1.1. The Goal of Clustering
|
|
|
- Angelica Johnston
- 9 years ago
- Views:
Transcription
1 BoundedClustering{ FindingGoodBoundsonClusteredLightTransport MarcStamminger,PhilippSlusallek,andHans-PeterSeidel ComputerGraphicsGroup,UniversityofErlangen Abstract Clusteringisaveryecienttechniquetoapplyniteelementmethodstothecomputationofradiosity solutionsofcomplexscenes.bothcomputationtime andmemoryconsumptioncanbereduceddramatically bygroupingtheprimitivesoftheinputsceneintoa hierarchyofclustersandallowingforlightexchange betweenalllevelsofthishierarchy.however,problems canariseduetoclustering,whengrossapproximations aboutacluster'scontentresultinunsatisfactorysolutionsorunnecessarycomputations. Intheclusteringapproachfordiuseglobalilluminationdescribedinthispaper,lightexchangebetweentwo objects patchesorclusters isboundedbyusing geometricalandshadinginformationprovidedbyevery objectthroughauniforminterface.withthisuniform viewofvariouskindsofobjects,comparableandreliable errorboundsonthelightexchangecanbecomputed, whichthenguideastandardhierarchicalradiosityalgorithm. 1.Introduction Computingtheglobalilluminationofavirtualworld isstilloneofthemostchallengingtasksincomputer graphics.signicantsuccesshasbeenachievedincomputingdirectionallyindependentradiositysolutions, suchthatlightingsimulationscannowbecomputed inreasonabletimeevenforcomplexenvironments. Amajorbreakthroughforradiositymethodswasthe introductionofclustering,whichextendstheideaofhierarchicallycomputinglightexchangebetweenobjects intheenvironment.thisresultedinareducedcomputationalcomplexityofo(n)oro(nlogn)compared tothequadraticnatureoftheoriginalalgorithm.for earlyhierarchicalalgorithms[6,5]thisspeedupwas restrictedtoadaptivesubdivisionofinputprimitives. Incontrast,clusteringalgorithmsgroupallprimitives intoasinglehierarchyofclusters,whichconsistofother clusters,surfaceelements,orsubdivisionsthereof.applyingthesameideaofadaptivesubdivisiontothis uniedhierarchyextendsthespeeduptothecomplete scene[16,2,13,4,1]. Therearetwomajorissueswithanyhierarchical method:thedesignofanecientrenerfortheadaptivesubdivisionandofanaccurateestimatortocomputetheactualinteractioncoecients.therenerapproximatestheerrorthatwouldresultbyperforming thelightexchangeonaparticularhierarchylevel.if thaterrorisconsideredunacceptable,oneorbothof theinteractingobjectsaresubdividedandthelightexchangebetweentheirsubdivisionsisconsideredrecursively.iftherenerissatised,thetaskoftheestimatoristocomputeagoodestimateoftheexactlight exchange The Goal of Clustering Thebasicpropertyofeachclusteringalgorithmishow acluster'sradianceeldisrepresented.inorderto handleclustersmoreeciently,usuallyverycrudeapproximationsaremade,suchasneglectingintra-cluster visibility,assumingisotropicscatteringbythecluster, uniformdistributionoftheobjectsinacluster,orneglectingthespatialextentofaclusterandapproximatingitbyapoint.anyoftheseassumptionsis justiedandusefulinordertoecientlyhandleclusters,butitisimportantthattherenerknowsabout theusedsimplicationsandguidestherenementsuch thatartifactsduetothesimpliedviewofaclusterare avoidedbyearlysubdividingsucherrorproneinteractions.atthesametimewewanttoavoidunnecessary renement,whichwouldresultinincreasedcomputationtimes. 1
2 Thepointisthatawayhastobefoundtogetcomparableandreliableerrorapproximationsofinteractions betweenarbitraryobjects,eitherclustersorpatches. Thisalsomeanstohaveonesingleerrorthresholdparameterforallkindsofinteractions,makingthealgorithmeasytouse.Itiswellworthtospendmoretime inagoodclusteringrener,becauseeveryunnecessary subdivisionthatisavoidedsavessignicantcomputationtime,andamissingnecessaryrenementcanlower thesolutionquality Previous Work Intheoriginalhierarchicalradiositymethodandmany ofitsderivations,theestimatedamountoftransported light,i.e.exitantlightatthereceiverinduceddirectly bythesender,isalsousedfortherener,i.e.the amountoftransportedlightisusedaserrorapproximation[6]. Averyfastmethodtocomputeinteractionsbetween clustersispresentedin[13],whereclustersareapproximatedbyisotropicvolumetricobjects.again,the errorisestimatedbyconsideringonlytheamountof transportedlight.inpracticetheunderlyingassumptionofisotropicbehaviorofaclusteroftenleadsto strongartifactsandtheanisotropyofaclusterisnot measuredbytherenerinordertoguiderenement properly.however,theoracleandformfactorcomputationdonotdierentiatebetweenpatchesandclusters andevenvolumetricobjectscanbehandledeasily.in [15]theisotropyassumptionisliftedbyusingspherical harmonicstorepresenttheanisotropicradiancedistributionofacluster. Abetterrenerwouldestimatetherangeofilluminationvaluesonthereceiverduetothesender[16,9].If theilluminationonthereceivingobjectvariesstrongly, senderand/orreceiverhavetobesubdivided.rening thereceiverdecreasestheerrorbyallowingforamore accuraterepresentationofillumination,whereasare- nementofthesenderimprovestheaccuracyofthe computedlightexchangebyreducingthesolidangle accountedforbyasingleinteraction. Conservativeboundsrestrictedtotheinteractionof surfacepatchesaredescribedin[9],butrequirecomplexgeometriccomputations.anextensiontoclusters seemsdicult.smitsetal.[16]estimateanupper boundontheformfactorintegrandbystochastically samplingtheintegrand.theobtainedupperboundis mostlytoopessimistic,becausetheintrinsicproperties ofaclustersuchasself-occlusionarenotaccountedfor. Christensenetal.