Risk Assessment Data Directory. Report No March Ignition probabilities

Size: px
Start display at page:

Download "Risk Assessment Data Directory. Report No. 434 6.1 March 2010. Ignition probabilities"

Transcription

1 Risk Assessment Data Directory Report No March 2010 Ignition probabilities I n t e r n a t i o n a l A s s o c i a t i o n o f O i l & G a s P r o d u c e r s

2 P ublications Global experience The International Association of Oil & Gas Producers has access to a wealth of technical knowledge and experience with its members operating around the world in many different terrains. We collate and distil this valuable knowledge for the industry to use as guidelines for good practice by individual members. Consistent high quality database and guidelines Our overall aim is to ensure a consistent approach to training, management and best practice throughout the world. The oil and gas exploration and production industry recognises the need to develop consistent databases and records in certain fields. The OGP s members are encouraged to use the guidelines as a starting point for their operations or to supplement their own policies and regulations which may apply locally. Internationally recognised source of industry information Many of our guidelines have been recognised and used by international authorities and safety and environmental bodies. Requests come from governments and non-government organisations around the world as well as from non-member companies. Disclaimer Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither the OGP nor any of its members past present or future warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made thereof, which liability is hereby excluded. Consequently, such use is at the recipient s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms. This document may provide guidance supplemental to the requirements of local legislation. Nothing herein, however, is intended to replace, amend, supersede or otherwise depart from such requirements. In the event of any conflict or contradiction between the provisions of this document and local legislation, applicable laws shall prevail. Copyright notice The contents of these pages are The International Association of Oil and Gas Producers. Permission is given to reproduce this report in whole or in part provided (i) that the copyright of OGP and (ii) the source are acknowledged. All other rights are reserved. Any other use requires the prior written permission of the OGP. These Terms and Conditions shall be governed by and construed in accordance with the laws of England and Wales. Disputes arising here from shall be exclusively subject to the jurisdiction of the courts of England and Wales.

3 contents 1.0 Introduction Summary of Recommended Data Ignition Probability Curves Blowout Ignition Probabilities Guidance on use of data General Validity Alternative Approaches Releases addressed by datasheets in Section Other releases Uncertainties Review of data sources Recommended data sources for further information References...22 OGP 1

4 Abbreviations FPSO Floating Production Storage and Offloading (Installation) LPG Liquefied Petroleum Gas NAP Normal Atmospheric Pressure NUI Normally Unmanned Installation QRA Quantitative Risk Assessment UKOOA United Kingdom Offshore Operators Association 2 OGP

5 1.0 Introduction The data presented in section 2 provide estimates of the probabilities of hydrocarbon releases igniting to result in an explosion and/or a sustained fire. These data may be applied to any on the leak types described in the Process Release Frequencies datasheet 1. The values presented relate to total ignition probability, which can be considered as the sum of the probabilities of immediate ignition and delayed ignition. Immediate ignition can be considered as the situation where the fluid ignites immediately on release through auto-ignition or because the accident which causes the release also provided an ignition source. Delayed ignition is the result of the build-up of a flammable vapour cloud which is ignited by a source remote from the release point. It is assumed to result in flash fires or explosions, and also to burn back to the source of the leak resulting in a jet fire and/or a pool fire. These probabilities are considered appropriate for use in QRA studies where a relatively coarse assessment is acceptable. Section 3.2 refers to a more detailed approach for QRAs where this is considered to be required. 2.0 Summary of Recommended Data 2.1 Ignition Probability Curves Data presented in this section come in the form of 28 mathematical functions drawn from the UKOOA look-up correlations (see section 4.0) which relate ignition probabilities in air 2 to release rates for typical scenarios both onshore and offshore. The various scenarios are summarised in Table 2.1, 1 With the exception of zero pressure releases, where the limited inventory and hence cloud size would result in a lower ignition probability than would be predicted using this approach. 2 Ignition probabilities in other atmospheres, e.g. oxygen enriched or chlorine, are outside the scope of this datasheet. OGP 1

6 Table 2.2 and Table 2.3. The functions themselves are given in both tabular and graphical form in the data sheets which follow. The curves of ignition probability vs. release rate comprise between two and four sections, each a straight line when plotted on log-log axes. These curves represent total ignition probability. The method assumes that the immediate ignition probability is and is independent of the release rate. As a result, all the curves start at a value of relating to a release rate of 0.1 kg/s. Users of the data may wish to adopt this value and to obtain delayed ignition probabilities by subtracting from the total ignition probability, e.g. an ignition probability value of obtained from the look-up correlations can be considered as an immediate ignition probability of and a delayed ignition probability of OGP

7 Table 2.1 Onshore Ignition Scenarios Scenario Look-up Release Type No. 1 Pipe Liquid Industrial (Liquid Releases from onshore pipeline in industrial area) 2 Pipe Liquid Rural (Liquid Releases from onshore pipeline in industrial area) 3 Pipe Gas LPG Industrial (Gas or LPG release from onshore pipeline in an industrial area) 4 Pipe Gas LPG Rural (Gas or LPG release from onshore pipeline in a rural area) 5 Small Plant Gas LPG (Gas or LPG release from small onshore plant) 6 Small Plant Liquid (Liquid release from small onshore plant) 7 Small Plant Liquid Bund Rural (Liquid release from small onshore plant where the spill is bunded) 8 Large Plant Gas LPG (Gas or LPG release from large onshore plant) 9 Large Plant Liquid (Liquid release from large onshore plant) 10 Large Plant Liquid Bund Rural (Liquid Released from large onshore plant where spill is bunded) Application Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from onshore cross-country pipelines running through industrial or urban areas. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from onshore cross-country pipelines running through rural areas. Releases of flammable gases, vapour or liquids significantly above their normal (Normal Atmospheric Pressure (NAP)) boiling point from onshore cross-country pipelines running through industrial or urban areas. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from onshore cross-country pipelines running through rural areas. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from small onshore plants (plant area up to 1200 m2, site area up to 35,000 m2). Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from small onshore plants (plant area up to 1200 m2, site area up to 35,000 m2) and which are not bunded or otherwise contained. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from small onshore plants (plant area up to 1200 m2, site area up to 35,000 m2) and where the liquid releases from the plant area are suitably bunded or otherwise contained. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from large onshore outdoor plants (plant area above 1200 m2, site area above 35,000 m2). Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from large onshore outdoor plants (plant area above 1200 m2, site area above 35,000 m2) and which are not bunded or otherwise contained. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from large onshore outdoor plants (plant area above 1200 m2, site area above 35,000 m2) and where the liquid releases from the plant area are suitably bunded or otherwise contained. OGP 3

