Evaluating Consulting Firms Using a Centroid Ranking Approach based Fuzzy MCDM Method

Size: px
Start display at page:

Download "Evaluating Consulting Firms Using a Centroid Ranking Approach based Fuzzy MCDM Method"

Transcription

1 EUSFAT-FA y Ax-es-Bas Frace Evaat Cost Frms Us a Cetro a Approach base Fzzy MCDM Metho Ta-Ch Ch Departmet o Maaemet a ormato Techooy Sother Tawa Uversty Tawa.O.C. E-ma: [email protected] Abstract The prpose o ths paper s to evaate a seect cost rms by sest a cetro ra approach base zzy mtpe crtera ecso ma (MCDM) metho rats o ateratves verss qatatve crtera a the eret mportace wehts amo crtera are assesse stc vaes represete by zzy mbers. Crtera are cateorze to qatatve beet qattatve a cost qattatve oes. Membershp ctos o the a zzy evaato vaes ca be eveope throh α-cts a terva arthmetc. The ra approach o Ecea stace base o cetro pots s appe to eterme the ra orer o a ateratves. Formas or the ra procere ca be ceary erve. Fay a merca exampe s se to emostrate the comptatoa process o the seste moe. Keywors: Cost rms Fzzy MCDM Cetro a. trocto To srvve tht competto toay s bsess wor a compay say eveops a ew proct whch s eret rom or better tha that o ts compettors. A crca actor sch as prc mst be eterme whe troc a ew proct to the maret becase t s very sestve to cstomers. Wro prc stratey or a ew proct eveope rom a heavy vestmet ca ea a compay to oss or eve barptcy. However eterm the best prc stratey or a ew proct s ct a may actors mst be cosere. To catosy ea wth ths probem may compaes say as or cost rm servce. Ths evaat a seect a stabe cost rm becomes a mportat sse. A cost rm s a rm o experts prov proessoa avce to a orazato or a ee. A cost rm cossts o costats who are experts ther e. For some oba cost rms ther empoyees represet rom may atoaty. Usay a cost rm proves ts servce whch s core bsess scpe rom maret to operatos; bt there are cost rms whch ot oy prove bsess servce bt potcs as we. May crtera mst be cosere whe evaat cost rms some o them are qatatve sch as reptato some are qattatve sch as rm sze; moreover crtera may have eret mportace. Thereore how to comprehesvey areate these crtera a mportace wehts becomes a crtca sse eectvey evaat cost rms. Some reevat wors have bee ste the evaato o cost rms. Crepets et a. [3] () aayze theoretcay a emprcay the ereces betwee costats a experts the ramewor o the owee-base ecoomy orer to troce the cetra cocepts o epstemc commty a commty o practce. However they ot ta eta abot the other crtera that are sppose to be cosere by a cost rm sch as the mpemetato cost a ts owee. Wa a Che [] (6) presete how hma pts (top maaemet sers a extera costats) are e to commcato eectveess a coct resoto the EP cost process as we as the eects o these actors o the qaty o the system mpemete. Ther s cate that top maaemet spport recty ehaces EP system qaty throh ts postve eect o coct resoto the cost process. The rests aso showe that hh ser spport ehaces commcato eectveess; however commcato eectveess oes ot ece coct resoto a EP system qaty. Ths paper acs ormas or compet ecso ma. Atma [3] (8) cate what sho compay coser a ve ees choos the rht costacy. Ths artce ves cear ersta abot what s a cost rm bt s short o qattatve process areat the eee crtera. 9 Sarem et a. [9] se Noma rop Techqe (NT) ec crtera or seect the best costat rm. They hepe compay to choose the best costat or TM seecto er zzy TOPSS qatatve a qattatve crtera are cosere. Bt a crtera eve mpemete cost are reare as qatatve oe. Cebec a a [7] (7) prove a aaytca too to seect the best qaty costat prov the most cstomer satsacto zzy aaytc herarchy process was appe to compare these costacy rms. Bt a the attrbtes are qatatve. To resove the above probems evaat cost rms ths paper sests a cetro ra approach base zzy MCDM metho both sbectve (or qatatve) a obectve (or qattatve) crtera are cosere. the propose moe rats o ateratves verss qatatve crtera a the mportace wehts o a the crtera are assesse. The athors - Pbshe by Atats Press

