Computer-Aided Design of RF and Microwave Mixers
|
|
|
- Alisha George
- 9 years ago
- Views:
Transcription
1 Computer-Aided Design of RF and Microwave Mixers S. A. Maas Applied Wave Research, Inc E. Grand Ave., Suite 530 El Segundo, California, USA Abstract This paper describes the current state of the art in the design, analysis, and computer modeling of microwave and RF mixers. We show how modern computer analysis (CAD) tools, especially general-purpose harmonic-balance simulators and planar electromagnetic simulators, have improved both the quality of mixer designs and the efficiency of the design process. Simultaneously, new approaches to the design of baluns and passive structures have resulted in high-performance, broadband designs. As a result, mixer technology has reached a high level of maturity. Introduction Since the invention of the superheterodyne receiver by Edwin Armstrong in 1917, mixers have been essential parts of radio communication systems. Mixer design has traditionally been an approximate process, at best using special-purpose computer programs. The development of general-purpose harmonic-balance simulators and electromagnetic simulators, however, has improved the accuracy of the design process enormously, and it has even made the design of a wide variety of new balun structures possible. These have been particularly valuable in monolithic circuits. Mixers can be broadly categorized as active or passive. Passive mixers primarily use Schottky-barrier diodes, although a relatively new type of passive mixer, the FET resistive mixer [1], recently has become popular. FET resistive mixers use the resistive channel of a MESFET to provide low-distortion mixing, with approximately the same conversion loss as a diode mixer. Active mixers use either FET or bipolar devices. FETs (either MESFETs or HEMTs) are used for most microwave and RF applications where active mixers are employed; BJTs and occasionally HBTs are used most frequently as Gilbert multipliers [2] for modulation, phase detection, and similar purposes. The theory of both active and passive mixers has been well known for some time [3-8]. Mixer Types and Technologies Although single-device mixers occasionally are used, most practical mixers are balanced. Balanced mixers require baluns or hybrids, and these largely determine the bandwidth and
2 overall performance of the mixer. Thus, they are the subject of considerable research interest. In this paper, we shall consider only balanced mixers. In spite of the maturity of FET circuits, diode mixers are still widely used in microwave circuits. Diode mixers have an important advantage over FETs and bipolar devices: a Schottky-barrier diode is inherently a resistive device, and as such has very wide bandwidth. The bandwidths of diode mixers are limited primarily by the bandwidths of the baluns, not the diodes. FETs, in contrast, have a high-q gate-input impedance, causing difficulties in achieving flat, wide bandwidth. Diode mixers usually have 5-8 db conversion loss, while active mixers usually can achieve at least a few db of gain. Although properly designed active mixers can achieve somewhat lower noise figures than diode mixers, most systems can tolerate a relatively noisy mixer, so the diode mixer s loss and noise are rarely a significant disadvantage. Broadband diode mixers usually do not require more local-oscillator (LO) power than active mixers, but narrowband active mixers may have an LO-power advantage. Finally, balanced active mixers always require an IF hybrid or balun; diode mixers generally do not. When the IF frequency is low, the resulting large size of the IF balun may be troublesome, especially in monolithic circuits. Finally, even balanced active mixers require matching and filtering circuits, while balanced diode mixers largely do not. Active mixers have a few important advantages over diode mixers besides their superior gain and noise figure. High-quality diodes are often difficult to produce in FET monolithic circuit technologies, so active FET mixers often are easier to integrate. Diodes in such technologies usually consist of a FET gate-to-channel junction, which usually is a very poor diode. Dual-gate FET mixers offer inherent LO-RF isolation, even in single-device circuits, although noise figure and gain usually are slightly worse than in single-gate FET mixers. Mixer Design The design of balanced mixers passive or active involves two fundamental tasks: (1) design of the baluns and passive matching circuits, and (2) design and analysis of the complete mixer. We consider these topics individually. Balun and Passive-Circuit Design The design of baluns for discrete-component mixers is very mature. Figure 1 shows a common structure. In this mixer, the baluns consist of simple, parallel-coupled strips mounted on a suspended substrate. Often, the lower strip (which is connected to the ground surface of the housing) is tapered to improve the balun s performance. Such baluns are clearly impractical in monolithic circuits, and attempts to translate
3 RF IF Blocking Capacitors Diode Quad IF LO IF Return Figure 1. A common type of commercial, suspended-substrate diode mixer. The composite, low-dielectric-constant substrate is very thin (typically µm) and is mounted in a housing or carrier. An open area under the substrate is essential. suspended-substrate baluns into planar monolithic form have been largely unsuccessful. The fundamental problem is in the extra capacitance between the monolithic circuit s microstrips and ground. Because the substrate is thin (usually 100 µm) and has a high dielectric constant (12.9), this capacitance is unavoidably large. It allows an even mode to exist on the balun. The even mode unbalances the mixer and allows input-to-output coupling, which reduces port-to-port isolation. Unless special efforts are made to reduce it, the imbalance is severe. Practical approaches to the design of broadband monolithic baluns are still scarce. We have centered on the Marchand balun as a building block for broadband, planar monolithic mixers. Although its even-mode characteristic impedance is no higher than that of other structures, its performance tolerates low even-mode impedance much better. Figure 2 shows a planar Marchand balun, and Figure 3 shows its calculated performance. Clearly, the Marchand balun is intrinsically capable of good performance over a Input λ/2 Output Figure 2. A planar Marchand balun consists of two quarter-wavelength coupled-line sections. The odd-mode characteristic impedance is chosen so that the structure acts as a transformer between the source and load, and the even-mode impedance is made as great as possible.