8 Scenario Look-up Release Type No. 11 Large Plant Congested Gas LPG (Gas or LPG released from a large confined or congested onshore plant) 12 Tank Liquid 300m x 300m Bund (Liquid release from a large confined or congested onshore plant) 13 Tank Liquid 100m x 100m Bund (Liquid release from onshore tank farm where spill is limited by small or medium sized bund) 14 Tank Gas LPG Plant (gas or LPG release from onshore tank farm within the plant) 15 Tank Gas LPG Storage Industrial (Gas or LPG released from onshore tank farm sited adjacent to a plant or away from the plant in an industrial area) 16 Tank Gas LPG Storage Only Rural (Gas or LPG released from onshore tank farm sited adjacent to a plant or away from the plant in an industrial area) Source: Energy Institute [1] Application Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from large onshore plants (plant area above 1200 m2, site area above 35,000 m2), where the plant is partially walled/roofed or within a shelter or very congested. Releases flammable liquids that do not have any significant flash fraction (10% or less) if released from very large onshore outdoor storage area 'tank farm' (e.g. spill in a large multitank bund over 25,000 m2 area). See curve No. 30 Tank Liquid diesel, fuel oil if liquids are stored at ambient conditions below their flash point. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from onshore outdoor storage area 'tank farm' (e.g. spill in a large tank bund containing four or fewer tanks, or any other bund less than 25,000 m2 area). See curve No. 30 Tank Liquid diesel, fuel oil if liquids are stored at ambient conditions below their flash point. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from onshore outdoor storage tanks located in a 'tank farm' entirely surrounded by plants. For tank farms adjacent to plants use curve No. 15 Tank Gas LPG Storage Industrial or Curve No. 16 Tank Gas LPG Storage Only Rural look-up correlations. Releases from process vessels or tanks inside plant areas should be treated as plant releases. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from onshore outdoor storage tanks located in a 'tank farm' adjacent to plants or situated away from plants in an industrial or urban area. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from onshore outdoor storage tanks located in a 'tank farm' adjacent to plants or situated away from plants in a rural area. 4 OGP

9 Table 2.2 Offshore Ignition Scenarios Scenario Look-up Release Type No. 17 Offshore Process Liquid (Liquid release from offshore process module) 18 Offshore Process Liquid NUI (Liquid release from offshore process area on NUI) 19 Offshore Process Gas Open Deck NUI (Gas release from offshore process open deck area on NUI) 20 Offshore Process Gas Typical (Gas release from typical offshore process module) 21 Offshore Process Gas Large Module (gas release from typical offshore process module) 22 Offshore Process Gas Congested or Mechanical Vented Module (Gas released from a mechanically ventilated or very congested offshore process module) 23 Offshore Riser (Gas release from typical offshore riser in air gap) Application Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from within offshore process modules. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from within offshore process modules or decks on NUIs. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from an offshore process weather deck/ open deck on NUIs. Can also be used for open/uncongested weather decks with limited process equipment on larger attended integrated platforms. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from within offshore process modules or decks on integrated deck / conventional installations). Process modules include separation, compression, pumps, condensate handling, power generation, etc. If the module is mechanically ventilated or very congested see curve No. 22 Offshore Process Gas Congested or Mechanical Vented Module. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from within large offshore process modules or decks on integrated deck / conventional installations (module greater than 1000 m2 floor area). Process modules include separation, compression, pumps, condensate handling, power generation, etc. If the module is mechanically ventilated or very congested see curve No. 22 'Offshore Process Gas Congested or Mechanical Vented Module'. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from within offshore process modules or decks on integrated deck / conventional installations: applies where the module is enclosed and has a mechanical ventilation system or is very congested (volume blockage ratio => 0.14 and less than 25% of area of the end walls open for natural ventilation) Releases from offshore installation risers in the air gap area where there is little chance of the release entering process areas on the installation (e.g. solid decks, wind walls). Applies to partial flashing oil or gas releases. May also be used for blowouts with well positioned diverters directing any release away from the installation (see also curve No. 27 Offshore Engulf blowout riser ). OGP 5

10 Scenario Look-up Release Type No. 24 Offshore FPSO Gas (Gas release from offshore FPSO process module) 25 Offshore FPSO Gas Wall (Gas release from offshore FPSO process module behind a transverse solid wall) 26 Offshore FPSO Liquid (Liquid release from typical offshore FPSO process module) 27 Offshore Engulf blowout riser (Major release which can engulf an entire offshore installation) Application Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from within offshore process modules or decks on FPSOs. See curve No. 25 offshore FPSO Gas Wall if the release is from an area downwind of a transverse wall across the FPSO deck. Releases of flammable gases, vapour or liquids significantly above their normal (NAP) boiling point from within offshore process modules or decks on FPSOs. This correlation applies if the release is from an area downwind of a transverse wall across the FPSO deck. Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from within offshore process modules or decks on FPSOs Releases from drilling or well working blowouts or riser failures under open grated deck areas where the release could engulf the entire installation and reach into platform areas: applies to partial flashing oil or gas releases. (see also curve No. 23 Offshore Riser for riser releases and blowouts with divertors) Source: Energy Institute [1] Note. Curve Nos. 28 and 29 related to Cox, Lees and Ang formulation which were included in the document for comparison Table 2.3 Special (Derived) Ignition Scenarios Scenario Look-up Release Type No. 30 Tank Liquid diesel fuel oil (Liquid Release from onshore tank farm of liquids below their flash point, e.g. diesel or fuel oil) Source: Energy Institute [1] Application Releases of combustible liquids stored at ambient pressure and at temperatures below their flash point (e.g. most gas, oil, diesel and fuel oil storage tanks) from onshore outdoor storage area tank farm. This look-up correlation can be applied to releases from tanks and low pressure transfer lines or pumps in the tank farm/ storage area. However, it should not be used for high-pressure systems (over a few barg): in these situations use curve No. 12 Tank Liquid 300m x 300m Bund or curve No. 13 Tank Liquid 100 x 100m Bund 6 OGP

11 Data Sheet 1: Scenarios 1 4 OGP 7

12 Data Sheet 2: Scenarios OGP

13 Data Sheet 3: Scenarios 8 11 OGP 9

14 Data Sheet 4: Scenarios 12, 13 & OGP

15 Data Sheet 5: Scenarios OGP 11

16 Data Sheet 6: Scenarios 17 & OGP

17 Data Sheet 7: Scenarios OGP 13

18 Data Sheet 8: Scenarios OGP

19 Data Sheet 9: Scenarios 23 & 27 OGP 15

20 Notes: 1. A flammable substance above its auto-ignition temperature is likely to ignite on release and should be modelled as having an ignition probability of one. 2. Very reactive substances are unlikely to found in oil and gas processing operations but if present it is suggested that the values given in the look-up correlations are doubled, subject to a maximum of 1. Such substances include hydrogen, acetylene, ethylene oxide and carbon disulphide. 3. High flash point (>55 C) liquids stored at or near ambient conditions are significantly less likely to ignite than suggested in the look-up correlations. It is suggested that an ignition probability from the look-up correlations is multiplied by a factor of 0.1 subject to a minimum of and taking account of the immediate ignition probability. 4. For liquids with flash fractions above 10% it is suggested that the ignition probability is estimated by combining the relevant liquid ignition probability with a suitable gas/lpg ignition probability. The appropriate release rates should be obtained from the flash fraction, e.g. a 10 kg/s release with a 20% flash fraction should give rise to an equivalent 2 kg/s gas release and 8 kg/s liquid release. The two probabilities can be combined using the following equation; Alternatively the higher of the two ignition probabilities can be used on the basis that the areas covered by the liquid and gas are likely to have considerable overlap. 5. Since the correlations are based on typical combinations of ignition sources, it follows that they should not be used in situations where particularly strong sources such as fired heaters are present. In this case the full UKOOA ignition model is more appropriate. 2.2 Blowout Ignition Probabilities An alternative to the blowout ignition probabilities given by the UKOOA look-up correlations can be obtained from Scandpower s interpretation of the blowout data provided by SINTEF 2. This is given in Table 2.4. The most significant category is that for deep blowouts which indicates an early ignition probability of For the purposes of QRA studies this can be taken as occurring immediately on release. The report also gives a delayed ignition probability of 0.16 although all of these are taken to occur more than one hour after the start of the release. Conservatively, this could be taken as occurring shortly after the initial release and result in an explosion. Table 2.4 Ignition Probabilities for Blowouts and Well Releases on Platforms Release Type Early ignition (< 5 min) Delayed ignition (5 60 min) Very Delayed ignition (> 60 min) Shallow Gas Blowout Deep Blowout Deep Well Release OGP

