More Internet Support Protocols

Size: px
Start display at page:

Download "More Internet Support Protocols"

Transcription

1 Domain Name System (DNS) Ch 2.5 More Internet Support Protocols Problem statement: Average brain can easily remember 7 digits On average, IP addresses have digits We need an easier way to remember IP addresses Solution: Use alphanumeric names to refer to hosts Add a distributed, hierarchical protocol (called DNS) to map between alphanumeric host names and IP addresses We call this Address Resolution Domain Name Space Domain Name Service yahoo com edu net gov int mil org ae... us... zw cnn rutgers cs yale eng Generic Domains Country Domains The domain name service consists of Domain name space Name servers In each zone, there is a primary name server and one or more secondary name servers Name servers contain two kinds of address mappings: Authoritative mappings: For hosts within the zone Cached mappings: For previously requested mappings to hosts not in the zone Resolvers Programs that extract information from name servers in response to client requests

2 Domain Name Hierarchy DNS Protocol yahoo com edu net gov int mil org ae... us... zw cnn rutgers cs yale eng When client wants to know an IP address for a host name Client sends a DNS query to the primary name server in its zone If name server contains the mapping, it returns the IP address to the client Otherwise, the name server forwards the request to the root name server The request works its way down the tree toward the host until it reaches a name server with the correct mapping DNS Protocol Example DNS Protocol Another Example remus.rutgers.edu remus.rutgers.edu Scenario: 1 8 Scenario: 1 2 remus.rutgers.edu tries to resolve an IP address for venus.cs.yale.edu using a recursive query ns-lcsr.rutgers.edu 2 7 remus.rutgers.edu tries to resolve an IP address for venus.cs.yale.edu using an iterative query 3 ns-lcsr.rutgers.edu 4 a.root-servers.net a.root-servers.net yale.edu yale.edu cs.yale.edu cs.yale.edu

3 DNS message DNS Message Header In DNS, all communications use a single format called a message. The top level format of message is divided into 5 sections (some of which are empty in certain cases) RR( Resource record) Header Question Answer Authority Additional the question for the name server RRs answering the question RRs pointing toward an authority RRs holding additional information The answer section contains RRs that answer the question; the authority section contains RRs that point toward an authoritative name server; the additional records section contains RRs which relate to the query, but are not strictly answers for the question. Clients communicate with DNS servers using either TCP or UDP on port Transaction Identification Flags Number of Questions Number of Answer RRs Number of Authoritative RRs Number of Additional RRs Questions Answer Resource Records Authoritative Resource Records Additional Resource Records DNS Message Fields DNS Packet Fields (cont d) Transaction Identification: Random number used to match client queries with name server responses Flags: QR opcode AA TC RD RA (unused) rcode QR: 0=Query, 1=Response opcode: 0=standard query, 1=inverse query, 2=status request AA: Authoritative answer TC: Truncated DNS packet RD: Recursion desired RA: Recursion available rcode: Return code. 0=no error, 3=name error Transaction Identification: Random number used to match client queries with name server responses Number of Questions: Number of DNS queries in the packet Number of Answer RRs: Number of non-authoritative DNS responses in the packet Number of Authoritative RRs: Number of authoritative DNS responses in the packet Number of Additional RRs: Number of other DNS responses in the packet (usually contains other DNS servers in domain) Questions & Answers: Variable length fields to store DNS queries and DNS server responses

4 DNS Queries Encoding Query Names DNS Packet Question field contains a sequence of queries: Query Type Query name Query Class Query Name: Contains an encoded form of the name for which we are seeking an IP address Query Type: 1=IP address, 2=name server, 12=pointer record, etc. Query Class: 1=Internet address (IN) DNS queries must be encoded in a special way Divide host address into segments whenever a period appears For each segment, store a byte representing the length of the segment followed by the letters in the segment Store a zero byte at the end of the query DNS Responses DNS Caching DNS Packet RR fields contain a sequence of resource records: Type Resource data length Domain name Time-to-live Class Resource Data Domain Name: Encoded domain name for query Type & Class: Same as for query (1=IP; 1=Internet) Time-to-Live: How long this responses will be useful Resource Data: Contains the four-byte IP address Going to the root server and then down the tree every time we need to resolve an address is inefficient Introduce address caching at name servers Store host-to-ip-address mappings from recently requested host names at name server When the same address is requested later, use the cached version at the local name server instead of recursively querying other name servers again