[2,1]extendedtheclusteringapproachtoglossysurfaces.Theyalsouseconservative boundsontheinteractionbetweentwoclusters.however,sinceinthisapproachclustershavebeenapproximatedaspointstheseboundsareactuallynotconservativewithrespecttotheoriginalclustersthathave niteextent.therenerdoesnotaccountforthisfact either. Finally,in[4],deterministicsamplingatthereceiveris usedfortherener.forpatch-to-patchinteractions, theilluminationforsomesamplepointsatthereceiver iscomputedanalytically,whichisonlypossibleforvery fewtypesofsendinggeometries(e.g.polygons),andthe variationofilluminationvaluesisusedasrenement criterion.thisrenerperformsextremelywell,especiallyforpartiallyoccludedinteractions.nevertheless, itisasamplingapproachwithalltheproblemsthat canarisefromsampling.furthermore,amethodto analyticallycomputeilluminationisnotavailablefor clusters,whichmakesauniedviewtodierentkinds ofobjectsdicult.theauthorsusetheisotropicclustermodelofsillionetal.[13]withananisotropycorrection.intra-clustervisibility,thatisvisibilityofobjects insideaclusterwithrespecttothecluster'senvironment,isalsoconsideredseparately.theseareallvery usefulimprovements,buttheyallmakeacleardistinctionbetweenpatchesandclustersbyusingcompletely dierenttechniquesforallkindsofinteractions The New Approach Inthispaperwepresentaclusteringalgorithmthat usesauniedviewofobjectsparticipatingintheradiositycomputationofavirtualworld.everycluster isnotonlyseenasasetofindividualpatches,butasa newentitywithnewintrinsicproperties. Let'sconsiderthesceneinFig.1asanextremeexample:Thebookhasbeenmodeledasacluster,containinghundredsofhighlyreectivesurfaces,oneforeach page,allwrappedinadarkcover.additionally,we haveabrightlightsourcethatemitsalargeamountof lightintoasmallconeofdirectionsnotcontainingthe book. Ifwesimplyconsiderbothobjectsasasetofsurfaces, weseeabookwithmanylargeandhighlyreective patches,illuminatedbyabrightlightsource.this pointofviewwillforceboththerenerandtheestimatortodrasticallyoverestimatetheamountoflight exchange.consideringthebookandthelampasdistinctobjectsinitself,allowsustocorrectlyconsider thebookashavingaverylowreectivitywithrespect toitsoutsideandtoestimatelittledirectillumination
3 onthebookduetothelamp. Modelingeachclusterasadistinctentityallowsto Figure 1. Desk scene: Almost no light is erties,wecanthenreasonabouttheinteractionbe- computeitsintrinsicproperties.basedontheseprop- exchanged between lamp and the book. Most clustering algorithms overestimate this soningisbasedoncomputingupperandlowerbounds tweenclusters.inthepresentedapproach,thisrea- light exchange. usedtocomputethesevalues. Thealgorithmisacontinuationofworkpresentedin onthelightexchangeandeachoftheindividualterms patchobject.asaresult,themoregeneral,butalso ter'sbehaviourdiersstronglyfromthatofanordinary handlearbitrarilyshapedsurfacesfordiuseradiositycomputations.however,itturnedoutthataclus- [18],whereasimplerapproachisusedtouniformly morepowerfulalgorithmdescribedinthefollowingwas integratedwithourapproach.ouraimwastogeta MostofthetechniquesdescribedinSection1.2canbe patchesaswellasforclusters. developed,whichiswellsuitedforplanarandcurved localinformationoneachinteractingobject. globalilluminationcomputationsandhowtheglobal lighttransfercanbecomputedecientlyusingthis clusterorwhatever mustprovidetoparticipatein clearnotionofwhatinformationanobject polygon, senderandthereceiverrespectively.pandqcanbe 2.Notation stanceabox,oraclusterofotherobjects.forevery aplanarorcurvedpatch,acompositeobjectasforin- TwointeractingobjectsarecalledPandQ,forthe objectpointp,asurfacenormaln(p)andareectance ectioninthispaper.directionsaredenotedas!,a value(p)aredened,i.e.weonlyconsiderdiuserewhicharefront-facingwithrespectto!areofinterest forsingle-sidedsurfaces.wedenotethissetoffront Ifweconsideracertaindirection!,onlyobjectpoints rayisdescribedbyapointandadirection(p;!). Becauseweareinterestedininteractionsoftheobject tionv(p;!),wherepisapointonpand!isadirection. withitsenvironment,wedenealocalvisibilityfunc- facingpointsonanobjectpasf(p;!)(seefig.2a). Thevalueofv(p;!)isone,ifpisfront-facingwithrespectto!(p2F(P;!))andtheray(p;!)doesnothijectpointspareofinterestforwhichv(p;!)=1.We Pforanyrayparameter>0.Otherwise,itsvalueis Furthermore,wecalltheratioV(P;!) zero.forinteractionsindirection!onlythesetofob- denotethissetofvisiblepointsasg(p;!)(seefig.2b). objectthatcanactuallyinteractwiththeenvironment describesthefractionoffront-facingpointsonan thelocalvisibilityofobjectpindirection!.it jjg(p;!)jj=jjf(p;!)jj(forsomemeasurejj:jj) = objects. Forourpurpose,anotherbasicpropertyofanobjectP indirection!(seefig.2c).vequalsoneforconvex Thisdenitiontakesintoaccountself-occlusionand canformallybewrittenas G(P;!)ontoaplaneperpendicularto!(seeFig.2d). deneaastheareaoftheprojectionofallpointsof isitsprojectedareaa(p;!)inagivendirection!.we A(P;!)=ZG(P;!)cos(n(p);!)dp =ZPcos(n(p);!)v(p;!)dp: (1) jects,wehavetoconsiderthecompletesetofraysfrom Inordertocomputetheinteractionbetweentwoob- (2) rayscanbesignicantlylargerthantheoriginalsetof easier,weconsiderthesetofalldirectionsofthese raysandlaterexamineallincomingoroutgoingrays withoneofthedirectionsin.notethatthissetof pointsonasenderptoareceiverq.tomakethings allconnectingrays,becauseeverydirectioninisnow facingpointsforanyofthedirectionsin.g(p;), allowedateveryreceivingpoint. A(P;)andV(P;)aredenedanalogously.Further- Furthermore,wedeneF(P;)asthesetoffrontmore,wedeneL(P;)and(P;)asthesetofradianceandreectancevaluesforallpointsinG(P;). Forthepurposeofthefollowingalgorithm,wedo Finally,thesetofcosinevaluesbetweenthesurface normalsofanobjectpandisdenotedascos(p;). tiontotheexpectedvalue.wealsodenotethesevalues (min;exp;max),whereminandmaxareupperand lowerboundsonthesetsandexpisanapproxima- notwanttocomputeanexactrepresentationofthese sets.instead,wecomputerangedescriptionshsi=