21 3.0 Guidance on use of data 3.1 General Validity The correlations are considered to provide an acceptable approach for use in typical QRA studies. For more detailed analysis it is recommended that the full spreadsheet UKOOA ignition model is used so that the specific circumstances with regard to layout and ignition sources can be more accurately represented. The correlations were developed for UKOOA member companies with the intention of providing representative probabilities for installations operating in UK waters. They may be applied to the analysis of hydrocarbon releases in other regions which comply with recognised industry good practice, as it is applied in the UKCS. The forward to the Energy Institute report states that the model and look-up correlations are not suited to the ignition probability assessment of refrigerated liquefied gases, vapourising liquid pools, sub-sonic gas releases, or non-momentum driven releases, such as those following catastrophic storage vessel failure. Despite this note, flashing liquid releases are covered by a number of the correlations and analysts may further modify them by combining them with a gas or LPG ignition probability in suitable proportions as suggested in note 4 of section 2.1. Atmospheric storage tanks are dealt with in the Storage Incident Frequencies data sheet. Low momentum and sub-sonic gas releases are uncommon in process systems. An approach to the scenarios for which the correlations are not valid is suggested in Section Alternative Approaches Releases addressed by datasheets in Section 2.0 The initial task for the analyst is to determine which of the scenarios given in Table 2.1 to OGP 17

22 Table 2.2 and Table 2.3 best matches the scenario under consideration. There may be situations where the scenario under consideration lies between two of the described scenarios, in which case the analysts may attempt to interpolate between two curves. The data presented in the tables in Section 2.0 can be used in three ways: 1. Estimate from the graphs 2. Obtain probability based on the tabulated values 3. Use values in Table 3.1 to calculate the probability. Note that, in interpolating between the data points, it is necessary to take logarithms of the release rate and probabilities, interpolate between these to find the logarithm of the required probability and then obtain the value itself, i.e.: where P ign is the required ignition probability corresponding to release rate Q is the ignition probability at a release rate of Q lower (the lower bound of the relevant curve section), and is the ignition probability at a release rate of Q upper (the upper bound of the relevant curve section) The third of these options is the recommended approach and the analyst may find it convenient to construct a spreadsheet or some other computer programme to carry this out. The data used to generate the lines on the graphs in the datasheets (Section 2.1) are shown in Table 3.1. This has been derived from Table 2.9 in the Institute of Energy report 1, which provides further explanation on the derivation of the lines. This specifies the release rates and ignition probabilities relating to each of the points bounding the segments as indicated in Figure 3.1. Some information on the timing of ignitions is also available in 1. Figure 3.1 Typical Ignition Probability Curve 18 OGP

23 A more accurate assessment may be obtained by the use of the full UKOOA ignition model which is described in 1. This has been implemented in a spreadsheet tool which is made available on a CD which accompanies the report. This allows the user to input specific data relating to release conditions, platform layout and ignition sources. However, this requires more effort on the part of the analyst and the availability of more installation specific data compared with the relative ease with which the look-up functions can be used. OGP 19

24 Table 3.1 Data for Look-up Correlations Point 1 Point 2 Point 3 Point 4 Scenario Type Release Probability Release Probability Release Probability Release Probability No. rate rate rate rate 1 Pipe Liquid Industrial Pipe Liquid Rural Pipe Gas LPG Industrial Pipe Gas LPG Rural Small Plant Gas LPG Small Plant Liquid Small Plant Liquid Bund Rural Large Plant Gas LPG Large Plant Liquid Large Plant Liquid Bund Rural Large Plant Congested Gas LPG Tank Liquid 300x300 Bund Tank Liquid 100x100 Bund Tank Gas LPG Plant Tank Gas LPG Storage Only Industrial Tank Gas LPG Storage Only Rural Offshore Process Liquid Offshore Process Liquid NUI Offshore Process Gas Open Deck NUI Offshore Process Gas Typical Offshore Process Gas Large Module Offshore Process Gas Congested or Mechanically Vented Module 23 Offshore Riser Offshore FPSO Gas Offshore FPSO Gas Wall Offshore FPSO Liquid Offshore Engulf Blowout - Riser Tank Liquid - Diesel and Fuel Oil OGP

25 3.2.2 Other releases As noted in Section 3.1, the UKOOA ignition model cannot be considered valid for all types of release. In particular, it does not refrigerated releases that form evaporating liquid pools. Analysis of these and the other scenarios referred to there may require a more fundamental treatment by calculating likely cloud sizes for the given release, material and weather conditions and estimating the number and strength of ignition sources which the flammable part of the cloud may reach. There is no generally recognized method for determining ignition source strength for use in QRAs. Some values are given in the Purple Book [3] but these are estimates based on engineering judgment and do not have any more scientific basis. 3.3 Uncertainties The assessment of ignition probability is subject to a large degree of uncertainty. The spreadsheet model produced under phase I of the joint industry project is itself subject to uncertainties in the analytical approach taken and in the data used. The adoption of the lookup correlations based on this model introduces more uncertainties because a compromise has to be made in selecting the most appropriate curve and these curves themselves are approximations to the curves produced by the model itself. Ignition probabilities are influenced by design layout, the number and separation of ignition sources, the quality of maintenance of equipment, and thereby the control of ignition sources. Despite these uncertainties, the approach is considered to be an advance on other formulations which relate ignition probability to release rate only with no regard for the presence of ignition sources, the nature of the fluids or the layout of the plant. 4.0 Review of data sources The data presented in Section 2 are largely a reproduction of data from the Energy Institute Research Report [1], published on behalf of the joint industry project sponsors UKOOA (Now Oil and Gas UK), the HSE and the Energy Institute. The report reviews existing models and develops a new model which could be applied to both onshore and offshore scenarios. The work was undertaken in two phases. The first phase involved developing a model for assigning ignition probabilities in QRA studies and to further the understanding of scenario specific ignition probabilities. The work was undertaken by AEA Technology (now ESR Technology) and co-ordinated by a joint industry steering group drawn from UKOOA member representatives, the HSE and consultants working in the field of onshore and offshore QRA. The report summarised the current status of knowledge and research in the field of ignition probability estimation in support of QRA. It evaluated this, together with the usefulness of the UK HSE s hydrocarbon release database as a basis to develop an improved ignition model for use in QRA. The end result is a spreadsheet model for estimating the ignition probability of process leaks offshore and also attempts to include the capability to assess the ignition probability of most typical onshore hydrocarbon leak scenarios. The spreadsheet attempts to model the ignition OGP 21

26 probability by considering the size of the gas cloud which would be formed by the release and taking into account the number and type of ignition sources which the cloud, at sufficient concentration, might reach. As a result of the complexity of the model, users are required to obtain and enter a significant amount of data relating to the platform configuration and the distribution of ignition sources. Having completed the work to establish a model, a second phase was commissioned to consider representative scenarios which would generate look-up correlations which could be used in QRA studies without the need for the user to gather the data required for the full model. The following summarises the release types considered. Gas releases LPG (flashing liquefied gas) releases Pressurised liquid oil releases leading to a spray release with flashing/ evaporation/ aerosol formation Low pressure liquid oil releases leading to a spreading pool only (no aerosol formation or flashing) Release rates from 0.1 to 1000 kg/s (graphs shown in the data sheets are extended to kg/s where the probability function does not reach a maximum below 1000 kg/s) The configurations considered are given in Table 2.1 to Table 2.3. A large number of analyses were carried out to produce graphs of ignition probability against release rate. Figure 4.1 shows a typical set of curves. In the final stage of the process, groups of similar curves were considered and grouped into the scenarios listed in Table 2.1 to Table 2.3. These scenarios were then examined and a representative curve assigned to them. These curves consist of between two and four segments each of which appears as a straight line when plotted on logarithmic axes. It is these curves which are depicted in the data sheets. Figure 4.1 Example of Ignition Probability Curve Calculated by UKOOA ignition model Source: Energy Institute [1] 22 OGP

