transient fluctuations

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge Programme Discussions Wissenschaftstag Braunschweig 2015 Kevin Nicholls, EIVW Prepared by Heinz Hansen TOP-LDA Leader, ETEA Presented by Bernhard Schlipf, ESCRWG Laminarität für zukünftige Verkehrsflugzeuge

More information

Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster

Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster Mark J. Stock, Ph.D., Adrin Gharakhani, Sc.D. Applied Scientific Research, Santa Ana, CA Christopher P. Stone, Ph.D. Computational

More information

Numerical simulation of maneuvering combat aircraft

Numerical simulation of maneuvering combat aircraft Numerical simulation of maneuvering combat aircraft Andreas Schütte DLR - German Aerospace Center Institute of Aerodynamics and Flow Technology Oct. 14 th 2005, Stuttgart Folie 1 > HLRS 2005 > A. Schütte

More information

Development and optimization of a hybrid passive/active liner for flow duct applications

Development and optimization of a hybrid passive/active liner for flow duct applications Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic

More information

Gradient Term Filtering for Stable Sound Propagation with Linearized Euler Equations

Gradient Term Filtering for Stable Sound Propagation with Linearized Euler Equations AIAA Aviation 16-20 June 2014, Atlanta, GA 20th AIAA/CEAS Aeroacoustics Conference AIAA 2014-3306 Gradient Term Filtering for Stable Sound Propagation with Linearized Euler Equations Xin Zhang 1, Xiaoxian

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Aerodynamics Computational Fluid Dynamics Industrial Use of High Fidelity Numerical Simulation of Flow about Aircraft Presented by Dr. Klaus Becker / Aerodynamic Strategies Contents Aerodynamic Vision

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

CFD Lab Department of Engineering The University of Liverpool

CFD Lab Department of Engineering The University of Liverpool Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National

More information

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.

More information

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357

More information

Wind-Tunnel Simulation using TAU on a PC-Cluster: Resources and Performance Stefan Melber-Wilkending / DLR Braunschweig

Wind-Tunnel Simulation using TAU on a PC-Cluster: Resources and Performance Stefan Melber-Wilkending / DLR Braunschweig Wind-Tunnel Simulation using TAU on a PC-Cluster: Resources and Performance Stefan Melber-Wilkending / DLR Braunschweig Folie 1 > Vortrag > Stefan Melber-Wilkending Wind-Tunnel Simulation using TAU on

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control

Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control Dennis Keller Abstract The aim of the investigation is to gain more

More information

CFD analysis for road vehicles - case study

CFD analysis for road vehicles - case study CFD analysis for road vehicles - case study Dan BARBUT*,1, Eugen Mihai NEGRUS 1 *Corresponding author *,1 POLITEHNICA University of Bucharest, Faculty of Transport, Splaiul Independentei 313, 060042, Bucharest,

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

C3.8 CRM wing/body Case

C3.8 CRM wing/body Case C3.8 CRM wing/body Case 1. Code description XFlow is a high-order discontinuous Galerkin (DG) finite element solver written in ANSI C, intended to be run on Linux-type platforms. Relevant supported equation

More information

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014 Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction

More information

Drag Analysis for an Economic Helicopter. S. Schneider, S. Mores, M. Edelmann, A. D'Alascio and D. Schimke

Drag Analysis for an Economic Helicopter. S. Schneider, S. Mores, M. Edelmann, A. D'Alascio and D. Schimke Drag Analysis for an Economic Helicopter S. Schneider, S. Mores, M. Edelmann, A. D'Alascio and D. Schimke Content Numerical Simulation vs. Measurement Wind Tunnel Setup Numerical Simulation Setup Discussion

More information

TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL

TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL Walid Khier, Thorsten Schwarz, Jochen Raddatz presented by Andreas Schütte DLR, Institute of Aerodynamics and Flow Technology

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

CFD simulations of flow over NASA Trap Wing Model

CFD simulations of flow over NASA Trap Wing Model CFD simulations of flow over NASA Trap Wing Model Andy Luo Swift Engineering Pravin Peddiraju, Vangelis Skaperdas BETA CAE Systems Introduction A cooperative study was undertaken by BETA and Swift Engineering