4 points:f(p;!) (a) Front-facing (b)visiblepoints: G(P;!) (c)localvisibility: V(P;!) (d)projected area:a(p;!) V=1 ω ω ω V= 1 / 3 multiplicationanddivisiononthemin/max-valuesis aproperapproximation.thedenitionofaddition, thatofintervalarithmetic[10].usingintervalarithmeticforourcomputationsiscertainlynotoptimal. algorithmdescribedbelowshouldbeeasytotransform. WeareoptimisticthatusingAneArtihmetic[3]insteadmayresultinbetterrangecomputations,asithas asbsc,[s]anddse.inthissense,\computinghsi" meansndinganupperandalowerboundonsand Figure 2. Definition functionsf,g,vandaof object under direction!. betweentwoobjectscanbecomputedusingtheabove Inthefollowing,wedescribehowthelighttransport beenshownforotherrenderingapplications[8,7].the andreceiverhaveboundingboxesbpandbq,theset aboutthespatialextentofanobjectviaabounding volume,mostlyanaxis-alignedboundingbox.ifsender Usually,renderingsystemscanprovideinformation 3.1. ofallconnectiondirectionsfromptoqcanbelimitedbyanewboundingboxbpq=bp BQ,so Bounds on Directions Distances rectionsofallconnectingraysofthesenderptothe denitions.westartbycomputingtherangeofdi- receiverq.usingthisrangeofdirections,wedetermine tondtherangeofincidentradiancearrivingatthe thelightleavingthesendingobjectandtherangeof isbydeningaconeofdirectionswithamainaxisand Amorecommonwaytodescribesuchasetofdirections (seefig.3). canbeboundedbyhibox=f!j9>0:!2bpqg receiver. tocomputetherangeofsolidanglesofthesenderwith thesender'sprojectedareavalues.thelatterallows respecttothereceiver.finally,theserangesareused muchlargerthannecessary,bothdescriptionsofare boundhiconecanbeseeninfig.3.thecomputation rangedescribedbyaconeiseasiertohandle,butoften amaximumdeviationangle.anexampleforsucha ofthisconegivenbpqissimple[18].becausethe providedtothefollowingcomputations.wedenote 3.ComputingBoundsontheInteraction TherangeofdistanceshjjP QjjibetweenpointsofP bothboundsbyhi. BothrangeshiandhjjP Qjjicanbeobtainedby fromtheoriginintobpq,whichiseasytodetermine. andqisboundedbytherangeoflengthsofallvectors objects(clusters,surfaces,andsurfaceelements),we needaccesstoseveralvaluesdependingonboththe sendingandthereceivingobject,asforinstancetheir Tocomputeboundsoninteractionsbetweenanytwo boundingbox,coneofnormals[12]orexitantradiance insomedirection.allobjectsallowtoquerythesevaluesusingacommonsetofmethods,abstractingfrom BoundsontheRadianceKnowingtherangehi ofinteractingdirections,therangeofradiancevalues theconcretetypeofeachobject.inthefollowing,we describethecomputationofrangesofthesequantities hl(p;)isenttowardsthereceivercanbecomputed andhowtocomputeboundsonthelightexchangeusingthisinformation.forthissectionwewillignore sendingobject.anormalpatchobjectmaycontain bythesender.theexactcomputationislefttothe describedinsection5. occlusionbetweenobjects,handlingvisibilityisthen whicharecompletelybackfacingwithrespecttohi minimumandmaximumradiancevaluesofitschildren, cantriviallybeignoredthisway. toitschildrenandcombinetheirresults.children Acluster,however,canrecursivelypropagatethequery whichcanbeupdatedduringthepush/pulloperation. queryingthetwoobjectsfortheirboundingboxesonly Bounds on Light Leaving the Sender
5 B P B P B PQ =B p B q <Ω> box <Ω> box <Ω> cone B Q B Q Figure 3. Bounding rays between two objects in 2D. From left to right: i) Two objects and their bounding boxesbpandbqii) some rays betweenbpandbqiii) all rays frombptobqtranslated to a common origin define a new bounding boxbpqfor ray end points iv) boundingbpqby more plescenewithalightsourceconsistingofaboxwith sources,whichusuallyexhibithighlyanisotropicexitantradiance.asanexample,fig.6showsasim- Thisisparticularilyusefulforclusterscontaininglight convenient cone of directions. sion.withasimplebackfacetest,however,itcaneas- ceilingisdrasticallyoverestimated,enforcingsubdivi- asisotropic,theradiancefromtheclustertowardsthe clusterandthecluster'sexitantlightisapproximated onelightemittingside.iftheboxlightisputintoa directly,twootherapproachesareusedtogetlower Iftheobjectcannotanswertheprojectedareaquery information. andupperbounds,whichbaseonsimplergeometric insection6.1. ampleandtheresultingsevereartifactsareadiscussed ilybeseenthattheradianceleavingtheclusterup- However,therecursivecomputationofradiancebounds wardsisonlyafractionofitsaverageradiance.thisex- areaofallobjectsintheclustercanbecomearbitrarily ofitsboundingbox.thisboundisparticularlyusefulforclusterscontainingmanyobjects.althoughthjectcanbedeterminedbylookingattheprojectedarea Firstly,anupperboundontheprojectedareaofanob- canbetimeconsumingiftheclusterhierarchyisvery ingthequeriesdownwardsiftheydiersignicantly. deep.wemakeacompromisebypropagatingthequery maximumradiancesofthechildrenandonlypropagatlutionwouldbetostoreforeachobjectminimumand downwardsonlyaxednumberoflevels.abetterso- theprojectedareasofitscontentduetoself-occlusion. seeninfig.4.intheleftandrightimagetheprojected areaofthebookcaseismuchsmallerthanthesumof thatofitsboundingbox.anexampleforthiscanbe large,itsprojectedareacanneverbecomelargerthan agoodupperboundonthecluster'sprojectedarea.in Usingtheprojectedareaoftheboundingboxdelivers one,sothesumoftheprojectedareasoftheobjectsin thecenterimageoffigure4,localvisibilityiscloseto theeectofasenderonareceiver,weboundtheprojectedareaha(p;)iofthesenderwithrespecttothe BoundsontheProjectedAreaInordertobound Inthevisibilityaccellerationmethod,whichisexplainedinSection5.2,inapreprocessingstepaset theclusterisprobablyabetterbound. setofinteractingdirections. minethetransparencyoftheclusterinsomedirections. Everyobjectcanbequeriedforitsrangeofprojected Theseresultscanalsobeusedtocomputeagoodapproximationoftheprojectedareabymulitplyingthe ofsampleraysisshotthrougheveryclustertodeter- areasforacertainhi.severalobjectscananswerthis answeriseveneasier,becausetheprojectedareaofa querydirectly.forplanarpatches,thequerycanbe sphereofradiusrisalwaysr2,fromanydirection. normalandtherangeofdirections.forspheres,the answeredwiththeproductoftheareaofthepatch Similar,butmorecomplexconsiderationsarepossible timestherangeofscalarproductsbetweenthepatch boundonopacitycouldbeprovided,whichisunfortunatelynotpossiblebysampling. Anotherapproachcanbeusediftheobjectprovides terlowerboundthanzerowouldbepossibleifalower averageopacity(=1 transparency).findingabet- expectedprojectedareaoftheboundingboxbyits forobjectsasconesandcylinders,butalsoforboxes. aconeofnormalsthatboundsthesetofallnormalsoftheobject.inthiscase,wecanalsobound thecosinesofanglesbetweenthesesurfacenormals andbyhcos(p;)i.asaresult,wecancom-