5 DNS Caching Example DHCP (Ch 4.4.6) First time: remus.rutgers.edu tries to resolve an IP address for venus.cs.yale.edu using a recursive query remus.rutgers.edu 1 8 ns-lcsr.rutgers.edu 2 7 a.root-servers.net 3 6 yale.edu Later: venus.cs.yale.edu has been cached at ns-lcsr. remus.rutgers.edu (and any other host that uses ns-lcsr) will receive the cached IP address for venus.cs.yale.edu remus.rutgers.edu 1 2 ns-lcsr.rutgers.edu DHCP stands for dynamic host configuration protocol DHCP is client-server DHCP offers a number of more features Dynamic IP address allocation IP addresses can be leased for a certain time Useful where there are a limited number of IP addresses Useful for temporary connections (testing, laptops, mobile networks) 4 5 cs.yale.edu DHCP (cont d) Address Allocation Modes DHCP has two components: A protocol for delivering bootstrap information from the server to the clients An algorithm for dynamically assigning addresses to clients DHCP supports three modes of allocation Automatic allocation: Server assigns a permanent address to a host Dynamic allocation: Server assigns a host an IP address with a finite lease Manual allocation: Server assigns host an IP address chosen by the network administrator

6 DHCP Packets (cont d) Hardware address Request/Reply Hardware type length in bytes Hop count Transaction ID Number of seconds Flags Client IP address Your IP address Server IP address Gateway IP address Client hardware address (16 bytes) Server hostname (64 bytes) Boot filename (128 bytes) Definitions of address fields ciaddr Client IP address; only filled in if client is in BOUND, RENEW or REBINDING state and can respond to ARP requests. yiaddr 'your' (client) IP address. siaddr 4 IP address of next server to use in bootstrap; returned in DHCPOFFER, DHCPACK by server. giaddr Relay agent IP address, used in booting via a relay agent. chaddr Client hardware address. Options (312+ bytes) DHCP Packet Fields DHCP Message types All fields are same as BOOTP except: Flags: One flag currently defined Broadcast (bit 0): Clients can request that all DHCP server messages be broadcast to it Options: All DHCP packets must use the DHCP message type option, which defines the type of DHCP message being sent: DHCPDISCOVER DHCPOFFER DHCPREQUEST DHCPACK DHCPNAK etc. DHCP message types DHCP Discover: Client broadcasts to locate a server DHCP Offer: Server responds with proposal of parameters DHCP Request: Client broadcasts its choice of server. All other servers are implicitly declined. DHCP ACK: Selected server responds to client with address DHCP NAK: Selected server rejects the client s request DHCP Decline: Client declines server s parameters DHCP Release: Client releases its assigned address

7 DHCP Protocol Server 1 Client Server 2 DHCPDISCOVER DHCPOFFER DHCPREQUEST Collects replies Selects server 2 DHCPDISCOVER DHCPOFFER DHCPREQUEST DHCPACK DHCP Protocol (cont d) DHCP client broadcasts a DHCP Discover message Client may specify preference of a lease and/or IP address Many servers may respond with offers Client chooses one server from them Client broadcasts DHCP request with id of chosen server Selected server sends DHCP ACK or NAK Client begins using offered IP address once it receives ACK If the client finds a problem, it sends a DHCP Decline message to the server and starts over again Client may choose to release the address before lease expires by sending a DHCP Release message to the server DHCP Relay Agents Summary Similar to BOOTP Relay Agents DHCP relay agents allow DHCP servers to handle requests from other subnets DHCP allow ignorant hosts to receive IP addresses (and more) at start-up time IP addresses don t have to be manually configured into hosts Client DHCP Relay Agent IP Gateway Router IP Gateway Router DHCP Server

8 Network address Translators (NAT) Ch Private IP addreses Every host needs an IP address IPv4 address space is limited It is expensive to get an IP address for every device that may be connected to the internet IETF has set aside private IP address for use within a network but can be translated into a fixed public address by a special router NAT box (10/8 prefix) (172.16/12 prefix) ( /16 prefix) These addresses can be assigned to any of the machines within a network but will be translated to a public address by the NAT router Ports are used to distinguish among multiple addresses that need to be mapped from one public address to mutiple private addresses NAT Disadvantages NAT provides mapping functions between public address and a private address Keep a table of internal addresses/ports and external hosts/ports contacted from the internals (we can map multiple internals to a single public address as long as they're coming from distinct ports) / / / / / /8004 It is a hack Works only with TCP/UPD port connections NAT has to understand all higher layer application protocols to correctly map the port Every packet needs to be remapped Widespread deployment of IPv6 should help Private LAN side Public WAN side