27 Prior to the introduction of the UKOOA ignition model approach outlined above, the formulation attributed to Cox, Lees and Ang 4 was widely used. This gained acceptance largely because of the proportion of analysts using it rather than because of the rigour of the theory underlying it. Ignition probabilities predicted by this method were in excess of what was found to occur in practice and this was partly responsible for instigating the work which resulted in the UKOOA ignition model. References in this report to UKOOA (spreadsheet) model and UKOOA look-up correlations relate respectively to the output from the two phases of the project [1]. 5.0 Recommended data sources for further information For further information, on the ignition probability curves presented in this document, the Energy Institute report 1 should be consulted. 6.0 References 1. Ignition Probability Review, Model Development and Look-Up Correlations, Research Report published by the Energy Institute, January ISBN Scandpower Risk Management AS Blowout and Well Release Frequencies Based on SINTEF Offshore Blowout Database, 2006, Report No /R2. 3. Guidelines for quantitative risk assessment (Purple book), Part 1, Establishment, CPR18 E, Committee for the Prevention of Disasters (CPR), National Institute of Public Health and Environment (RIVM), Ministry of Transport, Public Works & Water Assessment Management, AVIV Adviserend Ingenieurs Save Ingenieurs (Adviesbureau), Cox, Lees and Ang, Classification of Hazardous Locations, Rugby: Institution of Chemical Engineers, ISBN OGP 23

28

29 For further information and publications, please visit our website at

30 Blackfriars Road London SE1 8NL United Kingdom Telephone: +44 (0) Fax: +44 (0) Bd du Souverain 4th Floor B-1160 Brussels, Belgium Telephone: +32 (0) Fax: +32 (0) Internet site:

Guidelines for the use of the OGP P6/11 bin grid GIS data model

Guidelines for the use of the OGP P6/11 bin grid GIS data model Guidelines for the use of the OGP P6/11 bin grid GIS data model Report No. 483-6g July 2013 This document is a companion document to the OGP P6/11 Seismic bin grid data exchange format description (2012)

More information

Checklist for an audit of safety management

Checklist for an audit of safety management Checklist for an audit of safety management Report No. 6.15/160 February 1990 P ublications Global experience The International Association of Oil & Gas Producers (formerly the E&P Forum) has access to

More information

Geomatics Guidance Note 3

Geomatics Guidance Note 3 Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG

More information

Using CFD in Platform Design

Using CFD in Platform Design Using CFD in Platform Design Eric Peterson, PhD. Principal Consultant Quantitative Risk Analyst Scandpower Inc., Houston,TX Hans Nordstand, Scandpower Inc., Houston, TX Sverre Nodland, Scandpower Inc.,

More information

Liberty Mutual Insurance RISK ENGINEERING PROCEDURE. REP 07 Incident Planning For external use

Liberty Mutual Insurance RISK ENGINEERING PROCEDURE. REP 07 Incident Planning For external use Liberty Mutual Insurance RISK ENGINEERING PROCEDURE REP 07 Incident Planning For external use Risk Engineering Procedure Incident Planning CONTENTS Page PURPOSE... 3 BACKGROUND... 4 INCIDENT PLANNING PREPARATION...

More information

Glossary of HSE terms

Glossary of HSE terms Glossary of HSE terms Report No. 6.52/244 September 1999 P ublications Global experience The International Association of Oil & Gas Producers (formerly the E&P Forum) has access to a wealth of technical

More information

Risk Assessment Data Directory. Report No. 434 A1 March 2010. Appendix 1

Risk Assessment Data Directory. Report No. 434 A1 March 2010. Appendix 1 Risk Assessment Data Directory Report No. 434 A1 March 2010 Appendix 1 I n t e r n a t i o n a l A s s o c i a t i o n o f O i l & G a s P r o d u c e r s P ublications Global experience The International

More information

DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES

DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES REV. 0 December 2012 TABLE OF CONTENT TABLE OF CONTENT... 2 DOCUMENT CONTROL...

More information

Consequence Analysis: Comparison of Methodologies under API Standard and Commercial Software

Consequence Analysis: Comparison of Methodologies under API Standard and Commercial Software 511 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 36, 2014 Guest Editors: Valerio Cozzani, Eddy de Rademaeker Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-27-3; ISSN 2283-9216 The

More information

Assessment of Hydrocarbon Explosion and Fire Risks. Professor Jeom Paik. The LRET Research Collegium Southampton, 11 July 2 September 2011

Assessment of Hydrocarbon Explosion and Fire Risks. Professor Jeom Paik. The LRET Research Collegium Southampton, 11 July 2 September 2011 Assessment of Hydrocarbon Explosion and Fire Risks by Professor Jeom Paik The LRET Research Collegium Southampton, 11 July 2 September 2011 1 Assessment of Hydrocarbon Explosion and Fire Risks in Offshore

More information

Risk Assessment Data Directory. Report No. 434 1 March 2010. Process release frequencies

Risk Assessment Data Directory. Report No. 434 1 March 2010. Process release frequencies Risk Assessment Data Directory Report No. 434 1 March 2010 Process release frequencies I n t e r n a t i o n a l A s s o c i a t i o n o f O i l & G a s P r o d u c e r s P ublications Global experience

More information

A Review of HSE s Risk Analysis and Protection Based Analysis Approaches for Land-Use Planning. Final Report

A Review of HSE s Risk Analysis and Protection Based Analysis Approaches for Land-Use Planning. Final Report A Review of HSE s Risk Analysis and Protection Based Analysis Approaches for Land-Use Planning Final Report www.erm.com September 2004 Delivering sustainable solutions in a more competitive world HSE A

More information

EXPLOSIVE ATMOSPHERES - CLASSIFICATION OF HAZARDOUS AREAS (ZONING) AND SELECTION OF EQUIPMENT

EXPLOSIVE ATMOSPHERES - CLASSIFICATION OF HAZARDOUS AREAS (ZONING) AND SELECTION OF EQUIPMENT EXPLOSIVE ATMOSPHERES - CLASSIFICATION OF HAZARDOUS AREAS (ZONING) AND SELECTION OF EQUIPMENT OVERVIEW ASSESSING THE RISK RELATIONSHIP BETWEEN FIRES AND EXPLOSIONS CLASSIFYING HAZARDOUS AREAS INTO ZONES

More information

APPENDIX H7: POOL SPREAD AREAS FOR INSTANTANEOUS TANK FAILURE

APPENDIX H7: POOL SPREAD AREAS FOR INSTANTANEOUS TANK FAILURE APPENDIX H7: POOL SPREAD AREAS FOR INSTANTANEOUS TANK FAILURE H7.1 Introduction H7.1.1.1 The extent of flow of liquid from a instantaneous tank failure has been assessed based on the physical modelling