4 Figure 3. Performance of a somewhat idealized Marchand balun with Z 0o =25Ω, Z 0e =180Ω, and Z L =60Ω. The output terminals are each treated as separate ports. The even- and odd-mode phase velocities are equal, causing the balance to be (theoretically) perfect. multioctave band. In less idealized cases, we find that an octave bandwidth, or slightly greater, is practically achievable. We have experimented extensively with Marchand baluns and Marchand-like balun structures. Inevitably we find that a three-strip structure gives the best trade-off between odd-mode and even-mode impedances. Unfortunately, such asymmetrical coupled-line structures are not simple to analyze. Our approach to analysis of these structures is as follows. We use a quasistatic, momentmethod electromagnetic simulator called LINPAR [9] to determine the current and voltage modes on the coupled-line structure used in the balun. We then import these data into our circuit simulator, where length information is introduced and a Y matrix for the coupledline structure is created. The circuit can then be analyzed directly in the linear-circuit simulator or as part of a complete mixer by harmonic-balance simulation. A coupled-line structure having arbitrary line widths and spacings can be analyzed in this manner. The coupled-line structure s admittance matrix can be determined from its length, its modal matrices, the modal phase velocities. The vector of input current I 0 of a set of coupled lines with a short-circuited output is I 0 = S I ( 1 + Γ 2L )1 ( Γ 2L ) 1 S 1 V V 0 (1)
5 where V 0 is the excitation vector. The output current vector I L is I L = 2S I Γ L ( 1 Γ 2L ) 1 S 1 V V 0 (2) where S I is the modal current matrix, S V is the modal voltage matrix, 1 is the identity matrix, and Γ L is the diagonal matrix, exp( jγ 1 L) Γ L = 0 exp( jγ 2 L) exp( jγ n L) (3) where γ n are the propagation constants of each mode and L is the length of the coupledline structure. Γ 2L is a similar matrix having 2L instead of L. These expressions realize the first column of the admittance matrix, I 0 Y = 00 I L, Y 0, L V 0 Y L, 0 Y LL, V L (4) The rest of the matrix can be filled in from the obvious symmetries. This process has two important advantages compared to a general-purpose planar electromagnetic simulator using spectral-domain moment methods or other full-wave approaches. First, it is much faster, and more variations of the coupled-line geometry can be studied in limited time. Second, the length of the structure is not specified until the circuit analysis is performed, so the length can be optimized within the circuit simulator. This results in a very efficient design process. A disadvantage of this method is the quasistatic nature of the electromagnetic analysis. This is less of a difficulty than one might initially imagine, since non-tem dispersion effects are generally insignificant in monolithic baluns at frequencies below ~50 GHz, and probably, in many cases, higher. Mixer Circuit Analysis Harmonic-balance analysis is the method of choice for designing RF and microwave mixers. Time-domain analysis (for example, SPICE [10]) may also be acceptable in some cases. In classical harmonic-balance analysis [5], only a single excitation tone is used. The method has been extended, however, to allow two or more noncommensurate excitation frequencies. These methods increase the number of frequency components in the analysis and slow the analysis significantly. Several methods can be used to improve the efficiency of mixer analysis by multitone harmonic balance. One is to select the frequencies in the