6 (a) left view (b)frontview (c) topview putetherangeofprojectedareasusingequation(2) sameasthemethoddescribedin[18].forconvex hv(p;)i=(0;v;1)inthecaseofcomplexclusters, asarea(p)hcos(p;)ihv(p;)i.thisapproachisthe objects,hv(p;)iisalways(1;1;1).duetodicultiesndinggoodboundsforvisibility,onewoulduse wherevcanforinstancebedeterminedbysampling (seesection5). fortheboundsandthemeanvalueofthetwoapproximationsasnewexpectedvalue.ifthenewexpectatioputedwithbothapproaches,wecombinethesebyusingthesmallermaximumandlargerminimumvalue Afterboundsontheprojectedareahavebeencom- valueisoutsidethebounds,itisclampedtothemini- thereceivercanbecomputed.inthisstep,wesimply combinethepreviouslyobtainedvalues.thesolidangle(p;q)ofthevisiblepointsofthesenderpwith Basedontherangesofprojectedareasanddistances, boundsonthesolidangleofthesenderwithrespectto respecttoapointqisdenedas IfqisanarbitrarypointonareceivingobjectQ,jjq pjj (P;q)=ZPcos(n(p);q p) jjq pjj2 G(p;q p)dp: (3) Figure 4. Projected area of a bookcase. The local visibility for the three views is1for direction a),1for b) and1=3for c). The projected area of the bookcase is thus significantly smaller than the sum of the projected areas of the single objects for viewing directions a) and c). mumormaximumvalue Bounds on the Solid Angle boundson(p;q)canbecomputedash(p;q)i= isboundedbyhjjq Pjji.AccordingtoEquation(2), TheirradianceE(q)atanobjectpointQisdened positivehemispheres+ astheintegralofincidentradiancel(q;!)overthe ceivingcluster,sowehavetoaccountforself-occlusion wherel(q;!)iswithrespecttotheoutsideofthere- E(q)=ZS+cos(n(q);!)v(q;!)L(q;!)d!;(4) rangeofsolidanglesh(p;q)i.tocomputebounds boundedbytherangeofradiancevalueshl(p;)iand bythetermv(q;!). ontheirradiance,weneedtondtherangeofcosine Intheprevioussections,theincominglightwas 1=4istheexpectedpositivecosinevalueforrandomly notavailable,wemustfallbackto(0;1=4;1),where theconeofnormalsand.iftheconeofnormalsis wardthesender.thiscanagainbecomputedfrom valuesonthereceiverwithrespecttodirectionsto- hl(p;)ih(p;q)ihcos(q;)ihv(q;)i. ofcosinevalueshcos(q;)i,wecancomputetherange ofirradiancevaluesduetoasenderpas:hep(q)i= distributedsurfacesinacluster[13].giventherange Togetherwithaboundonthereectanceh(Q;)i anearithmetichasbeendescribedin[8].sampling reectancedescribedbyproceduralshadersbyusing Anovelwayofcomputingconservativeboundson onthereceiver,theresultingreectedradiancerange withmipmapshasbeenusedin[4]. duetosenderpishlp(q)i:=h(q;)ihep(q)i. Puttingitalltogether,wecanobtainarangeonthe reectedradianceatthereceiver: hlp(q)i=hv(q;)ihcos(q;)ih(q;)i ourproblemisnotsymmetricinsenderandreceiver. Note,thatincontrasttotheusualradiosityequation hl(p;)iha(p;)i=hjjp Qjji2(5) Thereasonisthatwecomputeboundsonthereected radianceatthereceiverandthusmaynotintegrate(or notexploittheprojectedareaofthereceivertotighten average)overthereceivingobject.therefore,wecan- theirradiancebounds(atleastnotinanobviousway). areaofthereceivercanbeusedtocomputeanupper Ontheotherhand,theupperboundontheprojected boundontheuxarrivingattheobjectsinthecluster. ha(q;)i=hjjq Pjji Bounds on Irradiance and Reflected Radiance
7 Somerenersusethisvalueasabasisfortherenementdecision. Uptonow,allcomputationhavebeenmadeusing strictlyconservativebounds.thishasthebenetthat itcanbeassuredthatnolighttransportcanbemissed duetosamplingproblems[17].initialtessellation, whichisnecessaryforotheralgorithms,canbecompletelyomitted,thealgorithmcanworkonallkindof inputobjects.neverthelessitmustbeseen,thatusingintervalarithmetic,theboundsarealsowiderthan necessaryandthusfornon-criticalcasesnotastightas thoseobtainedinparticularbygibson'smethod[4] Self-interaction Aswithallnon-convexobjects,wehavetotake intoconsiderationself-interactionwithintheclusters, i.e.thataconcaveobjectilluminatesitself.thequestionofhowtocomputesuchaself-formfactorhasonly betreatedmarginallyinpreviouspublications. Ourresultsshowedthatcomputingself-formfactorsby numericalintegrationusingsamplingdoesnotdeliver veryusefulresultsduetosingularitiesintheintegrand [11].Weuseaverysimple,butprobablymuchmore eectivemethod.ourapproachisbasedonthefact thatinclosedscenesallformfactorsfromanobject sumuptoone(pjfij=1).ifwesumuptheform factorsoverwhichanyobjectgathersradiosityfrom allotherobjectsinanormalhierarchicalradiositystep neglectingself-interaction,theformfactorsumspfor anobjectpshouldideallybe1 Fpp,whereFppisthe self-formfactor.inordertoaccountforself-interaction, wethusaddfpplp=(1 Sp)Lptotheirradiancevalue ofp,wherelpisthecurrentradianceofpatchp. Theideaofhierarchicalradiosityistogatherlighton variouslevelsoftheobjecthierarchy.thismeansthat anobjectcanindirectlygatherlightviaitsancestors orchildren.togettheformfactorsumforaparticular object,wehavetosumtheformfactorsofallancestors and weightedbytheirrelativearea{allchildren. Thisisexactlythesameprocedurethatisdonewith irradiancevaluesduringpush/pull. KnowingtheformfactorsumSpforanyobjectinthe scenealsohasanotheradvantage:ifweknowthatan objectisconvex,theself-formfactormustbezero.the dierenceoftheformfactorsumtooneisthusahinton theerrorthatwasmadeapproximatingtheformfactorstothisobject.thiserrorcanthenbe`corrected' byscalingthecomputedirradiancewith1=(1 Sp). Thismethodmaysoundlikeabadhack,butitcan signicantlyimprovethequalityofthesolution,for instancenearthecommonboundaryoftwoperpendicularpatches,whereduetoasingularityintheform factorkernel,numericalproblemsresultinbadform factorapproximations.forisotropicincomingradiance atapatchthiscorrectioncancompletelycompensate theapproximationerrorforthispatch.furthermore, byenforcingthattheformfactorsumisone,wecan guaranteeconvergenceoftheiterativesolverforhierarchicalradiosity,whichisjacobiinourcase. 