More information

STORE HAZARDOUS SUBSTANCES SAFELY. incompatibles gas cylinders

STORE HAZARDOUS SUBSTANCES SAFELY. incompatibles gas cylinders STORE HAZARDOUS SUBSTANCES SAFELY Suitable containers incompatibles gas cylinders Oxy-Acetylene welding flammable substances 35 36 STORE HAZARDOUS SUBSTANCES SAFELY STORE HAZARDOUS SUBSTANCES SAFELY Storing

More information

LNG SAFETY MYTHS and LEGENDS

LNG SAFETY MYTHS and LEGENDS LNG SAFETY MYTHS and LEGENDS Doug Quillen ChevronTexaco Corp. Natural Gas Technology Investment in a Healthy U.S. Energy Future May 14-15, 2002 Houston Introduction North America is Becoming the Focal

More information

IGEM/UP/16 Communication 1756

IGEM/UP/16 Communication 1756 Communication 1756 Design for Natural Gas installations on industrial and commercial premises with respect to hazardous area classification and preparation of risk assessments Founded 1863 Royal Charter

More information

13. FPSO Operational Problems Don Smith, OGP

13. FPSO Operational Problems Don Smith, OGP OGP Marine Risks Workshop Proceedings 13. FPSO Operational Problems Don Smith, OGP FPSO Operational Problems Don Smith OGP Analysis of Accident Statistics for Floating Monohull and Fixed Installations

More information

HSE information sheet. Fire and explosion hazards in offshore gas turbines. Offshore Information Sheet No. 10/2008

HSE information sheet. Fire and explosion hazards in offshore gas turbines. Offshore Information Sheet No. 10/2008 HSE information sheet Fire and explosion hazards in offshore gas turbines Offshore Information Sheet No. 10/2008 Contents Introduction.. 2 Background of gas turbine incidents in the UK offshore sector...2

More information

A Triple Bottom Line approach to QRA

A Triple Bottom Line approach to QRA A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 26, 2012 Guest Editors: Valerio Cozzani, Eddy De Rademaeker Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-17-4; ISSN 1974-9791 The Italian

More information

Emergency Isolation Valves at Pump Suction: Application for Flammable Liquids

Emergency Isolation Valves at Pump Suction: Application for Flammable Liquids 667 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 48, 2016 Guest Editors: Eddy de Rademaeker, Peter Schmelzer Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-39-6; ISSN 2283-9216 The

More information

Human factors is the term used to describe the interaction

Human factors is the term used to describe the interaction Human factors defined Human factors is the term used to describe the interaction of individuals with each other, with facilities and equipment, and with management systems. This interaction is influenced

More information

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 -

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 - Calculation of Flashing Losses/VOC Emissions from Hydrocarbon Storage Tanks THE BASICS Q: What is VOC? A: VOC is an acronym that stands for Volatile Organic Compounds. VOC are components of hydrocarbon

More information

Natural Gas Information Contents

Natural Gas Information Contents Natural Gas Information Contents What is natural gas Natural Gas Components Physical Properties of Natural Gas Different Forms of Natural Gas The Use of Natural Gas Co-generation System Natural Gas and

More information

Oil spill risk assessment and response planning for offshore installations

Oil spill risk assessment and response planning for offshore installations Finding 6 Oil spill risk assessment and response planning for offshore installations FINAL REPORT Oil Spill Response Joint Industry Project The global oil and gas industry association for environmental

More information

UCL FIRE RISK ASSESSMENT POLICY& ARRANGEMENTS

UCL FIRE RISK ASSESSMENT POLICY& ARRANGEMENTS Fire Safety Technical Guide UCL FIRE RISK ASSESSMENT POLICY& ARRANGEMENTS 1.0. BACKGROUND 1.1. The Regulatory Reform (Fire Safety) Order (known Fire Safety Order) applies to England and Wales (Northern

More information

Ultrasonic Gas Leak Detection

Ultrasonic Gas Leak Detection Ultrasonic Gas Leak Detection What is it and How Does it Work? Because every life has a purpose... Ultrasonic Gas Leak Detection Introduction Ultrasonic gas leak detection (UGLD) is a comparatively recent

More information

Liquefied Natural Gas (LNG)

Liquefied Natural Gas (LNG) Graduate Diploma in Petroleum Studies Major in Liquefied Natural Gas (LNG) INDUCTION Launching ceremony Week 39, 2012 Administration / Plant visit / Fundamentals of LNG and LNG main risks awareness Module

More information

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 Gas Standards and Safety Guidance Note January 2015 (GN106) Version 1.0 GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 A guide to assist in the design of biogas

More information

Controlling fire and explosion risks in the workplace

Controlling fire and explosion risks in the workplace Controlling fire and explosion risks in the workplace A brief guide to the Dangerous Substances and Explosive Atmospheres Regulations Introduction to DSEAR This leaflet provides a brief introduction to

More information

Guidance on Process Safety Performance Indicators

Guidance on Process Safety Performance Indicators Guidance on Process Safety Performance Indicators Table of contents 01 INTRODUCTION 02 OBJECTIVE 02 SCOPE 03 CRITERIA 06 DATA REPORTING 08 PROCESS SAFETY PERFORMANCE 08 CONCLUSIONS 09 DEFINITIONS 09 REFERENCES

More information

Risk Assessment Data Directory. Report No. 434 9 March 2010. Land transport accident statistics

Risk Assessment Data Directory. Report No. 434 9 March 2010. Land transport accident statistics Risk Assessment Data Directory Report No. 434 9 March 2010 Land transport accident statistics I n t e r n a t i o n a l A s s o c i a t i o n o f O i l & G a s P r o d u c e r s P ublications Global experience

More information

Area Classification Why? Where? How? Who? When?

Area Classification Why? Where? How? Who? When? Area Classification Why? Where? How? Who? When? Patrick Leroux TOTAL AREA CLASSIFICATION Why? A brief history of accidents Severe accidents in coal mines occurred through the world in the 19 th and 20

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Gas Detection for Refining. HA University

Gas Detection for Refining. HA University Gas Detection for Refining HA University Refinery Process and Detection Needs Refining i Crude Oil Final Products Coke Asphalt Waxes, Lubricating Oils and Greases Kerosene, Jet Fuel, Diesel Fuel, Home

More information

Ontario Fire Code SECTION 5.13 DIP TANKS. Illustrated Commentary. Office of the Ontario Fire Marshal

Ontario Fire Code SECTION 5.13 DIP TANKS. Illustrated Commentary. Office of the Ontario Fire Marshal Ontario Fire Code SECTION 5.13 DIP TANKS Illustrated Commentary Office of the Ontario Fire Marshal Dip Tanks Illustrated Commentary 1 5.13.1. Location 5.13.1.1. Dip tank operations involving flammable

More information

BUILDING A WORLD OF DIFFERENCE. Safe work in confined spaces

BUILDING A WORLD OF DIFFERENCE. Safe work in confined spaces Health & Safety Training Safe work in confined spaces Agenda Introduction What is a confined space? What are the hazards? Safe system of work Emergency arrangements Summary of pre-entry checks Questions

More information

Eksplosjonsrisiko, værbeskyttelse og optimalisering av design

Eksplosjonsrisiko, værbeskyttelse og optimalisering av design OIL & GAS Eksplosjonsrisiko, værbeskyttelse og optimalisering av design HMS utfordringer i Nordområdene Arbeidsseminar 4 Asmund Huser 20 May 2014 1 DNV GL 2013 20 May 2014 SAFER, SMARTER, GREENER Content

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

Nitrogen Blanketing for Methanol Storage and Transportation

Nitrogen Blanketing for Methanol Storage and Transportation Nitrogen Blanketing for Methanol Storage and Transportation Overview Air is the enemy of many materials. Not only can oxygen cause safety concerns and product degradation, but moisture, dirt, hydrocarbons