9 Mobile-IP Chapter 4.9 Mobile users Explosion in usage of hand helds Anytime, anywhere wireless services Some connectivity everywhere Many-time, many-where (Infostations) Users can be connected when moving Users can be connect and disconnect to different networks Mobility vs connectivity IP address problem New research problems Continuous connectivity for a mobile host Seamless movement between networks Mobile systems Move from place to place while being wireless Move from place to place by plugging-in at different attachment points Why maintain connectivity? Avoid restarting applications/networks Internet hosts/interfaces are identified by IP address Domain name service translates host name to IP address IP address identifies host/interface and locates its network Mixes naming and location Moving to another network requires different network address But this would change the host s identity How can we still reach that host?

10 Basic idea Basic idea Home Agent = correspondent HOST Foreign Agent = Mobile Host Mobile hosts attaches to foreign network and obtains guest address Via DHCP Via Foreign agent Registration with local agent LA has list of all foreign hosts visiting the network Routing for mobile hosts Use Arp = mobile host A designated router proxy-arps for mobile host = correspondent host How to direct packets to moving hosts transparently? H4 I have 1 Who has 1? Know? mh1@h4 1

11 Basic Mobile IP to mobile hosts = mobile host = correspondent host = home agent FA = foreign agent (We ll see later that FA is not necessary or even desirable) FA registers new care-of address (FA) with tunnels packets to FA FA decapsulates packets and delivers them to IP-in-IP (Packet encapsulation) Packet from to Source address = address of Destination address = home IP address of Payload Home agent intercepts above packet and tunnels it Source address = address of Destination address = care-of address of Source address = address of Destination address = home IP address of Original payload When mobile host moves again #1 FA #1 FA #2 #2 registers new address (FA #2) with & FA #1 tunnels packets to FA #2, which delivers them to Packets in flight can be forwarded from FA #1 to FA #2 Basic Mobile IP - from mobile hosts Mobile hosts also send packets FA Mobile host uses its home IP address as source address -Lower latency as can send packets directly to -Still transparent to correspondent host This is called a triangle route or a dog-leg route

12 Problems with Foreign Agents Assumption of support from foreign networks A foreign agent exists in all networks you visit The foreign agent is robust and up and running The foreign agent is trustworthy Solution Mobile host is responsible for itself -(With help from infrastructure in its home network) -Mobile host decapsulates packets -Mobile host sends its own packets - Co-located FA on must acquire its own IP address in foreign network This address is its new care-of address Mobile IP spec allows for this option Obtaining a foreign IP address Problems with ingress/egress filtering How to get a new IP address? DHCP Dynamic IP address binding like some dialup services Mobile host uses its home IP address as source address Security-conscious boundary routers will drop this packet An egress router will see a packet with source address that does not belonging to its network

13 Solution: bi-directional tunnel Solution: yet more flexibility Provide choice of safe route through home agent both ways Use encapsulation in both directions ( and ) Use current care-of address and send packet directly -This is regular IP! -This is not mobility but portability Do we need Mobile IP When do we really need this Mobile clients have short lived sessions Reconnect on move Most mobile users are in private net Mobile servers? Cellphone (IP enabled)

A DHCP Primer. Dario Laverde, dario@mediatracker.com. 2002 Dario Laverde

A DHCP Primer. Dario Laverde, dario@mediatracker.com. 2002 Dario Laverde A DHCP Primer Dario Laverde, dario@mediatracker.com 2002 Dario Laverde Dynamic Host Configuration Protocol DHCP Client DHCP DHCP Server Dynamic Host Configuration consists of at least an IP address in

More information

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes Dynamic Host Configuration Protocol (DHCP) 1 1 Dynamic Assignment of IP addresses Dynamic assignment of IP addresses is desirable for several reasons: IP addresses are assigned on-demand Avoid manual IP

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

HOST AUTO CONFIGURATION (BOOTP, DHCP)

HOST AUTO CONFIGURATION (BOOTP, DHCP) Announcements HOST AUTO CONFIGURATION (BOOTP, DHCP) I. HW5 online today, due in week! Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University copyright 2005 Douglas S. Reeves 2 I. Auto configuration