2 stc vaes represete by zzy mbers. May methos have bee propose to sove zzy MCDM probems. A revew a comparso o may o these methos ca be o Che a Hwa [9] (99) Carsso a Fèr [6] (996) bero [8] (996) a Trataphyo a [] (996). Some recet appcatos ca be o Che [8] () Cho [] (7) Cho et a. [] (6) a Ö üt et a. [7] (9). most zzy MCDM probems the a evaato vaes o ateratves are st zzy mbers a these zzy mbers ee a proper ra approach to ezzy them to crsp vaes or ecso ma. May approaches or ra zzy mbers have bee ste. A revew o may o these approaches ca be o Bortoa a Dea [5] (985) Che a Ha [9] (99) a Wa a Kerre [] (). Some recet methos ca be see Abbasbay a Asay [] (6) Abbasbay a Haar [] (9) Asay [4] () a Ha [6] (5) Wa a ee [3] (8) a o et a. [5] (6). spte o avataes some o these methos are comptatoa compex a ct to mpemet a oe o them ca satsactory ra zzy mbers a cases. Moreover the above wors o ot prove coecto by ormae betwee the a evaato vaes a the ra procere mt ther appcabty a comptato ececy. To resove these probems ths paper sests appy the ra approach o cetro rom Wa et a. [4] (6) to obta the Ecea stace to ezzy a the a zzy evaato vaes orer to compete the moe. Formae ca be ceary eveope to preset the ra procere. Fay a merca exampe emostrates the comptatoa process o the seste moe.. Fzzy set theory Fzzy set theory was rst troce by Zaeh [7] 965. t s to ea wth probems vov zzy pheomea. Aso t has bee cosere as a se too o moe aae represete by zzy mbers to approxmate system whch zzy pheomea exsts. Some basc cocepts zzy set theory are brey troce the oow sectos whch ca aso be see the athor s prevos wor []... Fzzy set The zzy set A ca be expresse as [5] : x A x A x U () U s the verse o scorse x s a eemet A x s the membershp U A s a zzy set U cto o A at x. The arer A x the stroer the rae o membershp or x A... Fzzy mbers A rea zzy mber A s escrbe as ay zzy sbset o the rea e wth membershp cto whch A possesses the oow propertes [4] : (a) A s a cotos mapp rom to []; x x a ; (b) A ] (c) A s strcty creas o a b ; () A x x b c; (e) s strcty ecreas o c ; A () x x [ ) A ; a b c The membershp cto ca aso be expresse as: A ca be eote as a b c x. o the zzy mber A A a x b b x c A x () A x c x otherwse A x a A x are et a rht membershp ctos o A respectvey..3. α-ct The α-cts o zzy mber A ca be ee as [5] : x x A A (3) A A s a o-empty boe cose terva A A A cotae a ca be eote by A a respectvey..4. Fzzy arthmetc operatos ve zzy mbers A a B A are ts ower a pper bos A B the α-cts o A a B are A a B A A B B respectvey. By terva arthmetc some ma operatos o A a B ca be expresse as oows [5] : A B A B A B A B A B A B A B A B A B A A A B B B A r A r A r r.5. stc vaes (4) A stc varabe s a varabe whose vaes are expresse stc terms. stc varabe s a very hep cocept or ea wth statos whch are too compex or ot we-ee to be reasoaby escrbe by tratoa qattatve expressos [6]. For exampe mportace s a stc varabe whose vaes ce U (mportat) (ess mportat) M 3