6 analysis so they include only the LO harmonics and sidebands around each harmonic. This reduces the size of the frequency set considerably, and thereby improves efficiency. Another is to use conversion-matrix analysis. In this method, the mixer is first analyzed under LO excitation alone, and then a noniterative calculation, treating the RF as a small deviation on the LO voltage, follows. This process is very efficient, because the computation time required for the conversion-matrix analysis is usually insignificant, and the harmonic-balance analysis is single-tone. Conversion-matrix analysis is applicable to both active and passive mixers. Numerical optimization of mixer designs is possible in most harmonic-balance simulators, but the time required for such optimization is usually prohibitive. A more intelligent design process usually obviates such optimization, or at least reduces considerably the amount needed. We begin with an idealized circuit, using only lumped or simple distributed components, and baluns are replaced by transformers. We then determine input and optimum load impedances, and we design simple matching networks, usually lumpedelement. The circuit is again optimized, the ideal elements are replaced one-by-one with real structures, and the mixer s performance is recalculated, reoptimized, and maintained throughout the process. When the finished circuit emerges, it needs little or no numerical optimization. Design Examples Figure 4 shows a planar star mixer using three-strip Marchand baluns in a coplanarwaveguide (CPW) structure. We have designed a large number of mixers of this type, most Figure 4. A planar star mixer uses three-strip Marchand baluns in a CPW-like configuration. This mixer exhibits low conversion loss, high isolation, and excellent intermodulation performance from GHz. The IF frequency range is DC- 12 GHz.
7 operating over octave bandwidths between 12 and 45 GHz. The mixer shown in the figure operates over a GHz RF and LO band and a DC-12 GHz IF band. Conversion loss is 7 to 9 db over this frequency range. The RF-to-LO isolation, probably the best indication of the balun s effectiveness, is greater than 40 db. This is the first mixer of this type that we developed; subsequent mixers have exhibited 18 GHz IF bandwidth, 20 to 40 GHz RF and LO bandwidth, and lower conversion loss. These mixers typically exhibit input thirdorder intercept points above 20 db. Figure 5 shows a rather unusual mixer that makes extensive use of coupled-line baluns. The RF and LO baluns are multistrip, asymmetrical Marchands. One of the quarter-wave sections of each balun is the usual three-strip structure, while the other has six equal-width, equally spaced strips. The large number of strips gives the section a very low odd-mode impedance, which improves the bandwidth considerably. The RF balun excites a curved, coupled-line section which we have come to call the horseshoe. This section has two purposes: first, it provides an approximate virtual-ground point for an IF connection, always a difficulty in microwave ring mixer designs. Second, it improves the balun s balance. This mixer exhibits low conversion loss (~7 db) and high RF-LO isolation (~35 db) over an GHz band. Unfortunately, the LO-to-IF and RFto-IF isolations are only modest, approximately 13 db. Subsequent designs used a stub in the IF connection to improve the rejection. Figure 5. This planar ring-diode mixer operates from 18 to 40 GHz, with a 12-GHz IF. It consists of Marchand baluns for both the RF and LO, and a second horseshoe balun for IF extraction and further even-mode rejection.