More information

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace Motivation Domain Name System (DNS) IP addresses hard to remember Meaningful names easier to use Assign names to IP addresses Name resolution map names to IP addresses when needed Namespace set of all

More information

Application Protocols for TCP/IP Administration

Application Protocols for TCP/IP Administration Application Protocols for TCP/IP Administration BootP, TFTP, DHCP Agenda BootP TFTP DHCP BootP, TFTP, DHCP, v4.4 2 Page 60-1 BootP (RFC 951, 1542, 2132) BootP was developed to replace RARP capabilities

More information

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses

More information

DNS : Domain Name System

DNS : Domain Name System 1/30 DNS : Domain Name System Surasak Sanguanpong nguan@.ac.th http://www...ac.th/~nguan Last updated: May 24, 1999 Outline 2/30 DNS basic name space name resolution process protocol configurations Why

More information

6 Mobility Management

6 Mobility Management Politecnico di Milano Facoltà di Ingegneria dell Informazione 6 Mobility Management Reti Mobili Distribuite Prof. Antonio Capone Introduction Mobility management allows a terminal to change its point of

More information

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System Lecture 2 CS 3311 An example of a middleware service: DNS Domain Name System The problem Networked computers have names and IP addresses. Applications use names; IP uses for routing purposes IP addresses.

More information

How To Write A Boot(Ing) Protocol On A Microsoft Ipnet (Net) (Netnet) On A Network (Ipnet) With A Network Address) (Ip Address) On An Ip Address (Ipaddress) On Your Ip

How To Write A Boot(Ing) Protocol On A Microsoft Ipnet (Net) (Netnet) On A Network (Ipnet) With A Network Address) (Ip Address) On An Ip Address (Ipaddress) On Your Ip Boot(ing) protocols From (R)ARP to BSDP dr. C. P. J. Koymans Informatics Institute University of Amsterdam September 12, 2008 dr. C. P. J. Koymans (UvA) Boot(ing) protocols September 12, 2008 1 / 25 ARP

More information

Wireless Networks: Network Protocols/Mobile IP

Wireless Networks: Network Protocols/Mobile IP Wireless Networks: Network Protocols/Mobile IP Mo$va$on Data transfer Encapsula$on Security IPv6 Problems DHCP Adapted from J. Schiller, Mobile Communications 1 Mo$va$on for Mobile IP Rou$ng based on IP

More information

Teldat Router. DNS Client

Teldat Router. DNS Client Teldat Router DNS Client Doc. DM723-I Rev. 10.00 March, 2003 INDEX Chapter 1 Domain Name System...1 1. Introduction...2 2. Resolution of domains...3 2.1. Domain names resolver functionality...4 2.2. Functionality

More information

Forouzan: Chapter 17. Domain Name System (DNS)

Forouzan: Chapter 17. Domain Name System (DNS) Forouzan: Chapter 17 Domain Name System (DNS) Domain Name System (DNS) Need System to map name to an IP address and vice versa We have used a host file in our Linux laboratory. Not feasible for the entire

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting

Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting Magda El Zarki Prof. of CS Univ. of CA, Irvine Email: elzarki@uci.edu http: www.ics.uci.edu/~magda Overivew of NAT NAT: Network Address Translation

More information

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 25 Domain Name System 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 25.2 Figure 25.1 Example of using the DNS service 25-1 NAME SPACE To be unambiguous,

More information

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1 Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg

More information

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744 The problem How to support mobile users What do we mean by support? Make it easy and convenient to effectively

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting, NTP

Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting, NTP Ch 6: Networking Services: NAT, DHCP, DNS, Multicasting, NTP Magda El Zarki Prof. of CS Univ. of CA, Irvine Email: elzarki@uci.edu http: www.ics.uci.edu/~magda Network Address Translation - NAT Private

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved Domain Name System CS 571 Fall 2006 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved DNS Specifications Domain Names Concepts and Facilities RFC 1034, November 1987 Introduction

More information

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!!