3 (mportat) M (more mportat) a V (very mportat). These stc vaes ca be rther represete by traar zzy mbers sch as V=(...5) =(..5.5) M=( ) H=(.5.75.) a VH=(.75..). 3. Moe estabshmet Assme that a commttee o ecso-maers ( D t=~) s resposbe or evaat m ateratves ( A =~m) er crtera a crtera are cateorze to sbectve ( C =~h) a obectve ( C =h+~) obectve/qattatve crtera are rther casse to beet (B) a cost (C). 3.. Averae rats o ateratves verss sbectve crtera et xt ( ot pt qt ) xt = h t =. x x... x t x = m o t p t q o p q t t t be the rat asse to A by D t or C. the averae rat o A er C. t t (5) x t x s 3.. Normaze perormace o ateratves verss obectve crtera Here qattatve vaes o ateratves verss obectve crtera are assme to be certa a ca be expresse traar zzy mbers. These vaes have eret ts a mst be ormaze. The ormazato s compete by a seste approach rom Ch a [] (9) whch preserves the property the raes o ormaze traar zzy mbers beo to [ ]. Sppose r ( e ) s the perormace o ateratve verss obectve crtero the ormaze vae ca be eote as: e e e e x x B e x x C e m e max (6) (7) e ~ m h ~. Beet (B) crtero has the characterstcs o the arer the better; whe cost (C) crtero has the characterstcs o the smaer the better Averae wehts et wt ( a t bt c t ) wt = ; t =. w w w... w (8) a t b t c t a b c w t t t t be the weht asse by D t to C. w s the averae weht o C assesse by ecso-maers Areate the wehte rats The areato o wehte rats or each ateratve s mpemete by the cocept o smpe atve weht as: et o p q x w = m =. e e e e B e C (9) () By appy Eqs. (4) a () Eq. (9) ca be eveope va arthmetc operato o zzy mbers as: x w p o b a o b a a p o oa p q b c q b c c p q q c et p o b a o b a a p o () 4

4 p q b c q b c c p q oa pb Z qc. By appy the above assmpto to Eqs () we have two eqatos to sove: x () Z x (3) The et a rht membershp ctos o ca be eveope as: / x 4 x x / ; x 4 x Z x Z. (4) (5) For coveece Eqs. (4) a (5) o ca be eote as Eq. (6) as oows: ( Z ; ; ) (6) The verse ctos o the above two eqatos (4) a (5) ca be proce as: y y y y y y y y () The we cacate the Ecea staces rom ther cetro pots to the or to ezzy zzy mbers. The arer the stace s the hher prorty zzy mber s rae. x y () Formas or cetros o x-axs a y-axs ca be eveope as oows: x x / x 4 x 4 et / x 4 x t / 4 x x () t 4 4 x t x t tt 4 4 / / 4 4 y y y y y y y Z y 3.5. Obta ra (7) (8) The cetro ra metho rom Wa et a. [4] (6) s appe to ra the ateratves a etae terpretato o cetro eqatos ca be see Wa et a. paper. The cetro o x-axs a y-axs ca be show as oows: x ( ) x ( x) ( x) x ( x) x ( x) ( x) ( x) Z Z (9) / 4 4 ' Assme / x x 4 ' t 4 tt t '5 5 ' we obta: x x / '5 5 ' Smary Z x x Z / x 4 x Z (3) (4) 5