8 Conclusions The use of modern harmonic-balance simulators and electromagnetic analysis software has been instrumental in the design of modern mixers. Especially, it has allowed the development of new types of balun structures, without which broadband monolithic balanced mixers would be impossible. Design techniques, however, must be adjusted to make most efficient use of these technologies. The result is high-performance, low-cost circuits operating into the millimeter-wave region. References [1] S. Maas, A GaAs MESFET Mixer with Very Low Intermodulation, IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 4, p. 425, April, [2] B. Gilbert, A Precise Four-Quadrant Multiplier with Subnanosecond Response, IEEE J. Solid-State Circuits, vol. SC-3, p. 365, Dec., [3] A. A. M. Saleh, Theory of Resistive Mixers, MIT Press, Cambridge, MA [4] S. Egami, Nonlinear, Linear Analysis and Computer-Aided Design of Resistive Mixers, IEEE Trans. Microwave Theory Tech., vol. MTT-22, p. 270, [5] S. Maas, Nonlinear Microwave Circuits, Artech House, Norwood, MA, [6] S. Maas, Microwave Mixers, Second Edition, Artech House, Norwood, MA, [7] S. Maas, Theory and Analysis of GaAs MESFET Mixers, IEEE Trans. Microwave Theory Tech., vol. MTT-32, no. 10, p. 1402, Oct., [8] R. A. Pucel, D. Masse, and R. Bera, Performance of GaAs MESFET Mixers at X Band, IEEE Trans. MTT, vol. MTT-24, no. 6, p. 351, June, [9] A. R. Djordjevic et al., LINPAR for Windows, ver. 2.0, Artech House, Norwood, MA [10] SPICE3, Electronics Research Laboratory, University of California, Berkeley, CA USA
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Understanding Mixers Terms Defined, and Measuring Performance
Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden
Broadband Push-Pull Power Amplifier Design at Microwave Frequencies
Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Robert Smith and Prof. Steve Cripps Centre for High Frequency Engineering, Cardiff University [email protected] A broadband, high
Copyright 1996 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 1996
Copyright 1996 IEEE Reprinted from IEEE MTT-S International Microwave Symposium 1996 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE
Optimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
RF Mixers. A down-conversion system. An up-conversion system
RF Mixers Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul RF Mixers are 3-port active or passive devices. They are designed to yield both, a sum and a difference frequency at a single output port
APPLICATION NOTES POWER DIVIDERS. Things to consider
Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal
A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt.
From June 2006 High Frequency Electronics Copyright 2006 Summit Technical Media A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs By Raymond S. Pengelly and Carl W. Janke Cree, Inc. Because
A Reflection-Type Vector Modulator with Balanced Loads
45 A Reflection-Type Vector Modulator with Balanced Loads Franco Di Paolo, Mauro Ferrari, Franco Giannini, Ernesto Limiti Department of Electronic Engineering, University of Rome Tor Vergata Via del Politecnico
Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to
Connectivity in a Wireless World Cables Connectors 204 A Special Supplement to Signal Launch Methods for RF/Microwave PCBs John Coonrod Rogers Corp., Chandler, AZ COAX CABLE MICROSTRIP TRANSMISSION LINE
Characterization of Spatial Power Waveguide Amplifiers
Characterization of Spatial Power Waveguide Amplifiers Authored by: Matthew H. Commens Ansoft Corporation Ansoft 003 / Global Seminars: Delivering Performance Presentation # Outline What is a Spatial Waveguide
National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi 710071, China
Progress In Electromagnetics Research, PIER 76, 237 242, 2007 A BROADBAND CPW-FED T-SHAPE SLOT ANTENNA J.-J. Jiao, G. Zhao, F.-S. Zhang, H.-W. Yuan, and Y.-C. Jiao National Laboratory of Antennas and Microwave
A Broadband Planar Magic-T using Microstripslotline
1 A Broadband Planar Magic-T using Microstripslotline Transitions Kongpop U-yen, Member, IEEE, Edward J. Wollack, Senior Member, IEEE, John Papapolymerou, Senior Member, IEEE, and Joy Laskar, Fellow, IEEE
J. Zhang, J.-Z. Gu, B. Cui, andx. W. Sun Shanghai Institute of Microsystem & Information Technology CAS Shanghai 200050, China
Progress In Electromagnetics Research, PIER 69, 93 100, 2007 COMPACT AND HARMONIC SUPPRESSION OPEN-LOOP RESONATOR BANDPASS FILTER WITH TRI-SECTION SIR J. Zhang, J.-Z. Gu, B. Cui, andx. W. Sun Shanghai
Low Cost, Triple Balanced, LTCC Mixer
Low Cost, Triple Balanced, LTCC Mixer Introduction Double Balanced Mixers are used widely in frequency translation applications. Some of the advantages of the double balanced mixer are good L-R and L-I
Electronic filters design tutorial -2
In the first part of this tutorial we explored the bandpass filters designed with lumped elements, namely inductors and capacitors. In this second part we will design filters with distributed components
Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave
Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer
S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004
S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136
FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights
PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector
Anatech Electronics, Inc.