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!! The Domain Hierarchy IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy the general form for a fully qualified name is and of course there can be sub-sub-!! -sub-domains

More information

Network Layers. CSC358 - Introduction to Computer Networks

Network Layers. CSC358 - Introduction to Computer Networks Network Layers Goal Understand how application processes set up a connection and exchange messages. Understand how addresses are determined Data Exchange Between Application Processes TCP Connection-Setup

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

How To Manage Address Management In Ip Networks (Netware)

How To Manage Address Management In Ip Networks (Netware) Address Management in IP Networks -Address Resolution Protocol (ARP) -Reverse Address Resolution Protocol (RARP) -Dynamic Host Configuration Protocol () IP Addresses and Physical Addresses The Forwarding

More information

Internetworking with TCP/IP Unit 10. Domain Name System

Internetworking with TCP/IP Unit 10. Domain Name System Unit 10 Domain Name System Structure 10.1 Introduction 10.2 Fully Qualified Domain Names (FQDNs) Generic Domains Country Domains 10.3 Mapping domain names to IP addresses 10.4 Mapping IP Addresses to Domain

More information

19 Domain Name System (DNS)

19 Domain Name System (DNS) CHAPTER 9 Domain Name System (DNS) I n this chapter, we discuss the second application program, Domain Name System (DNS). DNS is a client/server application program used to help other application programs.

More information

LECTURE 4 NETWORK INFRASTRUCTURE

LECTURE 4 NETWORK INFRASTRUCTURE SYSTEM ADMINISTRATION MTAT.08.021 LECTURE 4 NETWORK INFRASTRUCTURE Prepared By: Amnir Hadachi and Artjom Lind University of Tartu, Institute of Computer Science amnir.hadachi@ut.ee / artjom.lind@ut.ee

More information

NET0183 Networks and Communications

NET0183 Networks and Communications NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/2009 1 NET0183 Networks and Communications by Dr Andy Brooks DNS is a distributed database implemented in a hierarchy of many

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Domain Name System Richard T. B. Ma

Domain Name System Richard T. B. Ma Domain Name System Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Names Vs. Addresses Names are easier for human to remember www.comp.nus.edu.sg

More information

Tomás P. de Miguel DIT-UPM. dit UPM

Tomás P. de Miguel DIT-UPM. dit UPM Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability

More information

Applications and Services. DNS (Domain Name System)

Applications and Services. DNS (Domain Name System) Applications and Services DNS (Domain Name Service) File Transfer Protocol (FTP) Simple Mail Transfer Protocol (SMTP) Malathi Veeraraghavan Distributed database used to: DNS (Domain Name System) map between

More information

DEPLOYMENT GUIDE Version 1.1. DNS Traffic Management using the BIG-IP Local Traffic Manager

DEPLOYMENT GUIDE Version 1.1. DNS Traffic Management using the BIG-IP Local Traffic Manager DEPLOYMENT GUIDE Version 1.1 DNS Traffic Management using the BIG-IP Local Traffic Manager Table of Contents Table of Contents Introducing DNS server traffic management with the BIG-IP LTM Prerequisites

More information

NETGEAR ProSAFE WC9500 High Capacity Wireless Controller

NETGEAR ProSAFE WC9500 High Capacity Wireless Controller NETGEAR ProSAFE WC9500 High Capacity Wireless Controller Confi guring Microsoft DHCP for the Wireless LAN APPLICATION NOTES INTRODUCTION NETGEAR ProSAFE WC9500 High Capacity Wireless Controllers support

More information

Configuration of the DHCP server

Configuration of the DHCP server 104 Page 91 of 294 Contents This section contains information on the following topics: Overview................................................ 91 i2004 Internet Telephone....................................

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

Introduction to Network Operating Systems

Introduction to Network Operating Systems As mentioned earlier, different layers of the protocol stack use different kinds of addresses. We can now see that the Transport Layer (TCP) uses port addresses to route data to the correct process, the

More information

Application. Transport. Network. Data Link. Physical. Network Layers. Goal

Application. Transport. Network. Data Link. Physical. Network Layers. Goal Layers Goal Understand how application processes set up a connection and exchange messages. Understand how addresses are determined 1 2 Data Exchange Between Processes TCP Connection-Setup Between Processes

More information

DHCP Server. Heng Sovannarith heng_sovannarith@yahoo.com

DHCP Server. Heng Sovannarith heng_sovannarith@yahoo.com DHCP Server Heng Sovannarith heng_sovannarith@yahoo.com Introduction Dynamic Host Configuration Protocol (DHCP) automatically assigns IP addresses and other network configuration information to computers