5 5 "5 3 "3 3 4Z Z (5) x / 4 x '3 3 (6) Z x Z / 4 x Z 3 "3 Z (7) By appy Eqs. ()-(7) Eq. (9) ca be proce as: x '5 5 '3 3 5 "5 3 "3 Z Z '3 3 3 "3 Z Smary Eq. () ca be expresse as: y y y y Z y y y y y Z y y y Z 4 3 Z 3 (8) (9) The Eqs. (8)-(9) are appe to Eq. () to proce the Ecea staces o each zzy mber. Fay we ca ra the prorty o semet ateratves base o vaes o Ecea staces. Compay s seste to choose ateratve caate whch has hhest prorty as ts cost rm. 4. Nmerca exampe Ths secto ses a artca merca exampe to emostrate the comptatoa process o the seste moe. Sppose a maactr compay mst seect a cost rm to hep eterme the prce or ts ew proct. Ater premary scree or ateratve cost rms A A A 3 a A 4 are chose or rther evaato. A commttee o ve ecso-maers D D D 3 D 4 a D 5 s orme to coct the evaato a seecto o the or ateratve cost rms. Frther sppose three beet qatatve crtera sch as reptato (C ) techca ss (C ) a owee o bsess (C 3 ) as we as three beet qattatve crtera sch as compay sze (C 4 # o empoyees t: hre) poteta prot (C 5 t: mo $) a expecte rowth (C 6 t: %) a oe cost qattatve crtero sch as cost (C 7 t: thosa $) are cosere. Moreover sppose that the ecso-maers se the stc rat set a stc rat set W={V M H VH} V=Very ow=(..3) =ow=(..3.5) M=Mem=(.3.5.7) H=Hh =(.5.7.9) a VH=Very Hh=(.7.9) to evaate the stabty o cost rms er each o the qatatve crtera. ato the ecso-maers empoy a stc weht set W={U M M V} U=Umportat=(...5) =ess mportat=(..5.5) M=mportat=( ) M=More mportat=(.5.75.) a V=Very mportat=(.75..) to assess the mportace o a the crtera. Moreover sppose that the stabty rats o cost rms verss the ve qatatve crtera rom the three ecso-maers are presete Tabe vaes o cost rms er qattatve crtera are presete Tabe 3 a the mportace wehts o a crtera are presete Tabe 6. By Eq. (5) the averae stabty rats o cost rm A er each qatatve crtero C rom the ecso-ma commttee ca be obtae as show Tabe. By Eqs. (6)-(7) ormaze vaes o cost rm A verss each qattatve crtero ca be obtae a are spaye Tabes 4-5. Throh Eq. (8) the averae wehts o crtera rom the ecso-ma commttee ca be obtae as presete Tabe 7. Throh Eqs. (9)-(6) the membershp ctos o the a zzy evaato vaes =~4 ca be proce Tabe 8. Throh Eqs. (7)-(9) cetro pots ca be proce as show Tabe 9 a the Ecea staces or the ateratve maret semets ca the be obtae as show Tabe.. Tabe. ats o cost rms verss qatatve crtera A. C. D D D 3 D 4 D 5 A C H H VH H H C H M H H VH C 3 H H M H A C VH H VH VH H C M VH H H C 3 V M M H A 3 A 4 C H M V M M C M M M C 3 H V V C VH V M V C M M V M C 3 V V V 6

6 Tabe. Averae rats o cost rms verss qatatve crtera A. C. Averae rats A C ( ) C ( ) C 3 ( ) A C ( ) C (.4.6.8) C 3 (.4.4.6) C ( ) A 3 C (..4.6) C 3 (.4.3.5) C ( ) A 4 C ( ) C 3 ( ) Tabe 3. Nmerca vaes o qattatve crtera C. A A A 3 A 4 C 4 (5337.5) (89.3) ( ) ( ) C 5 (36) (6.58) (.845) (.5.5) C 6 (..5) (.5 3) (.533.5) (.5) C 7 (579) (68) (35) () Tabe 8. Fa zzy evaato vaes Vaes A Ateratves A A 3 A Z Tabe 9. Cetro pots Vaes A Ateratves A A 3 A 4 x y Tabe. Ecea stace Ateratves Vaes A A A 3 A 4 Dstace Tabe 4. Normaze vaes o qattatve crtera C. A A C 4 ( ) (.6.86.) C 5 ( ) ( ) C 6 ( ) ( ) C 7 (..3.5) (...4) Tabe 5. Normaze vaes o qattatve crtera (cot.) C. A 3 A 4 C 4 ( ) ( ) C 5 ( ) ( ) C 6 ( ) ( ) C 7 (.5.7.8) (.8.9.) Tabe 6. mportace wehts o crtera C. D D D 3 D 4 D 5 C V M C V M M V V C 3 V M M V C 4 U U C 5 V V V V C 6 U M C 7 V V M Tabe 7. Averae mportace wehts C. Averae wehts C ( ) C (.65.9.) C 3 ( ) C 4 (..5.4) C 5 ( ) C 6 (..4.65) C 7 ( ) Base o Tabe the ateratve caate (A ) has hhest score; thereore compay sho choose A as ts cost rm. Ths merca exampe has ceary emostrate the comptatoa procere o the seste moe. A merca comparso as we as sestvty aayss may be cocte the exteso o ths wor the tre or rther stcato. 5. Cocsos A cetro ra approach base zzy MCDM metho s propose to evaate a seect cost rms crtera are casse to qatatve beet qattatve a cost qattatve oes. the propose moe rats o ateratves verss qatatve crtera a the mportace wehts o a crtera are assesse stc vaes represete by zzy mbers. Membershp ctos o the a evaato vaes ca be eveope. The Ecea stace base o cetro pots s appe to ezzy a the a zzy evaato vaes to eterme the ra orer o ateratves orer to compete the moe. Formas or the two cetro pots o horzota a vertca axes ca be ceary eveope. Fay a merca exampe has emostrate the comptatoa process o the seste moe. The seste moe ca aso be appe to sove may other zzy maaemet probems a mtpe crtera evromet. However whe appe the oow probems are worth coser examato: () The otcome co be eret mber o ecso maers stc rats o varos ateratves er eret qatatve crtera stc wehts or crtera ormazato orma... etc. are eret. () A case sty s eee to better test the 7