4.ARenerforBoundedInteractions Basedonthesetofmethodstocomputerangescommontoalltypesofobjects,wehaveshownhowto computeboundsontheradiancelp(q)reectedat QduetoobjectP.Usingthesebounds,therener thenhastomeasuretheresultingerrorwithrespect tosomenormandcomparetheerrortoauserdened errorthreshold. Twocommonchoicesforthenormtomeasuretheerror arethel1-normusingdlp(q)e blp(q)corthel1- normwith(dlp(q)e blp(q)c)area(q).usingthe L1-norm,shadowsarebetterapproximated(atsignicantcostincomputationtime),butthenormhas problemsalongsingularities.ontheotherhand,the L1-normdoesnotexhibitthisbehavior,butitisnot assensitivetoshadows,becauselargerradianceranges areallowedforsmallpatches. Acompromisebetweenthesetwomeasuresisusing (dlp(q)e blp(q)c)size(q),wheresize(q)isameasurefortheone-dimensionalextentofq,forinstance theradiusoftheboundingsphere.insomesense,this measurecorrespondstousingthel2-norm,butitalso makesthin,longobjectsmorelikelytobesubdivided thanrounderobjectswiththesamearea. 5.IncludingVisibility 5.1. Error for Partial Visibility Intheprevioussection,wehaveignoredinter-object visibility,whichinourimplementationisdetermined bycastinganumberofsampleraysbetweentheobjects.ofcoursesuchasamplingschemeisnotconservativeanymore,becausetheresults\totalvisibility" or\totalocclusion"onlymeanthatnosampleraywas foundproovingtheopposite. Ifpartialocclusionisdetected,theminimumvalueof thetransportissettozero,asitisdonein[4].however,thissimpleapproachdoesnotdeliversatisfactory
8 cluster objects in cluster shaft cross lowerboundtozerodoesnotrelativelyincreasetheerrorapproximationasmuchasitshould.weaccount areusuallywiderthannecessary.thus,decreasingthe boundsforunoccludedlighttransport,thesebounds results:becauseouralgorithmcomputesconservative sections forthiseectbyscalingtheerrorinthecaseofpartial Figure 5. Visibility tests through a cluster. and3turnedouttobeuseful.notethatusinggibson'ssampledboundsandsettingthelowerboundto zeroresultsinabetterrelativeerrorincrease. visibilitybyaconstantfactor,wherevaluesbetween2 Inordertospeedupvisibilitycomputation,wereuse 5.2. erarchy.whentheraydoesnotintersectthebounding theclusterhierarchyalsoasahierarchicalspatialdensityapproximation,asproposedin[14].ifarayistobe shotthroughthescene,theraytraversestheclusterhi- Visibility Accelleration boxofacluster,thecompletesubtreecanbeskipped forintersectiontests.ifthereisanintersectionwith furtherlookatthechildren,asalsodescribedin[14]. ricobjectwithhomogenousdensitywithouttakinga approximatedbyconsideringtheclusterasavolumet- theattenuationoftheraythroughtheclustercanbe theclusterstheraycaneithertraverseitschildren,or cluster'sdensityisapproximatedandonthedecision Theresultingspeedupandqualitydependsonhowthe Wecomputetheobjectdensityinapreprocessingstep whetheraclustercanbeassumedtobehomogenous withrespecttoacertainrayornot. bysamplingraysthrougheveryclusteralongthethree mainaxes.forallthreedirectionsthepercentageof unoccludedraysisstoredasapproximationforthecluster'stransparency.toapproximatethetransparency ofaclusterwithrespecttoaparticularray,weinterpolatebetweenthethreemaintransparenciesaccording localvisibilityofthecluster. cessingstepissmallcomparedtothegainedspeedup, totheray'sdirection.thetimespentfortheprepro- thesamplerayscanalsobeusedtoapproximatethe asisshowninsection6.furthermore,theresultsof plecriteriontakingintoconsiderationthatavisibility Todecidewhetheraclustercanbeapproximatedbya raypassingthroughthesceneisarepresentativefor homogenousmediumforaparticularray,weuseasim- samplingtheshaftbetweentwoobjects.approximatingtheclusterashomogenouscanbeinappropriate,if thesetofvisibilityraysbetweentwoobjectsonlyintersectsasmallpartofthecluster.inthiscase,the willproducealargeerror,whereasforvisibilitycomputationinverticaldirectionbetweenthelargepatches, approximationbytheexpectedvisibilitycanbearbitrarilywrong(seefig.5).forthehorizontallightexchangebetweenthesmallpatches,theapproximation theuniformdensityassumptionissucient. Asaresult,weonlyusetheexpectedtransparencyapproximationofthecluster,ifthesizeoftheclusterinaltothefeature-basedvisibilityapproachbySillionetweentheobjects.Note,thatthiscriterionisorthogo- smallerthanthecross-sectionofthesetofallraysbe- al.[14].ourapproachexploitscoherencebetweenvisibilityrays,whilethefeature-basedapproachisbased Lookingattheeciencygainbythisapproachitisinterestingtonoticethatnotonlydoesthetimedecrease onthecoherencewithinthecluster. signicantlytoshootaraythroughthescene,butunfortunatelyalsothenumberoflinksincreases.the reasonisclear:assoonasaclusterisapproximatedby ahomogeneousmedium,theraywillbeattenuatedby compensatedbythefastershootingofrays. computationtimefortheadditionallinksismorethan avaluebetween0and1,whichisinterpretedaspartialvisibility,whichthenresultsinnersubdivision. However,aswewillshowinSection6,theincreased lightsourceemittinglightonlyononeside.asalso noticedbyothers(e.g.[4]),lightsourcesinsideaclusterareverylikelytocreateartifactsthatcanbeseen appearance.iftheclusterisapporximatedbyisotropic infig.6(lefthalf).becausetheboxlightisinsidea cluster,theclusterexhibitsaverynonuniformexternal toaverysimplesceneofanemptyroomwithabox benetsofourobjectinterface,wecomputedasolution Toshowhowasolutioncanbeimprovedexploitingthe notunpacked,resultinginunderestimated(sidewalls) unpacktheclusterbecomesclearlyvisible.inregions farawayfromthelightsourcecluster,theclusteris emission,theboundary,wherethealgorithmdecidesto 6.Results 6.1. Clustered Light Source