More information

LNG as Ship Fuel. Effects on Ship Design, Operations and Supporting Infrastructure

LNG as Ship Fuel. Effects on Ship Design, Operations and Supporting Infrastructure LNG as Ship Fuel Effects on Ship Design, Operations and Supporting Infrastructure New Technologies for the Marine Highway TRB Marine Highways Committee (AW010(1)) January 14, 2013 LNG as a Ship s Fuel

More information

LPG, Flammable Liquids, Toxic and Corrosive Substances

LPG, Flammable Liquids, Toxic and Corrosive Substances LPG, Flammable Liquids, Toxic and Corrosive Substances LPG, Flammable Liquids, Toxic and Corrosive Substances Safe Storage and Handling Today s focus is Dangerous substances under the Dangerous Substances

More information

WORK IN CONFINED SPACES

WORK IN CONFINED SPACES WORK IN CONFINED SPACES STFC Safety Code No 11 Rev. 1.4, Issued April, 2015 Note - This document may have been superseded by a more recent version. Revisions 1 Initial Launch November 2007 1.1 Minor changes

More information

CHAPTER 4: OFFSITE CONSEQUENCE ANALYSIS

CHAPTER 4: OFFSITE CONSEQUENCE ANALYSIS CHAPTER 4: OFFSITE CONSEQUENCE ANALYSIS RMP OFFSITE CONSEQUENCE ANALYSIS GUIDANCE This chapter is intended for people who plan to do their own air dispersion modeling. If you plan to do your own modeling,

More information

Flammable Liquids 29 CFR 1910.106

Flammable Liquids 29 CFR 1910.106 Flammable Liquids 29 CFR 1910.106 OSHA s Directorate of Training and Education These materials were developed by OSHA s Directorate of Training and Education and are intended to assist employers, workers,

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

CONFINED SPACE PROCEDURE

CONFINED SPACE PROCEDURE Document uncontrolled when printed Procedure ID no 0460/05 CONFINED SPACE PROCEDURE This procedure is applicable to: All Department of Education and Children's Services employees. DOCUMENT CONTROL Managed

More information

Confined Spaces. The National Food and Drink Manufacturing Conference October 2012

Confined Spaces. The National Food and Drink Manufacturing Conference October 2012 Confined Spaces The National Food and Drink Manufacturing Conference October 2012 Confined spaces A silent killer! What is a confined space Typical hazards Examples of confined space in the food and drink

More information

Outline. Background. NFPA 820 Applicability to Wastewater Treatment Facilities. Hazardous Area Classifications. Treatment Plant Area Classifications

Outline. Background. NFPA 820 Applicability to Wastewater Treatment Facilities. Hazardous Area Classifications. Treatment Plant Area Classifications Outline Background NFPA 820 Applicability to Wastewater Treatment Facilities Hazardous Area Classifications Treatment Plant Area Classifications Locations of Concern Background NFPA 820 Standard for fire

More information

Manual of Petroleum Measurement Standards Chapter 11 Physical Properties Data

Manual of Petroleum Measurement Standards Chapter 11 Physical Properties Data Manual of Petroleum Measurement Standards Chapter 11 Physical Properties Data Section 2, Part 4 Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E ASTM Technical

More information

FLAMMABLE AND COMBUSTIBLE LIQUIDS. n OSHA Changes

FLAMMABLE AND COMBUSTIBLE LIQUIDS. n OSHA Changes FLAMMABLE AND COMBUSTIBLE LIQUIDS OSHA Changes Introduction This module covers the two primary hazards associated with flammable and combustible liquids: explosion and fire. In order to prevent these hazards,

More information

HEATING OF DOMESTIC OUTDOOR SWIMMING POOLS

HEATING OF DOMESTIC OUTDOOR SWIMMING POOLS HEATING OF DOMESTIC OUTDOOR SWIMMING POOLS INTRODUCTION 1. There are no general EU regulations and standards for outdoor swimming pool heating. Local regulations in the member countries are covering most

More information

WORKING IN CONFINED SPACES GUIDELINES

WORKING IN CONFINED SPACES GUIDELINES WORKING IN CONFINED SPACES GUIDELINES Contents 1 Introduction... 2 2 Scope... 2 3 Definitions... 2 4 Responsibilities... 3 4.1 Permit Authoriser... 3 4.2 Permit Receiver... 3 4.3 Responsible UOW Officer...

More information

EPA RISK MANAGEMENT PROGRAM RULE TO IMPACT DISTRIBUTORS AND MANUFACTURERS

EPA RISK MANAGEMENT PROGRAM RULE TO IMPACT DISTRIBUTORS AND MANUFACTURERS EPA RISK MANAGEMENT PROGRAM RULE TO IMPACT DISTRIBUTORS AND MANUFACTURERS I. Introduction Under an EPA rule designed to prevent chemical accidents, certain distributors, formulators and manufacturers of

More information

Risk Assessment Data Directory. Report No. 434 3 March 2010. Storage incident frequencies

Risk Assessment Data Directory. Report No. 434 3 March 2010. Storage incident frequencies Risk Assessment Data Directory Report No. 434 3 March 2010 Storage incident frequencies I n t e r n a t i o n a l A s s o c i a t i o n o f O i l & G a s P r o d u c e r s P ublications Global experience

More information

NSPS Subpart OOOO: Applicability and Compliance Basics

NSPS Subpart OOOO: Applicability and Compliance Basics NSPS Subpart OOOO: Applicability and Compliance Basics Kentucky Oil & Gas Association 2013 Western Kentucky Meeting September 12, 2013 Roy Rakiewicz All4 Inc. Rob Flynn Environmental Standards, Inc. www.all4inc.com

More information

ICHEME SYMPOSIUM SERIES NO. 139 A METHODOLOGY FOR CONCEPT RISK ASSESSMENT OF OFFSHORE DEVELOPMENTS

ICHEME SYMPOSIUM SERIES NO. 139 A METHODOLOGY FOR CONCEPT RISK ASSESSMENT OF OFFSHORE DEVELOPMENTS A METHODOLOGY FOR CONCEPT RISK ASSESSMENT OF OFFSHORE DEVELOPMENTS FK Crawley, Dr MM Grant, MD Green WS Atkins Consultants Limited, 20 N Claremont St., Glasgow G3 7LE This paper describes a simple means

More information

Guidelines for implementing Well Operations Crew Resource Management training

Guidelines for implementing Well Operations Crew Resource Management training REPORT 502 DECEMBER 2014 Guidelines for implementing Well Operations Crew Resource Management training communication teamwork Disclaimer Whilst every effort has been made to ensure the accuracy of the

More information

An inventory of hazardous materials used in your workplace will prove useful.