7 eectveess o the seste moe. ato the mber o crtera ca be aste po eret cases eee. (3) the seste moe the crtera strctre s mte to oe eve. Ths may ot be eoh. some paret crtera cota severa sb-crtera a some o these sb-crtera rther ce severa sb-sb-crtera a herarchca strctre mst be eee to escrbe ths stato. Acowemets The athor wo e to tha aoymos reerees or ther shts a sestos whch mae a better presetato o ths wor. Speca thas to Eat a Nye Khoa T Uye or ther ata coect a typ. Ths wor was spporte part by Natoa Scece Coc Tawa.O.C. er rat NSC 98-4-H-8-8-M. eereces [] S. Abbasbay a B. Asay a o zzy mbers by s stace ormato Sceces 76 (6) [] S. Abbasbay a T. Haar A ew approach or ra o trapezoa zzy mbers Compters a Mathematcs wth Appcatos [3] W. Atma What s the pot o maaemet costats? Eeer & Techooy 3 () [4] B. Asay The revse metho o ra zzy mber base o evato eree Expert Systems wth Appcatos [5]. Bortoa a. Dea A revew o some methos or ra zzy mbers Fzzy Sets a Systems 5 () [6] C. Carsso a. Fèr Fzzy mtpe crtera ecso ma: ecet eveopmets Fzzy Sets a Systems 78 () [7] U. Cebec a D. a A mt-attrbte comparso o Trsh qaty costats by zzy AHP teratoa ora o ormato Techooy & Decso Ma 6 () [8] C.T. Che A zzy approach to seect the ocato o the strbto ceter Fzzy Sets a Systems 8 () [9] S.. Che a C.. Hwa Fzzy Mtpe Attrbte Decso Ma Sprer Ber 99. [] C.C. Cho A zzy MCDM metho or sov mare trasshpmet cotaer port seecto probems Appe Mathematcs a Comptato 86 () [] T.. Cho S.T. Cho a.h. Tze Evaat T/S vestmets: A zzy mt-crtera ecso moe approach Eropea ora o Operatoa esearch 73 (3) [] T.C. Ch a.c. A exteso to zzy MCDM Compters & Mathematcs wth Appcato 7 (3) [3] F. Crepet D. Dpoet F. Kem B. Mehmapazr a F. Mer Costats a experts maaemet cost rms esearch Pocy 3 (9) [4] D. Dbos a H. Prae Operatos o zzy mbers teratoa ora o Systems Scece 9 (6) [5] A. Kama a M.M. pta M.M. trocto to Fzzy Arthmetc: Theory a Appcato Va Nostra eho New or 99. [6] X.W. a S.. Ha a zzy mbers wth preerece weht cto expectatos Compters a Mathematcs wth Appcatos 49 (-) [7] S. Ö üt S.S. Kara a E. ş o term spper seecto s a combe zzy MCDM approach: A case sty or a teecommcato compay Expert Systems wth Appcatos [8].A. bero Fzzy mtpe attrbte ecso ma: A revew a ew preerece ectato techqes Fzzy Sets a Systems 78 () [9] M. Sarem S.F. Mosa a A. Saaye TM costat seecto SMEs wth TOPSS er zzy evromet Expert Systems wth Appcato 36 () [] E. Trataphyo a C.T. Deveopmet a evaato o ve zzy mt-attrbte ecso-ma methos teratoa ora o Approxmate easo 4 (4) [] T.. Wa a H.F. Che Eects o tera spport a costat qaty o the cost process a EP system qaty Decso Spport Systems 4 () [] X. Wa a E.E. Kerre easoabe propertes or the orer o zzy qattes () & () Fzzy Sets a Systems 8 (3) [3].. Wa a H.S. ee The revse metho o ra zzy mbers wth a area betwee the cetro a ora pots Compters & Mathematcs wth Appcatos 55 (9) [4].M. Wa.B. a D.. X a K.S. Ch 6. O the cetros o zzy mbers Fzzy Sets a Systems 57 (7) [5] D. o Z. Zh a.. a zzy mbers wth a area metho s ras o yrato Compters a Mathematcs wth Appcatos 5 (6-7) [6].A. Zaeh The cocept o a stc varabe a ts appcato to approxmate reaso part a 3 ormato Sceces 8 (3/4) 99-49/ ; 9 () [7].A. Zaeh.A. Fzzy set ormato a cotro 8 (3)