9 resultingnumberofcreatedlinksisalmostthesame Planar Patches, Curved Patches, and Clusters closeenoughtothelightclustertoenforceopeningthe Figure 6. Simple box scene with a source in a cluster. In the right half image better mations. lightcluster,suddenlythe\true"illuminationbecomes oroverestimatedillumination(ceiling).ifapatchis visible,similarto\popping"inlevel-of-detailapproxi- bounds the leaving the were used in order avoid artifacts. Theseproblemsareusuallysolvedbyputtinglight sourcesalwaysontopoftheclusteringhierarchy,or Inourapproach,theycanalsobesolvedbycomputing byalwaysreningclusterswithlightsourcesrst[4]. betterboundsonthelightleavingthecluster.because subdivisionoftheinteractionbetweenlampclusterand emissivepartsofthelamp.forthatreason,acoarse thattheceilingcanonlyreceivelightfromthenotselfrectionsoflightexchange,ouralgorithmcanndout wecomputeconservativeboundsontheinterestingdi- wallsstrongvariationoftheexitantlightofthecluster BothhalfsinFig.6havebeencomputedwiththesame isdetected,resultinginnersubdivision. ceilingissucient.fortheinteractionwiththeside cluster,whichwasnotmadefortheleftimage.the usedtobetterboundthelightleavingthelightsource halfimageboundsontheinteractiondirectionwere parameters.theonlydierenceisthatfortheright Themainideaofourapproachistohaveauniform viewtovariouskindsofsceneobjects.todemonstrate this,wecomputedaglobalilluminationsolutiontoa slightlyarticialsceneoffourtreesinaroomilluminatedbyanarealightsource.thetreesaremodeled withtruncatedcones,whichareclusteredaccording totheirbranchingdepth.notethateverytruncated resultingproblems. increasingtheinputcomplexityenormouslywithall wouldhavetobesubdividedintoatleastfourobjects, coneisonlyoneinputobject,i.e.noinitialtessellationwasperformed.forotheralgorithms,everycone infig.7took280sona195mhzr10kcpu.other objectsonly.thecomputationofthesolutionshown Consequently,thesceneconsistsofabout4000input insteadofjacobiisdicultinthecontextofclusters andconcavesurfaces. iterationwithoutmultigridding.gauss-seideliteration statisticdataoncomputationofthescenecanbefound intable1.thesolutionwascomputedusingjacobi Althoughourcomputationofboundsisrathercomplex bilityaccellerationrequiresveadditionalsecondsfor comparedtoothermethods,thepercentageoftime spentonitissmall(lessthan5%).usingourvisi- preprocessing,butdecreasestimeforvisibilitytestsby about25%from336sto246s. tationtook853s,againona195mhzr10kcpu.a patcheswith24primarylightsources.thecompulutionofarailwaystationscene,obtainedwithour Fig.8showstwoviewsoftheglobalilluminationso- algorithm.thesceneconsistsofabout37,000input 6.3. Complex Test Scene signicanteciencygainwasachievedbyourvisibility accellerationmethod(from1051sto853s),although additional19shadtobespentonvisibilitypreprocessing.asummaryofthetimingscanbefoundintable2. 7.ConclusionsandFutureWork Wehavepresentedanewclusteringalgorithmtoef- cientlycomputediuseglobalilluminationsolutions forcomplexscenesofverygeneraltypesofobjects. Patches,curvedandplanar,subelementsofpatches, andclustersarealltreateduniformlyusingasimple boundsareoftentoopessimistic,buttheyhavethe transportneglectingvisibilitycanbecomputed.these Usingthesebounds,conservativeboundsonthelight interfacetoqueryeachparticipatingobjectforitsgeometricandlightingpropertiesintheformofbounds. advantagethatnolighttransportcangetlostdueto betweenalltypesofobjectsarewellcomparable.the uniformlythecomputederrorvaluesforinteractions uniformviewtoobjectsdoesalsoallowobjectstode- samplingproblems.becauseallobjectsarehandled
10 Theuniformtreatmentofallobjectsimmediatelysug- thaninpreviousapproaches. gestsanobject-orientedimplementationofthisframe- work.inourimplementation,thewholelighttransport Sincenothingintheaboveframeworkpreventsitsapplicationtonon-diuseenvironments,itwouldbeinterestingtoextendtheapproachinthisdirection.The usedtoovercometheirrestrictiontoapproximations withpointclusters. sameframeworkcouldbeappliedto[1]andcouldbe Trees inputpatches clusters iterations subdividedpatches vis.acc.onvis.acc.o livermoreinformationabouttheirexternalbehaviour iscomputedinanabstracthrobjectclass,fromwhich patchandclusterclassesarederived. links 25,379 4,095 2, ,407 2,046 4,095 computationtime visibilitycomputation 311, s 246s 297, s 336s 3 visibilitypreprocessing boundscomputation 13s 5s 13s 0s RailwayStation inputpatches clusters iterations subdividedpatches vis.acc.onvis.acc.o 26,778 6,616 26,778 6,616 Table 1. Timings for 74, tree scene links computationtime visibilitycomputation visibilitypreprocesing 991, s 689s 953,342 73,986 boundscomputation 19s 36s 1052s 916s 32s 0s References [1]PerH.Christensen,DaniLischinski,EricStollnitz,and Table 2. Timings for railway station scene [2]PerH.Christensen,EricJ.Stollnitz,DavidSalesin,and ACMTransactionsonGraphics,16(1):3{33,January1997. DavidH.Salesin.Clusteringforglossyglobalillumination. [3]Jo~aoL.D.CombaandJorgeStol.Anearithmeticanditsapplicationstocomputergraphics.In WorkshoponRendering,pages287{301,Darmstadt,June TonyD.DeRose.Waveletradiance.InFifthEurographics [4]S.GibsonandR.J.Hubbold.Ecienthierarchicalrenementandclusteringforradiosityincomplexenvironements. AnaisdoVIISibgrapi,pages9{18,1993.Availablefrom ComputerGraphicsForum,15(5):297{310,dec1996. arith. [6]PatHanrahan,DavidSalzman,andLarryAupperle.A [5]StevenJ.Gortler,PeterSchroder,MichaelCohen,and (SIGGRAPH'91Proceedings),25(4):197{206,1991. rapidhierarchicalradiosityalgorithm.computergraphics (SIGGRAPH'93Proceedings),27:221{230,August1993. PatM.Hanrahan.Waveletradiosity.ComputerGraphics [7]W.HeidrichandH.