An inventory of hazardous materials used in your workplace will prove useful. Introduction Fire Protection is an organized approach designed to prevent fires. In the event of a fire, a fire protection program will help prevent or minimize personal injuries, losses, and harm to the

More information

APPLICATION OF QUALITATIVE AND QUANTITATIVE RISK ANALYSIS TECHNIQUES TO BUILDING SITING STUDIES

APPLICATION OF QUALITATIVE AND QUANTITATIVE RISK ANALYSIS TECHNIQUES TO BUILDING SITING STUDIES APPLICATION OF QUALITATIVE AND QUANTITATIVE RISK ANALYSIS TECHNIQUES TO BUILDING SITING STUDIES John B. Cornwell, Jeffrey D. Marx, and Wilbert W. Lee Presented At 1998 Process Plant Safety Symposium Houston,

More information

FLAMMABLE LIQUIDS COMPLIANCE NOTE

FLAMMABLE LIQUIDS COMPLIANCE NOTE Issued by: Heather Rice Page: 1 of 7 COMPLIANCE NOTE INTRODUCTION This document provides additional guidance to support the Arrangement on Flammable Liquids (Ref No. CYC/HS/A27) CONTENTS Section Topic

More information

Annex H. Quantitative Risk Assessment Specialist Report

Annex H. Quantitative Risk Assessment Specialist Report Annex H Quantitative Risk Assessment Specialist Report Burgan Oil Cape Terminal Major Hazard Installation Risk Assessment for EIA v4.0 Ref: 0220778 MHI 0012 EXECUTIVE SUMMARY Burgan Oil Cape Terminal

More information

Confined spaces can be deadly. What is a confined space?

Confined spaces can be deadly. What is a confined space? Confined spaces A brief guide to working safely This leaflet explains what you, as an employer, may need to do to protect your employees when working in confined spaces. It will also be useful to the self-employed

More information

1 What is the purpose of this document?

1 What is the purpose of this document? Executive Summary Comparing the Oil and Gas Drilling Regulatory Regimes of the, the, the U.K,, and 1 What is the purpose of this document? The National Energy Board (NEB) regulates offshore oil and gas

More information

Liquefied Petroleum Gas Volume 1 : Large Bulk Pressure Storage & Refrigerated LPG

Liquefied Petroleum Gas Volume 1 : Large Bulk Pressure Storage & Refrigerated LPG IP THE INSTITUTE OF PETROLEUM Liquefied Petroleum Gas Volume 1 : Large Bulk Pressure Storage & Refrigerated LPG MODEL CODE OF SAFE PRACTICE PART 9 ISBN 0 471 91612 9 First'printed 1987 Reprinted October

More information

Instrument Gas to Instrument Air Conversion Protocol October 2009 SPECIFIED GAS EMITTERS REGULATION OCTOBER 2009. Version 1.0.

Instrument Gas to Instrument Air Conversion Protocol October 2009 SPECIFIED GAS EMITTERS REGULATION OCTOBER 2009. Version 1.0. SPECIFIED GAS EMITTERS REGULATION QUANTIFICATION PROTOCOL FOR INSTRUMENT GAS TO INSTRUMENT AIR CONVERSION IN PROCESS CONTROL SYSTEMS Version 1.0 OCTOBER 2009 Page 1 Disclaimer: The information provided

More information

Design of a Fuel Oil Storage Facility

Design of a Fuel Oil Storage Facility Design of a Fuel Oil Storage Facility Background The goal of this project is to design a new, state-of-the-art fuel oil storage facility for the Kanawha Valley Facility, such as the one illustrated in

More information

Practical Guidelines for Electrical Area Classification in Combustion Turbine-Generator Power Plants

Practical Guidelines for Electrical Area Classification in Combustion Turbine-Generator Power Plants Practical Guidelines for Electrical Area Classification in Combustion Turbine-Generator Power Plants Ram K. Saini, P.E. Principal Engineer, Chuck Emma, P.E. Principal Engineer, Burns and Roe Enterprises,

More information

Goliat Barrier Management

Goliat Barrier Management Goliat Barrier Management ESRA Norge; March 25, 2015 www.eninorge.com Eni: Ole Rekdal Safetec: Helene Ness Hansen PL 229 Goliat Location and Partnership License awarded in 1997 Present licensees Eni Norge

More information

WASTE Application Form - Dublin Waste to Energy SECTION J ACCIDENT PREVENTION & EMERGENCY RESPONSE

WASTE Application Form - Dublin Waste to Energy SECTION J ACCIDENT PREVENTION & EMERGENCY RESPONSE SECTION J ACCIDENT PREVENTION & EMERGENCY RESPONSE Describe the existing or proposed measures, including emergency procedures, to minimise the impact on the environment of an accidental emission or spillage.

More information

Hazardous Substance Class Definitions & Labels

Hazardous Substance Class Definitions & Labels Hazardous Substance Class Definitions & Labels In the IMDG Code, substances are divided into 9 classes. A substance with multiple hazards has one 'Primary Class' and one or more 'Subsidiary Risks'. Some

More information

DIRECTIVE 055: STORAGE REQUIREMENTS FOR THE UPSTREAM PETROLEUM INDUSTRY

DIRECTIVE 055: STORAGE REQUIREMENTS FOR THE UPSTREAM PETROLEUM INDUSTRY DIRECTIVE 055: STORAGE REQUIREMENTS FOR THE UPSTREAM PETROLEUM INDUSTRY FREQUENTLY ASKED QUESTIONS (FAQ) Question: Do fuel tanks fall under the requirements of Directive 055? No. For storage of fuels (e.g.,

More information

Overview of pipelines in Europe advantages and disadvantages

Overview of pipelines in Europe advantages and disadvantages Overview of pipelines in Europe advantages and disadvantages Dr. Georgios A. Papadakis Industrial Risk Management Technical University of Crete,, Greece tel: : +30-28210 28210-37316 e-mail: gpap@dpem.tuc.gr

More information

Site and Storage Conditions for Class 3.1 Flammable Liquids

Site and Storage Conditions for Class 3.1 Flammable Liquids Site and Storage Conditions for Class 3.1 Flammable Liquids Introduction Contents Introduction... 1 SITE AND STORAGE CONDITIONS...2 Part 1 General Flammability Conditions...2 Part 2 Conditions Relating

More information

Take care with oxygen Fire and explosion hazards in the use of oxygen

Take care with oxygen Fire and explosion hazards in the use of oxygen Fire and explosion hazards in the use of oxygen This leaflet provides information on the fire and explosion hazards in the use of oxygen. It is for anyone who uses oxygen gas in cylinders. Hazards from

More information

DuPont ISCEON MO89 refrigerant

DuPont ISCEON MO89 refrigerant This SDS adheres to the standards and regulatory requirements of Great Britain and may not meet the regulatory requirements in other countries. 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE

More information

VAPOUR CLOUD EXPLOSION RISK MANAGEMENT IN ONSHORE PLANT USING EXPLOSION EXCEEDANCE TECHNIQUES

VAPOUR CLOUD EXPLOSION RISK MANAGEMENT IN ONSHORE PLANT USING EXPLOSION EXCEEDANCE TECHNIQUES VAPOUR CLOUD EXPLOSION RISK MANAGEMENT IN ONSHORE PLANT USING EXPLOSION EXCEEDANCE TECHNIQUES G.A. Chamberlain and J.S. Puttock Shell Global Solutions UK 1 Cheshire Innovation Park, P.O. Box 1, Chester,

More information

Fire & Explosion Risks in Service Stations

Fire & Explosion Risks in Service Stations Fire & Explosion Risks in Service Stations Petrol Vapour Petrol gives off highly flammable vapour even at very low temperatures. Because of the flammability of petrol vapours, service stations carry a

More information

Guide to Certification for Retail Hardware Stores

Guide to Certification for Retail Hardware Stores Guide to Certification for Retail Hardware Stores A Guide for the Person in Charge DECEMBER 2011 TECHNICAL GUIDE 2 Table of contents Table of contents... 2 Preface... 3 Purpose of this publication... 4

More information

Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description

Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description Safety & Risk Management Services Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description Germanischer Lloyd Service/Product Description Safety Integrity Level (SIL) Studies

More information

Date: 22 June 2005 Version: 2 Revision: 1. 1. Identification of the substance/preparation and company/undertaking