More information

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains IJR International Journal of Railway Vol. 7, No. 4 / December 2014, pp. 100-108 The Korean Society for Railway Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains Tae-Min Kim and Jung-Soo

More information

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Dr.-Ing. Achim Basermann, Dr. Hans-Peter Kersken, Melven Zöllner** German Aerospace

More information

Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise

Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise Building Design for Advanced Technology Instruments Sensitive to Acoustic Noise Michael Gendreau Colin Gordon & Associates Presentation Outline! High technology research and manufacturing instruments respond

More information

Purdue University - School of Mechanical Engineering. Objective: Study and predict fluid dynamics of a bluff body stabilized flame configuration.

Purdue University - School of Mechanical Engineering. Objective: Study and predict fluid dynamics of a bluff body stabilized flame configuration. Extinction Dynamics of Bluff Body Stabilized Flames Investigator: Steven Frankel Graduate Students: Travis Fisher and John Roach Sponsor: Air Force Research Laboratory and Creare, Inc. Objective: Study

More information

Status and Future Challenges of CFD in a Coupled Simulation Environment for Aircraft Design

Status and Future Challenges of CFD in a Coupled Simulation Environment for Aircraft Design Status and Future Challenges of CFD in a Coupled Simulation Environment for Aircraft Design F. CHALOT, T. FANION, M. MALLET, M. RAVACHOL and G. ROGE Dassault Aviation 78 quai Dassault 92214 Saint Cloud

More information

KATnet Key Aerodynamic Technologies for Aircraft Performance Improvement

KATnet Key Aerodynamic Technologies for Aircraft Performance Improvement Fifth Community Aeronautical Days 2006, Vienna, Austria, 19-21 June 2006 Presented by Géza Schrauf Airbus With contributions of Burkhard Gölling and Norman Wood KATnet Key Aerodynamic Technologies for

More information

Computational Simulation of Flow Over a High-Lift Trapezoidal Wing

Computational Simulation of Flow Over a High-Lift Trapezoidal Wing Computational Simulation of Flow Over a High-Lift Trapezoidal Wing Abhishek Khare a,1, Raashid Baig a, Rajesh Ranjan a, Stimit Shah a, S Pavithran a, Kishor Nikam a,1, Anutosh Moitra b a Computational

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

Industrial Application of CFD in Airbus

Industrial Application of CFD in Airbus STAR Konferenz Deutschland 9.-10. November 2009 November 2009 Dr.-Ing. Andreas Wick Environmental Control Systems CFD Focal Point Airbus Operations GmbH Industrial Application of CFD in Airbus An Air Systems

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

A Load Balancing Tool for Structured Multi-Block Grid CFD Applications

A Load Balancing Tool for Structured Multi-Block Grid CFD Applications A Load Balancing Tool for Structured Multi-Block Grid CFD Applications K. P. Apponsah and D. W. Zingg University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, M3H 5T6, Canada Email:

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave

Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer

More information

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and

More information

Overset and Adaptive Meshes for Stabilized Finite-Element Scheme

Overset and Adaptive Meshes for Stabilized Finite-Element Scheme Overset and Adaptive Meshes for Stabilized Finite-Element Scheme W. Kyle Anderson, Behzad Ahrabi, and Chao Liu 2014 CFD Summer School Modern Techniques for Aerodynamic Analysis and Design Beijing Computational

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

3.0 Exhaust Muffler Design Principles. 3.1 Basic Concepts

3.0 Exhaust Muffler Design Principles. 3.1 Basic Concepts 3.0 Exhaust Muffler Design Principles 3.1 Basic Concepts Internal combustion engines are typically equipped with an exhaust muffler to suppress the acoustic pulse generated by the combustion process. A

More information

How To Visualize At The Dlr

How To Visualize At The Dlr Interactive Visualization of Large Simulation Datasets Andreas Gerndt, Rolf Hempel, Robin Wolff DLR Simulation and Software Technology EuroMPI 2010 Conference, Stuttgart, Sept. 13-15, 2010 Folie 1 Introduction