More information

DNS Conformance Test Specification For Client

DNS Conformance Test Specification For Client DNS Conformance Test Specification For Client Revision 1.0 Yokogawa Electric Corporation References This test specification focus on following DNS related RFCs. RFC 1034 DOMAIN NAMES - CONCEPTS AND FACILITIES

More information

Investigation of DHCP Packets using Wireshark

Investigation of DHCP Packets using Wireshark Investigation of DHCP Packets using Wireshark Mohsin khan Faculty of Telecommunication Engineering and Environment Birmingham City University England Saleh Alshomrani Faculty of Computing and IT King Abdulaziz

More information

IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP

IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS

More information

Hostnames. HOSTS.TXT was a bottleneck. Once there was HOSTS.TXT. CSCE515 Computer Network Programming. Hierarchical Organization of DNS

Hostnames. HOSTS.TXT was a bottleneck. Once there was HOSTS.TXT. CSCE515 Computer Network Programming. Hierarchical Organization of DNS Hostnames CSCE 515: Computer Network Programming ------ Address Conversion Function and DNS RFC 1034, RFC 1035 Wenyuan Xu http://www.cse..edu/~wyxu/ce515f07.html Department of Computer Science and Engineering

More information

DNS Resolving using nslookup

DNS Resolving using nslookup DNS Resolving using nslookup Oliver Hohlfeld & Andre Schröder January 8, 2007 Abstract This report belongs to a talk given at the networking course (Institue Eurecom, France) in January 2007. It is based

More information

How To Plan Out Your Own Version Of Hpl (Dhcp) On A Network With A Network (Dns) On Your Network (Dhpl) On An Ipad Or Ipad On A Pc Or Ipa On A Server On A

How To Plan Out Your Own Version Of Hpl (Dhcp) On A Network With A Network (Dns) On Your Network (Dhpl) On An Ipad Or Ipad On A Pc Or Ipa On A Server On A System i Networking Dynamic Host Configuration Protocol Version 5 Release 4 System i Networking Dynamic Host Configuration Protocol Version 5 Release 4 Note Before using this information and the product

More information

Application Protocols in the TCP/IP Reference Model

Application Protocols in the TCP/IP Reference Model Application Protocols in the TCP/IP Reference Model File Transfer E-Mail Network Management WWW Virtual Terminal Name Service File Transfer HTTP FTP Telnet SMTP DNS SNMP TFTP Internet protocols TCP UDP

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

Mobility Management 嚴 力 行 高 雄 大 學 資 工 系

Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)

More information

LAN TCP/IP and DHCP Setup

LAN TCP/IP and DHCP Setup CHAPTER 2 LAN TCP/IP and DHCP Setup 2.1 Introduction In this chapter, we will explain in more detail the LAN TCP/IP and DHCP Setup. 2.2 LAN IP Network Configuration In the Vigor 2900 router, there are

More information

THE DOMAIN NAME SYSTEM DNS

THE DOMAIN NAME SYSTEM DNS Announcements THE DOMAIN NAME SYSTEM DNS Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University copyright 2005 Douglas S. Reeves 2 Today s Lecture I. Names vs. Addresses II. III. IV. The Namespace

More information

Domain Name System (DNS) Fundamentals

Domain Name System (DNS) Fundamentals Domain Name System (DNS) Fundamentals Mike Jager Network Startup Resource Center mike.jager@synack.co.nz These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International

More information

The Domain Name System

The Domain Name System DNS " This is the means by which we can convert names like news.bbc.co.uk into IP addresses like 212.59.226.30 " Purely for the benefit of human users: we can remember numbers (e.g., telephone numbers),

More information

Domain Name System (DNS)

Domain Name System (DNS) Chapter 18 CSC465 Computer Networks Spring 2004 Dr. J. Harrison These slides are based on the text TCP/IP Protocol Suite (2 nd Edition) Domain Name System (DNS) CONTENTS NAME SPACE DOMAIN NAME SPACE DISTRIBUTION

More information

DNS Domain Name System

DNS Domain Name System Domain Name System DNS Domain Name System The domain name system is usually used to translate a host name into an IP address Domain names comprise a hierarchy so that names are unique, yet easy to remember.