Date: 22 June 2005 Version: 2 Revision: 1. 1. Identification of the substance/preparation and company/undertaking Page 1 of 5 1. Identification of the substance/preparation and company/undertaking Product identifier Use Details of supplier of the safety data sheet Engine oil Telephone number +44-20-7186-0400 FAX number

More information

Basic Fundamentals Of Safety Instrumented Systems

Basic Fundamentals Of Safety Instrumented Systems September 2005 DVC6000 SIS Training Course 1 Basic Fundamentals Of Safety Instrumented Systems Overview Definitions of basic terms Basics of safety and layers of protection Basics of Safety Instrumented

More information

HUMAN FAILURE IN THE ASSESSMENT OF MAJOR HAZARD RISK: A CASE STUDY FOR THE HUMAN FACTORS SAFETY CRITICAL TASK ANALYSIS (HFSCTA) METHODOLOGY

HUMAN FAILURE IN THE ASSESSMENT OF MAJOR HAZARD RISK: A CASE STUDY FOR THE HUMAN FACTORS SAFETY CRITICAL TASK ANALYSIS (HFSCTA) METHODOLOGY HUMAN FAILURE IN THE ASSESSMENT OF MAJOR HAZARD RISK: A CASE STUDY FOR THE HUMAN FACTORS SAFETY CRITICAL TASK ANALYSIS (HFSCTA) METHODOLOGY Charlotte Hill 1, Liz Butterworth 1 and Steve Murphy 2 1 Human

More information

Surveying & Positioning Guidance note 10

Surveying & Positioning Guidance note 10 Surveying & Positioning Guidance note 10 Geodetic Transformations Offshore Norway Revision history Version Date Amendments 1.0 April 2001 First release 1 Background European Datum 1950 (ED50) is the de

More information

Office for Nuclear Regulation

Office for Nuclear Regulation ONR GUIDE CONTAINMENT: CHEMICAL PLANTS Document Type: Nuclear Safety Technical Assessment Guide Unique Document ID and Revision No: NS-TAST-GD-021 Revision 2 Date Issued: March 2013 Review Date: March

More information

TOXIC AND FLAMMABLE GAS CLOUD DETECTORS LAYOUT OPTIMIZATION USING CFD

TOXIC AND FLAMMABLE GAS CLOUD DETECTORS LAYOUT OPTIMIZATION USING CFD Introduction to the case Gas detectors are commonly installed in process facilities to automatically alarm and trigger safety measures in response to hazardous leaks. Without effective leak detection,

More information

The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes

The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica

More information

SECTION 1 IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING. 129 Lockwood St. 1-800-255-3924-CHEM-TEL (24 hour)

SECTION 1 IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING. 129 Lockwood St. 1-800-255-3924-CHEM-TEL (24 hour) Page 1 of 5 MATERIAL SAFETY DATA SHEET SECTION 1 IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING LUBRIPLATE Lubricants Co. Emergency Telephone Number: 129 Lockwood St. 1-800-255-3924-CHEM-TEL

More information

Safety performance indicators 2010 data

Safety performance indicators 2010 data Safety performance indicators 2010 data Report No. 455 May 2011 (updated June 2011) International Association of Oil & Gas Producers P ublications Global experience The International Association of Oil

More information

International Format for Material Safety Data Sheets

International Format for Material Safety Data Sheets International Format for Material Safety Data Sheets Canada s occupational health and safety agencies have agreed to allow the use of an internationally recognized format for material safety data sheets

More information

HealthandSafetyOntario.ca. Introduction. Storage Containers. Storing Flammable Liquids

HealthandSafetyOntario.ca. Introduction. Storage Containers. Storing Flammable Liquids Flammable Liquids Storage Introduction This guideline is designed to help you store flammable liquids safely. It is based on the requirements of the Ontario Fire Code, Part 4, and of the Regulations for

More information

ANNUAL OFFSHORE STATISTICS & REGULATORY ACTIVITY REPORT 2013/2014

ANNUAL OFFSHORE STATISTICS & REGULATORY ACTIVITY REPORT 2013/2014 ANNUAL OFFSHORE STATISTICS & REGULATORY ACTIVITY REPORT 2013/2014 Date of release: December 2014 1 Preface HSE is responsible for regulating health & safety matters offshore. The Health and Safety at Work

More information

This leaflet provides information on

This leaflet provides information on This leaflet provides information on the fire and explosion hazards in the use of oxygen. It is for anyone who uses oxygen gas in cylinders. HSE8(rev2) Hazards from oxygen Oxygen gas in cylinders is used

More information

Risk Management Guidelines

Risk Management Guidelines Fire Prevention on Construction Sites The Joint Code of Practice on the Protection from Fire of Construction Sites and Buildings Undergoing Renovation Introduction In response to increasing numbers and

More information

APPENDIX 2A. Shah Deniz Production Sharing Agreement Extract

APPENDIX 2A. Shah Deniz Production Sharing Agreement Extract APPENDIX 2A Shah Deniz Production Sharing Agreement Extract Shah Deniz Production Sharing Agreement Extract ARTICLE 26 - Environmental Protection and Safety 26.1 Environmental Standards Contractor shall

More information

JOINT CBA AND SIA GUIDANCE FOR THE STORAGE OF FLAMMABLE LIQUIDS IN SEALED PACKAGES IN SPECIFIED EXTERNAL STORAGE AREAS

JOINT CBA AND SIA GUIDANCE FOR THE STORAGE OF FLAMMABLE LIQUIDS IN SEALED PACKAGES IN SPECIFIED EXTERNAL STORAGE AREAS JOINT CBA AND SIA GUIDANCE FOR THE STORAGE OF FLAMMABLE LIQUIDS IN SEALED PACKAGES IN SPECIFIED EXTERNAL STORAGE AREAS 1 JOINT CBA AND SIA GUIDANCE FOR THE STORAGE OF FLAMMABLE LIQUIDS IN SEALED PACKAGES

More information

HAZARD COMMUNICATION & THE GLOBAL HARMONIZING SYSTEM EMPLOYEE TRAINING

HAZARD COMMUNICATION & THE GLOBAL HARMONIZING SYSTEM EMPLOYEE TRAINING HAZARD COMMUNICATION & THE GLOBAL HARMONIZING SYSTEM EMPLOYEE TRAINING This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation. Featured are: INTRODUCTION: A brief

More information

* * * EMERGENCY OVERVIEW * * * High pressure gas. Can cause rapid suffocation. Can increase respiration and heart rate.

* * * EMERGENCY OVERVIEW * * * High pressure gas. Can cause rapid suffocation. Can increase respiration and heart rate. SUPPLIER ADDRESS: PRODUCT NAME: Saxon Wharf, Lower York St Southampton SO14 5QF, UK 1. CHEMICAL PRODUCT EMERGENCY PHONE NUMBER: COMPRESSED GAS, N.O.S. SYNONYMS: None (Contains: CARBON DIOXIDE & NITROGEN)

More information

: DuPont SUVA 134aUV Leakdetect

: DuPont SUVA 134aUV Leakdetect This SDS adheres to the standards and regulatory requirements of Great Britain and may not meet the regulatory requirements in other countries. 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE

More information

HAZARDOUS AREA TECHNICAL GUIDE

HAZARDOUS AREA TECHNICAL GUIDE Page 1 HAZARDOUS AREA TECHNICAL GUIDE The Redapt Hazardous Area Technical Guide provides an overview for the design and use of equipment used within potentially explosive atmospheres created by gases,

More information