More information

FLY-OVER SOURCE LOCALISATION ON A BOEING 747-400

FLY-OVER SOURCE LOCALISATION ON A BOEING 747-400 BeBeC-2010-13 FLY-OVER SOURCE LOCALISATION ON A BOEING 747-400 H. Siller 1, M. Drescher 1, G. Saueressig 2, R. Lange 2 1 DLR Institute of Propulsion Technology, Engine Acoustics, Berlin, Germany 2 Deutsche

More information

CFD Analysis of Civil Transport Aircraft

CFD Analysis of Civil Transport Aircraft IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar

More information

Hybrid Noise Predictions Of A Radial Notebook Blower

Hybrid Noise Predictions Of A Radial Notebook Blower Hybrid Noise Predictions Of A Radial Notebook Blower Marlene Sanjose 1 *, Stephane Moreau 1, Jessica Gullbrand 2 SYMPOSIA ON ROTATING MACHINERY ISROMAC 2016 International Symposium on Transport Phenomena

More information

PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION

PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION TASK QUARTERLY 14 No 3, 297 305 PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION PIOTR DOERFFER AND OSKAR SZULC Institute of Fluid-Flow Machinery, Polish Academy

More information

Calculation of Eigenmodes in Superconducting Cavities

Calculation of Eigenmodes in Superconducting Cavities Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December

More information

Application of CFD in connection with ship design

Application of CFD in connection with ship design DANSIS meeting Lyngby, 13 May 2009 Application of CFD in connection with ship design www.force.dk Background Method Examples Summary Claus Daniel Simonsen FORCE Technology Background When a ship, which

More information

How To Make A Safe Landing

How To Make A Safe Landing Towards understanding of wake vortex evolution during approach and landing with and w/o plate lines F. Holzäpfel 1, A. Stephan 1, T. Misaka 1,2, S. Körner 1 1 Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen,

More information

Computational Fluid Dynamics. Department of Aerospace Engineering, IIT Bombay

Computational Fluid Dynamics. Department of Aerospace Engineering, IIT Bombay Computational Fluid Dynamics Department of Aerospace Engineering, IIT Bombay Expertise Core CFD and CEM Algorithm development Hypersonics, internal and external flows Grid generation: IITZeus Particle

More information

Introduction to CFD Basics

Introduction to CFD Basics Introduction to CFD Basics Rajesh Bhaskaran Lance Collins This is a quick-and-dirty introduction to the basic concepts underlying CFD. The concepts are illustrated by applying them to simple 1D model problems.

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User

More information

Numerical Investigation of the Aerodynamic Properties of a Flying Wing Configuration

Numerical Investigation of the Aerodynamic Properties of a Flying Wing Configuration 30th AIAA Applied Aerodynamics Conference 25-28 June 2012, New Orleans, Louisiana AIAA 2012-3325 Numerical Investigation of the Aerodynamic Properties of a Flying Wing Configuration Kerstin C. Huber 1

More information

External bluff-body flow-cfd simulation using ANSYS Fluent

External bluff-body flow-cfd simulation using ANSYS Fluent External bluff-body flow-cfd simulation using ANSYS Fluent External flow over a bluff body is complex, three-dimensional, and vortical. It is massively separated and it exhibits vortex shedding. Thus,

More information

High-fidelity electromagnetic modeling of large multi-scale naval structures

High-fidelity electromagnetic modeling of large multi-scale naval structures High-fidelity electromagnetic modeling of large multi-scale naval structures F. Vipiana, M. A. Francavilla, S. Arianos, and G. Vecchi (LACE), and Politecnico di Torino 1 Outline ISMB and Antenna/EMC Lab

More information

Aerodynamic Simulation. Viscous CFD Code Validation

Aerodynamic Simulation. Viscous CFD Code Validation Aerodynamic Simulation using STAR-CCM+ Viscous CFD Code Validation 19 March 2013 CD-adapco STAR-CCM+ Code Validation Efforts Kenneth E. Xiques CRM Solutions 4092 Memorial Pkwy SW, Suite 200 Huntsville,

More information

Computational Fluid Dynamics in Automotive Applications

Computational Fluid Dynamics in Automotive Applications Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational

More information

TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations

TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations 05.06.2014 Dipl.-Ing. Jan Hesse, Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243

More information

Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures

Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures H. Song*, M. Damodaran*and Quock Y. Ng** *Singapore-Massachusetts Institute of Technology Alliance (SMA) Nanyang Technological

More information

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

More information

Circulation Control NASA activities

Circulation Control NASA activities National Aeronautics and Space Administration Circulation Control NASA activities Dr. Gregory S. Jones Dr. William E. Millholen II Research Engineers NASA Langley Research Center Active High Lift and Impact

More information

Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM

Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas

More information

Sound propagation in a lined duct with flow

Sound propagation in a lined duct with flow Sound propagation in a lined duct with flow Martien Oppeneer supervisors: Sjoerd Rienstra and Bob Mattheij CASA day Eindhoven, April 7, 2010 1 / 47 Outline 1 Introduction & Background 2 Modeling the problem

More information

Efficient Convergence Acceleration for a Parallel CFD Code

Efficient Convergence Acceleration for a Parallel CFD Code Efficient Convergence Acceleration for a Parallel CFD Code R.D. Williams a, J. Häuser b, and R. Winkelmann b a California Institute of Technology, Pasadena, California b Center of Logistics and Expert

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

Application of FEM-Tools in the Engine Development Process

Application of FEM-Tools in the Engine Development Process Application of FEM-Tools in the Engine Development Process H. Petrin, B. Wiesler e-mail: helmut.petrin@avl.com, bruno.wiesler@avl.com AVL List GmbH Graz, Austria Abstract The requirements for the development

More information

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National

More information

MDO of Forward Swept Wings

MDO of Forward Swept Wings MDO of Forward Swept Wings KATnet II Workshop, 28-29 January 2008, Braunschweig Martin Hepperle DLR Institute of Aerodynamics and Flow Technology, Braunschweig Folie 1 Martin Hepperle Institute of Aerodynamics

More information

High-Order CFD Methods: Current Status and Perspective

High-Order CFD Methods: Current Status and Perspective INTERNATIONAL JOURNAL FOR NERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2012; 00:1 42 Published online in Wiley InterScience (www.interscience.wiley.com). High-Order CFD Methods: Current Status

More information

Calculation of Eigenfields for the European XFEL Cavities

Calculation of Eigenfields for the European XFEL Cavities Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting

More information

Waves. Wave Parameters. Krauss Chapter Nine

Waves. Wave Parameters. Krauss Chapter Nine Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one

More information

Some scientific challenges in aerodynamics for wind turbines

Some scientific challenges in aerodynamics for wind turbines Some scientific challenges in aerodynamics for wind turbines Christian Bak Senior Scientist Team Leader: Aerodynamics, aeroacoustics, airfoil and blade design Technical University of Denmark DTU Wind Energy

More information

Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

More information

NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION

NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION HYUNG SUK KIM (1), MOONHYEONG PARK (2), MOHAMED NABI (3) & ICHIRO KIMURA (4) (1) Korea Institute of Civil Engineering and Building Technology,

More information

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com RESEARCH PROJECTS For more information about our research projects please contact us at: info@naisengineering.com Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Fluid-Structure Acoustic Analysis with Bidirectional Coupling and Sound Transmission

Fluid-Structure Acoustic Analysis with Bidirectional Coupling and Sound Transmission VPE Swiss Workshop Acoustic Simulation 12. Sept. 2013 Fluid-Structure Acoustic Analysis with Bidirectional Coupling and Sound Transmission Reinhard Helfrich INTES GmbH, Stuttgart info@intes.de www.intes.de

More information

Eigenständige Erkundung komplexer Umgebungen mit einem Hubschrauber UAV und dem Sampling basierten Missionsplaner MiPlEx

Eigenständige Erkundung komplexer Umgebungen mit einem Hubschrauber UAV und dem Sampling basierten Missionsplaner MiPlEx Eigenständige Erkundung komplexer Umgebungen mit einem Hubschrauber UAV und dem Sampling basierten Missionsplaner MiPlEx Florian-Michael Adolf DLR Institut für Flugsystemtechnik Abt. Unbemannte Luftfahrtzeuge

More information