Like all types of RF and microwave filters, ceramic filters have unique characteristics that differentiate them from their counterparts and make them useful for specific applications. Ceramic filters are
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts
Understanding Power Splitters
Understanding Power Splitters how they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal
Review Paper for Broadband CPW-Fed T-Shape Slot Antenna
Review Paper for Broadband CPW-Fed T-Shape Slot Antenna Shahpure Sana 1, Bharate Rajashri 2, Prof. Jadhav D.A. 3 1,2 BE, Dept. of E&TC, Brahmdevdada Mane Institute of Technology, Dist. Solapur (Maharashtra)
Copyright 2005 IEEE. Reprinted from IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, October 2005
Copyright 2005 IEEE Reprinted from IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, October 2005 This material is posted here with permission of the IEEE. Such permission of the IEEE
Silicon Schottky Barrier Diode Bondable Chips and Beam Leads
DATA SHEET Silicon Schottky Barrier Diode Bondable Chips and Beam Leads Applications Detectors Mixers Features Available in both P-type and N-type low barrier designs Low 1/f noise Large bond pad chip
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
Straightforward and Accurate Nonlinear Device Model Parameter- Estimation Method Based on Vectorial Large-Signal Measurements
Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: [email protected] web: http://www.janverspecht.com Straightforward and Accurate Nonlinear Device Model Parameter- Estimation Method
Experiment 7: Familiarization with the Network Analyzer
Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Copyright 2000 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2000
Copyright 2000 IEEE Reprinted from IEEE MTT-S International Microwave Symposium 2000 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE
How to make a Quick Turn PCB that modern RF parts will actually fit on!
How to make a Quick Turn PCB that modern RF parts will actually fit on! By: Steve Hageman www.analoghome.com I like to use those low cost, no frills or Bare Bones [1] type of PCB for prototyping as they
Compact Tunable and Dual band Circular Microstrip Antenna for GSM and Bluetooth Applications
205 Compact Tunable and Dual band Circular Microstrip Antenna for GSM and Bluetooth Applications *K. P. Ray 1, S. Nikhil 2 and A. Nair 2 1 SAMEER, IIT Campus, Powai, Mumbai 400 076, India 2 K.J.Somaiya
Extended spectral coverage of BWO combined with frequency multipliers
Extended spectral coverage of BWO combined with frequency multipliers Walter C. Hurlbut, Vladimir G. Kozlov, Microtech Instruments, Inc. (United States) Abstract: Solid state frequency multipliers extend
CHAPTER 2 POWER AMPLIFIER
CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For
Enhancing Second Harmonic Suppression in an Ultra-Broadband RF Push-Pull Amplifier
Enhancing Second in an Ultra-Broadband RF Push-Pull Amplifier By Gavin T Watkins Abstract By incorporating an An ultra-broadband push-pull amplifier operating over a bandwidth of attenuator and delay line
Planar Inter Digital Capacitors on Printed Circuit Board
1 Planar Inter Digital Capacitors on Printed Circuit Board Ajayan K.R., K.J.Vinoy Department of Electrical Communication Engineering Indian Institute of Science, Bangalore, India 561 Email {ajayanr jvinoy}
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching IWATA Naotaka, FUJITA Masanori Abstract Recently cellular phones have been advancing toward multi-band and multi-mode phones and many of them
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is
Inductors at UHF: EM Simulation Guides Vector Network Analyzer Measurements John B. Call Thales Communications Inc., USA When designing There are times when it is circuits for necessary to measure a operation
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region Guoguang Wu Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design,
29407 - DARFM - Design and Analysis of RF and Microwave Systems for Communications
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and ERASMUS MUNDUS
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Keywords: Slot antenna, ultra wideband (UWB), Microstrip line feeding, HFSS Simulation software.
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Compact UWB Printed Slot Antenna for GPS, GSM &Bluetooth Applications S.P.Shinde *1, M. M. Jadhav 2 *1, 2 Electronics
Balun Parameter Definitions & Measurement May 2004
Balun Parameter Definitions & Measurement May 2004 Differential circuits are becoming more widely used in RF circuits for the same reason that they have been used for years in lower frequency circuits.