More information

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Concept. DNS - Domain Name System

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Concept. DNS - Domain Name System Application Protocols in the TCP/IP Reference Model Application Protocols in the TCP/IP Reference Model File Transfer E-Mail Network Management Protocols of the application layer are common communication

More information

Chapter 12 Supporting Network Address Translation (NAT)

Chapter 12 Supporting Network Address Translation (NAT) [Previous] [Next] Chapter 12 Supporting Network Address Translation (NAT) About This Chapter Network address translation (NAT) is a protocol that allows a network with private addresses to access information

More information

1 DNS Packet Structure

1 DNS Packet Structure Fundamentals of Computer Networking Project 1 Primer: DNS Overview CS4700/CS5700 Fall 2009 17 September 2009 The DNS protocol is well-documented online, however, we describe the salient pieces here for

More information

DHCP Failover. Necessary for a secure and stable network. DHCP Failover White Paper Page 1

DHCP Failover. Necessary for a secure and stable network. DHCP Failover White Paper Page 1 DHCP Failover Necessary for a secure and stable network DHCP Failover White Paper Page 1 Table of Contents 1. Introduction... 3 2. Basic DHCP Redundancy... 3 3. VitalQIP Failover Solution... 5 4. VitalQIP

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.

Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff. Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point

More information

ICS 351: Today's plan. IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration

ICS 351: Today's plan. IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration ICS 351: Today's plan IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration IP address exhaustion IPv4 addresses are 32 bits long so there

More information

Internet-Praktikum I Lab 3: DNS

Internet-Praktikum I Lab 3: DNS Kommunikationsnetze Internet-Praktikum I Lab 3: DNS Mark Schmidt, Andreas Stockmayer Sommersemester 2015 kn.inf.uni-tuebingen.de Motivation for the DNS Problem IP addresses hard to remember for humans

More information

Pre-lab and In-class Laboratory Exercise 10 (L10)

Pre-lab and In-class Laboratory Exercise 10 (L10) ECE/CS 4984: Wireless Networks and Mobile Systems Pre-lab and In-class Laboratory Exercise 10 (L10) Part I Objectives and Lab Materials Objective The objectives of this lab are to: Familiarize students

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 09. Naming Paul Krzyzanowski Rutgers University Fall 2015 October 7, 2015 2014-2015 Paul Krzyzanowski 1 Naming things Naming: map names to objects Helps with using, sharing, and communicating

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - DNS; 22 nd Oct 2012 Instructor: Sridhar Iyer IIT Bombay Domain Name System Map between host names and IP addresses People: many identifiers: name, Passport #, Internet hosts:

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer CPSC 360 Network Programming Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer Systems Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu

More information

DNS + DHCP. Michael Tsai 2015/04/27

DNS + DHCP. Michael Tsai 2015/04/27 DNS + DHCP Michael Tsai 2015/04/27 lubuntu.ova http://goo.gl/bax8b8 DNS + DHCP DNS: domain name < > IP address DHCP: gives you a IP + configuration when you joins a new network DHCP = Dynamic Host Configuration

More information

Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "

Network layer 1DT066! Distributed Information Systems!! Chapter 4 Network Layer!! goals: 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a

More information

ICS 351: Today's plan

ICS 351: Today's plan ICS 351: Today's plan Quiz, on overall Internet function, linux and IOS commands, network monitoring, protocols IPv4 addresses: network part and host part address masks IP interface configuration IPv6

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

Configuration Guide. DHCP Server. LAN client

Configuration Guide. DHCP Server. LAN client DHCP Server Configuration Guide 4.0 DHCP Server LAN client LAN client LAN client Copyright 2007, F/X Communications. All Rights Reserved. The use and copying of this product is subject to a license agreement.

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

Lecture Objectives. Lecture 6 Mobile Networks: Nomadic Services, DHCP, NAT, and VPNs. Agenda. Nomadic Services. Agenda. Nomadic Services Functions

Lecture Objectives. Lecture 6 Mobile Networks: Nomadic Services, DHCP, NAT, and VPNs. Agenda. Nomadic Services. Agenda. Nomadic Services Functions Lecture Objectives Wireless Networks and Mobile Systems Lecture 6 Mobile Networks: Nomadic Services, DHCP, NAT, and VPNs Describe the role of nomadic services in mobile networking Describe the objectives

More information

CS3250 Distributed Systems

CS3250 Distributed Systems CS3250 Distributed Systems Lecture 4 More on Network Addresses Domain Name System DNS Human beings (apart from network administrators and hackers) rarely use IP addresses even in their human-readable dotted