-P.Seidel.Ray-tracingproceduraldisplacementshaders.InProceedingsofGraphicsInterface [8]WolfgangHeidrich,PhilippSlusallek,andHans-PeterSeidel.Samplingproceduralshadersusinganearithmetic. [9]DaniLischinski,BrianSmits,andDonaldP.Greenberg. '98,1998. ics(siggraph'94proceedings),pages67{74,1994. Boundsanderrorestimatesforradiosity.ComputerGraph- ACMTransactionsonGraphics,1998. [12]LeonA.ShirmanandSalimS.Abi-Ezzi.Theconeof [11]H.Schirmacher.Hierarchischevolumen-radiosity.Technical [10]RamonE.Moore.IntervalAnalysis.Prentice-Hall,1966. normalstechniqueforfastprocessingofcurvedpatches. Report9,UniversitatErlangen-Nurnberg,1996. [13]FrancoisSillion.Auniedhierarchicalalgorithmforglobal ceedings),12(3):261{272,september1993. ComputerGraphicsForum(EUROGRAPHICS'93Pro- [14]FrancoisSillionandGeorgeDrettakis.Feature-basedcon- IEEETransactionsonVisualizationandComputerGraphics,1(3),September1995. illuminationwithscatteringvolumesandobjectclusters. [15]FrancoisSillion,GeorgeDrettakis,andCyrilSoler.Aclustrolofvisibilityerror:Amulti-resolutionclusteringalgoronments.InRenderingTechniques'95(Proceedingsoteringalgorithmforradiancecalculationingeneralenvi- GRAPH'95Proceedings),pages145{152,August1995. rithmforglobalillumination.computergraphics(sig- [16]BrianSmits,JamesArvo,andDonaldGreenberg.AclusterputerGraphics(SIGGRAPH'94Proceedings),pages435ingalgorithmforradiosityincomplexenvironments.Com- 205.Springer,August1995. SixthEurographicsWorkshoponRendering),pages196{ [17]MarcStamminger,WolframNitsch,PhilippSlusallek,and diosity implementationandexperiences.inproceedings FifthInternationalConferenceinCentralEuropeonComputerGraphicsandVisualization WSCG'97,1997. Boundedradiosity{illuminationongeneralsurfacesand clusters.computergraphicsforum(eurographics Hans-PeterSeidel.Isotropicclusteringforhierarchicalra- 442,July1994. [18]MarcStamminger,PhilippSlusallek,andHans-PeterSeidel. '97Proceedings),16(3),September1997.
11 Figure 7. Tree scene. Figure 8. Radiosity solutions of a railway station scene computed with the new algorithm.
Visibility Map for Global Illumination in Point Clouds
TIFR-CRCE 2008 Visibility Map for Global Illumination in Point Clouds http://www.cse.iitb.ac.in/ sharat Acknowledgments: Joint work with Rhushabh Goradia. Thanks to ViGIL, CSE dept, and IIT Bombay (Based
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
Solving Geometric Problems with the Rotating Calipers *
Solving Geometric Problems with the Rotating Calipers * Godfried Toussaint School of Computer Science McGill University Montreal, Quebec, Canada ABSTRACT Shamos [1] recently showed that the diameter of
Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina [email protected]
Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina [email protected] 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
Dhiren Bhatia Carnegie Mellon University
Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date
GRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
Monte Carlo Path Tracing
CS294-13: Advanced Computer Graphics Lecture #5 University of California, Berkeley Wednesday, 23 September 29 Monte Carlo Path Tracing Lecture #5: Wednesday, 16 September 29 Lecturer: Ravi Ramamoorthi
Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping. Lecture 15 Taku Komura
Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping Lecture 15 Taku Komura In the previous lectures We did ray tracing and radiosity Ray tracing is good to render specular
Shortest Inspection-Path. Queries in Simple Polygons
Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote B 05-05 April 2005 Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote Institut für Informatik,
Select cell to view, left next event, right hardcopy
Run 480841:029822 @ 170718 on 061003 e/p currents: 34.9 / 86.7 ma FTi: 4 hits, mean 1.0 +/- 2.3 min/max -1.8 2.9 Number of hits (P/Q) 733 625 clusters (P/Q) 137 53 tracks (123 P) 0 0 0 1 Run 480841:029822
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
Anotherpossibilityistoentersomealreadyknownimplicationsbeforestartingtheexploration.Theseimplications,theuseralreadyknowstobevalid,
BackgroundImplicationsandExceptions AttributeExplorationwith jectsinaspeciedcontext.thisknowledgerepresentationisespeciallyuseful Summary:Implicationsbetweenattributescanrepresentknowledgeaboutob- Schlogartenstr.7,D{64289Darmstadt,[email protected]
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology
An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Isn t ray tracing enough? Effects to note in Global Illumination image:
Clustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
Rendering Area Sources D.A. Forsyth
Rendering Area Sources D.A. Forsyth Point source model is unphysical Because imagine source surrounded by big sphere, radius R small sphere, radius r each point on each sphere gets exactly the same brightness!
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
Chapter 10. Bidirectional Path Tracing
Chapter 10 Bidirectional Path Tracing In this chapter, we describe a new light transport algorithm called bidirectional path tracing. This algorithm is a direct combination of the ideas in the last two
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION
PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION ROBERT CARR AND BYRON HULCHER Abstract. In this paper we detail the implementation of a path tracing renderer, providing a non-biased solution
Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...
Lecture 4 Scheduling 1 Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q 1100 11 00 11 000 111 0 0 1 1 00 11 00 11 00
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
Path Tracing. Michael Doggett Department of Computer Science Lund university. 2012 Michael Doggett
Path Tracing Michael Doggett Department of Computer Science Lund university 2012 Michael Doggett Outline Light transport notation Radiometry - Measuring light Illumination Rendering Equation Monte Carlo
The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.
ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS
Partitioning and Divide and Conquer Strategies
and Divide and Conquer Strategies Lecture 4 and Strategies Strategies Data partitioning aka domain decomposition Functional decomposition Lecture 4 and Strategies Quiz 4.1 For nuclear reactor simulation,
Segmentation of building models from dense 3D point-clouds
Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute
STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239
STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Distributed Area of Interest Management for Large-Scale Immersive Video Conferencing
2012 IEEE International Conference on Multimedia and Expo Workshops Distributed Area of Interest Management for Large-Scale Immersive Video Conferencing Pedram Pourashraf ICT Research Institute University
Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:
Solid Geometry Solid Geometry is the geometry of three-dimensional space, the kind of space we live in. Three Dimensions It is called three-dimensional or 3D because there are three dimensions: width,
AP CALCULUS AB 2008 SCORING GUIDELINES
AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
Practice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
How To Draw In Autocad
DXF Import and Export for EASE 4.0 Page 1 of 9 DXF Import and Export for EASE 4.0 Bruce C. Olson, Dr. Waldemar Richert ADA Copyright 2002 Acoustic Design Ahnert EASE 4.0 allows both the import and export
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
Advanced Computer Graphics. Rendering Equation. Matthias Teschner. Computer Science Department University of Freiburg
Advanced Computer Graphics Rendering Equation Matthias Teschner Computer Science Department University of Freiburg Outline rendering equation Monte Carlo integration sampling of random variables University
Wednesday 15 January 2014 Morning Time: 2 hours
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Doctor Walt s Tips and Tricks 1
Doctor Walt s Tips and Tricks 1 I find that many KeyCreator users do not understand the difference between a collection of surfaces and a solid. To explain I use the concept of a child s inflatable beach
GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1
Welcome to GUI! Mechanics 26/02/2014 1 Requirements Info If you don t know C++, you CAN take this class additional time investment required early on GUI Java to C++ transition tutorial on course website
Two vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
Fast and Robust Normal Estimation for Point Clouds with Sharp Features
1/37 Fast and Robust Normal Estimation for Point Clouds with Sharp Features Alexandre Boulch & Renaud Marlet University Paris-Est, LIGM (UMR CNRS), Ecole des Ponts ParisTech Symposium on Geometry Processing
4.430 Daylighting. Christoph Reinhart. 4.430 Daylight Simulations
4.430 Daylighting Christoph Reinhart 4.430 Daylight Simulations Massachusetts Institute of Technology Department of Architecture Building Technology Program 1 MISC Google DIVA forum, onebuilding.org, radianceonline.org
Arrangements And Duality
Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,
Lezione 4: Grafica 3D*(II)
Lezione 4: Grafica 3D*(II) Informatica Multimediale Docente: Umberto Castellani *I lucidi sono tratti da una lezione di Maura Melotti ([email protected]) RENDERING Rendering What is rendering? Rendering
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
YouthQuest Quick Key FOB Project
YouthQuest Quick Key FOB Project This project is designed to demonstrate how to use the 3D design application, Moment of inspiration, to create a custom key fob for printing on the Cube3 3D printer. Downloading
DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson
c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
A unified representation for interactive 3D modeling
A unified representation for interactive 3D modeling Dragan Tubić, Patrick Hébert, Jean-Daniel Deschênes and Denis Laurendeau Computer Vision and Systems Laboratory, University Laval, Québec, Canada [tdragan,hebert,laurendeau]@gel.ulaval.ca
Mathematics for Global Illumination
Mathematics for Global Illumination Massimo Picardello Mathematics Department, University of Roma Tor Vergata Abstract and disclaimer This is a simple, almost naif approach to the mathematics of global
Figure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal
Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation
Computer Animation: Art, Science and Criticism
Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 12 Ambient Light Emits two types of light: Directional light, coming from a single point Contributes to diffuse shading.
TECHNICAL DRAWING (67)
TECHNICAL DRAWING (67) (Candidates offering Technical Drawing Applications are not eligible to offer Technical Drawing.) Aims: 1. To develop competence among the students to pursue technical courses like
Everyday Mathematics. Grade 4 Grade-Level Goals. 3rd Edition. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goals
Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam [email protected] Mike Bailey [email protected] San Diego Supercomputer Center University of California San Diego Abstract With
USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY.
USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY. INTRODUCTION Frequently customers wish to save money by monitoring a three-phase,
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
Math for Game Programmers: Dual Numbers. Gino van den Bergen [email protected]
Math for Game Programmers: Dual Numbers Gino van den Bergen [email protected] Introduction Dual numbers extend real numbers, similar to complex numbers. Complex numbers adjoin an element i, for which i 2
Topographic Change Detection Using CloudCompare Version 1.0
Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare
An Iterative Image Registration Technique with an Application to Stereo Vision
An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract
The RADIANCE Lighting Simulation and Rendering System
The RADIANCE Lighting Simulation and Rendering System Written by Gregory J. Ward Lighting Group Building Technologies Program Lawrence Berkeley Laboratory COMPUTER GRAPHICS Proceedings, Annual Conference
2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION
2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION A world-coordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
Tutorial: 3D Pipe Junction Using Hexa Meshing
Tutorial: 3D Pipe Junction Using Hexa Meshing Introduction In this tutorial, you will generate a mesh for a three-dimensional pipe junction. After checking the quality of the first mesh, you will create
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Teacher: School Phone: Email: Kim Schnakenberg 402-443- 3101 [email protected] Course Descriptions: Both Concept and Application
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Centre Number Tuesday 6 January 015 Afternoon Time: hours Candidate Number Higher Tier Paper Reference
LiDAR Point Cloud Processing with
LiDAR Research Group, Uni Innsbruck LiDAR Point Cloud Processing with SAGA Volker Wichmann Wichmann, V.; Conrad, O.; Jochem, A.: GIS. In: Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie
ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC
ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC WEEK Calculator paper Each set of questions is followed by solutions so you can check & mark your own work CONTENTS TOPIC
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian
Topology. Shapefile versus Coverage Views
Topology Defined as the the science and mathematics of relationships used to validate the geometry of vector entities, and for operations such as network tracing and tests of polygon adjacency Longley
Components: Interconnect Page 1 of 18
Components: Interconnect Page 1 of 18 PE to PE interconnect: The most expensive supercomputer component Possible implementations: FULL INTERCONNECTION: The ideal Usually not attainable Each PE has a direct
Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally
Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010
Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Student Name: ID: Part 1: Multiple-Choice Questions (17 questions, 1
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
Common Core State Standards for Mathematics Accelerated 7th Grade
A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting
Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013
A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates
MENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
United States Standards for Grades of Christmas Trees
United States Department of Agriculture Agricultural Marketing Service Fruit and Vegetable Programs United States Standards for Grades of Christmas Trees Fresh Products Branch Effective October 30, 1989
Lecture notes for Choice Under Uncertainty
Lecture notes for Choice Under Uncertainty 1. Introduction In this lecture we examine the theory of decision-making under uncertainty and its application to the demand for insurance. The undergraduate
Twelve. Figure 12.1: 3D Curved MPR Viewer Window
Twelve The 3D Curved MPR Viewer This Chapter describes how to visualize and reformat a 3D dataset in a Curved MPR plane: Curved Planar Reformation (CPR). The 3D Curved MPR Viewer is a window opened from
Creating Your Own 3D Models
14 Creating Your Own 3D Models DAZ 3D has an extensive growing library of 3D models, but there are times that you may not find what you want or you may just want to create your own model. In either case