Understanding Power Splitters
Understanding Power Splitters How they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal
Low Cost, Triple Balanced, LTCC Mixer
Low Cost, Triple Balanced, LTCC Mixer Introduction Double Balanced Mixers are used widely in frequency translation applications. Some of the advantages of the double balanced mixer are good L-R and L-I
MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid
Curriculum and Concept Module Development in RF Engineering
Introduction Curriculum and Concept Module Development in RF Engineering The increasing number of applications students see that require wireless and other tetherless network solutions has resulted in
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production
! #! % & % ( )! & +,,.! / 0 1 /) ) %222 3 4 1 5 6. /,,, %778,,9 / 6, : 0 9, 99, 3 +,, 9 9
! #! % & % ( )! & +,,.! / 0 1 /) ) %222 3 4 1 5 6. /,,, %778,,9 / 6, : 0 9, 99, 3 +,, 9 9 ; 896 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 56, NO. 4, APRIL 2008 A Circuit-Theoretic Approach
How to select a mixer
How to select a mixer Select the proper mixer for your needs. There are hundreds of models available. Under-specify and face marginal performance, over-specify and pay for more than you need. Here's the
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040)
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040 Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at
A Network Analyzer For Active Components
A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory
NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications
Typical Applications Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 0 RoHS Compliant & Pb-Free Product NBB-402 CASCADABLE BROADBAND GaAs MMIC AMPLIFIER DC TO
Comparative analysis for Bandwidth Enhancement of RMPA using EBG and varying feed line lengths
Comparative analysis for Bandwidth Enhancement of RMPA using EBG and varying feed line lengths Tripti Basedia 1 1 EC Deptt., SRIT, India, Jabalpur Rahul Koshtha 2 EC Deptt., SRIT, India, Jabalpur ---------------------------------------------------------------------***---------------------------------------------------------------------
Nexus Technology Review -- Exhibit A
Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.
BALUN BASICS PRIMER. A Tutorial on Baluns, Balun Transformers, Magic-Ts, and 180 Hybrids. By: Doug Jorgesen and Christopher Marki
BALUN BASICS PRIMER A Tutorial on Baluns, Balun Transformers, Magic-Ts, and 180 Hybrids By: Doug Jorgesen and Christopher Marki INTRODUCTION The balun has a long and illustrious history, first documented
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Application Note 1364-1 Introduction Traditionally RF and microwave components have been designed in packages with
MASW-000823-12770T. HMIC TM PIN Diode SP2T 13 Watt Switch for TD-SCDMA Applications. Features. Functional Diagram (TOP VIEW)
Features Exceptional Loss = 0.35 db Avg @ 2025 MHz, 20mA Exceptional Loss = 0.50 db Avg @ 2025 MHz, 20mA Higher - Isolation = 31dB Avg @ 2025 MHz, 20mA Higher RF C.W. Input Power =13 W C.W.(-Ant Port)
EM Noise Mitigation in Circuit Boards and Cavities
EM Noise Mitigation in Circuit Boards and Cavities Faculty (UMD): Omar M. Ramahi, Neil Goldsman and John Rodgers Visiting Professors (Finland): Fad Seydou Graduate Students (UMD): Xin Wu, Lin Li, Baharak
230634 - DARFM - Design and Analysis of RF and Microwave Systems for Communications
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and MASTER'S DEGREE
Application Note on Transformers (AN-20-002)
Application Note on Transformers (AN20002) 1 Introduction The purpose of this application note is to describe the fundamentals of RF and microwave transformers and to provide guidelines to users in selecting
AND8200/D. Design Considerations for ESD/EMI Filters: I (Almost Everything You Wanted to Know About EMI Filters and Were Afraid to Ask)
Design Considerations for ESD/EMI Filters: I (Almost Everything You Wanted to Know About EMI Filters and Were Afraid to Ask) Prepared by: Ryan Hurley Applications Engineer ON Semiconductor APPLICATION
TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER
20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power
Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements
Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements Nick M. Ridler 1 and Nils Nazoa 2 1 National Physical Laboratory, UK (www.npl.co.uk) 2 LA Techniques Ltd,
Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers
Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.
Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations
DESIGN considerations for a microwave amplifier include
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998 1993 Three-Dimensional Base Distributed Effects of Long Stripe BJT s: AC Effects on Input Characteristics Ming-Yeh Chuang, Mark E.
Audio Tone Control Using The TLC074 Operational Amplifier
Application Report SLOA42 - JANUARY Audio Tone Control Using The TLC74 Operational Amplifier Dee Harris Mixed-Signal Products ABSTRACT This application report describes the design and function of a stereo
Application Note 58 Crystal Considerations with Dallas Real Time Clocks
www.dalsemi.com Application Note 58 Crystal Considerations with Dallas Real Time Clocks Dallas Semiconductor offers a variety of real time clocks (RTCs). The majority of these are available either as integrated
Using Multilayer Baluns to Improve ADC Performance. Introduction. September, 2009
(ANN-900) Rev B Page 1 of 1 Using Multilayer Baluns to Improve ADC Performance Introduction September, 009 This application note explains the use of Anaren s multilayer balun (BD005F5050AHF) in conjunction
Minimizing crosstalk in a high-speed cable-connector assembly.