More information

Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org

Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org TCP/IP Protocol Suite Application Layer DHCP DNS SNMP HTTP SMTP POP Transport Layer UDP TCP ICMP IGMP Network Layer IP Link Layer ARP ARP

More information

Conquering the Challenges of IP Network Management with DHCP and DNS

Conquering the Challenges of IP Network Management with DHCP and DNS Conquering the Challenges of IP Network Management with DHCP and DNS A white paper by Incognito Software 2006 Incognito Software Inc. All rights reserved. Page 1 of 9 Conquering the Challenges of IP Network

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - IP addressing; 21 st Aug 2012 Instructor: Sridhar Iyer IIT Bombay Think-Pair-Share: IP addressing What is the need for IP addresses? Why not have only MAC addresses? Given that

More information

Understanding and Configuring NAT Tech Note PAN-OS 4.1

Understanding and Configuring NAT Tech Note PAN-OS 4.1 Understanding and Configuring NAT Tech Note PAN-OS 4.1 Revision C 2012, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Scope... 3 Design Consideration... 3 Software requirement...

More information

VXLAN: Scaling Data Center Capacity. White Paper

VXLAN: Scaling Data Center Capacity. White Paper VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where

More information

5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network

5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 5.0 Network Architecture 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 1 5.1The Internet Worldwide connectivity ISPs connect private and business users Private: mostly dial-up connections Business:

More information

System Health and Intrusion Monitoring Using a Hierarchy of Constraints

System Health and Intrusion Monitoring Using a Hierarchy of Constraints System Health and Intrusion Monitoring Using a Hierarchy of Constraints Calvin Ko NAI Labs, Network Associates, Inc. Jeff Rowe University of California, Davis October 2001 Historical Behavior Attacks /

More information

The Domain Name System

The Domain Name System The Domain Name System Antonio Carzaniga Faculty of Informatics University of Lugano October 9, 2012 2005 2007 Antonio Carzaniga 1 IP addresses and host names Outline DNS architecture DNS process DNS requests/replies

More information

Guideline for setting up a functional VPN

Guideline for setting up a functional VPN Guideline for setting up a functional VPN Why do I want a VPN? VPN by definition creates a private, trusted network across an untrusted medium. It allows you to connect offices and people from around the

More information

Use Domain Name System and IP Version 6

Use Domain Name System and IP Version 6 Use Domain Name System and IP Version 6 What You Will Learn The introduction of IP Version 6 (IPv6) into an enterprise environment requires some changes both in the provisioned Domain Name System (DNS)

More information

Domain Name System (DNS)

Domain Name System (DNS) Domain Name System (DNS) Instructor: Anirban Mahanti Office: ICT 745 Email: mahanti@cpsc.ucalgary.ca Class Location: ICT 121 Lectures: MWF 12:00 12:50 Notes derived from Computer Networking: A Top Down

More information

Introduction to the Domain Name System

Introduction to the Domain Name System CHAPTER 14 The Domain Name System (DNS) handles the growing number of Internet users. DNS translates names, such as www.cisco.com, into IP addresses, such as 192.168.40.0 (or the more extended IPv6 addresses),

More information

Configuring DHCP. DHCP Server Overview

Configuring DHCP. DHCP Server Overview Configuring DHCP This chapter describes how to configure Dynamic Host Configuration Protocol (DHCP). For a complete description of the DHCP commands listed in this chapter, refer to the DHCP s chapter

More information

Domain Name System (or Service) (DNS) Computer Networks Term B10

Domain Name System (or Service) (DNS) Computer Networks Term B10 Domain Name System (or Service) (DNS) Computer Networks Term B10 DNS Outline DNS Hierarchial Structure Root Name Servers Top-Level Domain Servers Authoritative Name Servers Local Name Server Caching and

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

REDUCING PACKET OVERHEAD IN MOBILE IPV6

REDUCING PACKET OVERHEAD IN MOBILE IPV6 REDUCING PACKET OVERHEAD IN MOBILE IPV6 ABSTRACT Hooshiar Zolfagharnasab 1 1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran hoppico@eng.ui.ac.ir hozo19@gmail.com Common Mobile

More information

Domain Name System DNS

Domain Name System DNS CE443 Computer Networks Domain Name System DNS Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by

More information

NAT TCP SIP ALG Support

NAT TCP SIP ALG Support The feature allows embedded messages of the Session Initiation Protocol (SIP) passing through a device that is configured with Network Address Translation (NAT) to be translated and encoded back to the

More information