Minimizing crosstalk in a high-speed cable-connector assembly. Evans, B.J. Calvo Giraldo, E. Motos Lopez, T. CERN, 1211 Geneva 23, Switzerland [email protected] [email protected] [email protected]
California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators
California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators APPLICATION NOTE INTRODUCTION This paper addresses the issues involved in converting GaAs models for
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
NEW MICROWAVE APPLICATIONS FOR THICK FILM THERMISTORS
NEW MICROWAVE APPLICATIONS FOR THICK FILM THERMISTORS A.H.Feingold, R.L.Wahlers, P.Amstutz, C.Huang, S.J.Stein Electro-Science Laboratories Inc. Presented at IMAPS, 1998 J.Mazzochette EMC Technology Inc.
RF System Design and Analysis Software Enhances RF Architectural Planning
From April 2010 High Frequency Electronics Copyright 2010 Summit Technical Media, LLC RF System Design and Analysis Software Enhances RF Architectural Planning By Dale D. Henkes Applied Computational Sciences
COMPARISON OF SOFTWARE TOOLS FOR THE DESIGN OF MICROWAVE COMPONENTS
COMPARISON OF SOFTWARE TOOLS FOR THE DESIGN OF MICROWAVE COMPONENTS Dr Richard Jenkins, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK email: [email protected] Dr Y. Xu and Prof. R.
How PLL Performances Affect Wireless Systems
May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Frequency Multipliers
Frequency Multipliers Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul There are few approaches how to generate a high frequency signal for microwaves frequencies. Direct Signal Generation - First
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give
OMNIYIG. .5 TO 2 GHz, 1 TO 4 GHz, 6 to 18 GHz Thin Film YIG-TUNED OSCILLATORS OUTLINE DIMESIONS MOUNTING SURFACE GND +15V + TUNE - HTR HTR
. TO Hz, 1 TO Hz, to 1 Hz Thin Film YITUNED OSCILLATORS Highly Reliable StateoftheArt ThinFilm Technology s. to 1 Hz oscillators employ thinfilm technology, coupled with aas FET transistors, and were designed
Pre-Compliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions
PreCompliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions D. Schneider 1*, S. Tenbohlen 1, W. Köhler 1 1 Institute of Power Transmission and
Development and optimization of a hybrid passive/active liner for flow duct applications
Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of
Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna
Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna Yong-Woong Jang A numerical simulation and an experimental implementation of T-shaped microstrip-fed printed slot array antenna are presented in
RF Energy Harvesting Circuits
RF Energy Harvesting Circuits Joseph Record University of Maine ECE 547 Fall 2011 Abstract This project presents the design and simulation of various energy harvester circuits. The overall design consists
Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators
Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators Nasreddine Benahmed University of Tlemcen, Algeria ABSTRACT This article presents a software (NMR
DESIGN OF CLASS-E RADIO FREQUENCY POWER AMPLIFIER. Saad Al-Shahrani DOCTOR OF PHILOSOPHY. Electrical Engineering.
DESIGN OF CLASS-E RADIO FREQUENCY POWER AMPLIFIER by Saad Al-Shahrani Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements
A Novel Multi Frequency Rectangular Microstrip Antenna with Dual T Shaped Slots for UWB Applications
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. VI (Feb. 2014), PP 120-124 A Novel Multi Frequency Rectangular Microstrip
Crosstalk effects of shielded twisted pairs
This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects
Broadband Slotted Coaxial Broadcast Antenna Technology
Broadband Slotted Coaxial Broadcast Antenna Technology Summary Slotted coaxial antennas have many advantages over traditional broadband panel antennas including much smaller size and wind load, higher
Audio processing and ALC in the FT-897D
Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled
Design & Simulation of 8-Shape Slotted Microstrip Patch Antenna
World Applied Sciences Journal 31 (6): 1065-1071, 2014 ISSN 1818-4952 IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.31.06.1462 Design & Simulation of 8-Shape Slotted Microstrip Patch Antenna Sohag