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

A Covariance Analysis Model for DDoS Attack Detection*

A Covariance Analysis Model for DDoS Attack Detection* A Covarace Aayss Mode or DDoS Attac Detecto* Shuyua J Deartmet o Comutg HogKog Poytechc Uversty HogKog Cha [email protected] Dae S. Yeug Deartmet o Comutg HogKog Poytechc Uversty HogKog Cha [email protected]

More information

Resource Management Model of Data Storage Systems Oriented on Cloud Computing

Resource Management Model of Data Storage Systems Oriented on Cloud Computing Resorce Maagemet Model of Data Storage Systems Oreted o Clod Comptg Elea Kaa, Yry Korolev Sat Petersbrg Electrotechcal Uversty "LETI" (ETU), Sat Petersbrg, Rssa {leaaa, yryg}@gmalcom Abstract Ths artcle

More information

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

An SVR-Based Data Farming Technique for Web Application

An SVR-Based Data Farming Technique for Web Application A SVR-Based Data Farmg Techque for Web Appcato Ja L 1 ad Mjg Peg 2 1 Schoo of Ecoomcs ad Maagemet, Behag Uversty 100083 Bejg, P.R. Cha [email protected] 2 Isttute of Systems Scece ad Techoogy, Wuy Uversty, Jagme

More information

Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m

More information

A Key-Policy Attribute-Based Broadcast Encryption

A Key-Policy Attribute-Based Broadcast Encryption 444 The Iteratoa rab Joura of Iformato Techooy Vo. 0 o. 5 September 0 Key-Pocy ttrbute-base Broacast Ecrypto J Su Yupu Hu a Leyou ha Departmet of ppcato Mathematcs X a Uversty of Techooy Cha Key Lab of

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

Application of GA with SVM for Stock Price Prediction in Financial Market

Application of GA with SVM for Stock Price Prediction in Financial Market Iteratoa Joura of Scece ad Research (IJSR) ISSN (Oe): 39-7064 Impact Factor (0): 3.358 Appcato of GA wth SVM for Stock Prce Predcto Faca Market Om Prakash Jea, Dr. Sudarsa Padhy Departmet of Computer Scece

More information

An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots

An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots MAEC Web of Cofereces 35, 02013 ( 2015) DOI: 10.1051/ mateccof/ 2015 3502013 C Owe by the authors, publshe by EDP Sceces, 2015 A Operatg Precso Aalyss Metho Coserg Multple Error Sources of Seral Robots

More information

ACE-1/onearm #show service-policy client-vips

ACE-1/onearm #show service-policy client-vips M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere

More information

Lecture 7. Norms and Condition Numbers

Lecture 7. Norms and Condition Numbers Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

Randomized Load Balancing by Joining and Splitting Bins

Randomized Load Balancing by Joining and Splitting Bins Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

Aggregation Functions and Personal Utility Functions in General Insurance

Aggregation Functions and Personal Utility Functions in General Insurance Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského

More information

SIV for VoiceXM 3.0: a n g u a g e a n d A p p l ica t ion D es ig n C on s id era t ion s Ken Rehor C i s c o S y s t em s, I nc. [email protected] March 05, 2009 G VoiceXM Application Architecture PSTN

More information

THE EFFECT OF SHAPE FACTOR ON THE AVERAGE BED SHEAR STRESS IN OPEN CHANNEL FLOW

THE EFFECT OF SHAPE FACTOR ON THE AVERAGE BED SHEAR STRESS IN OPEN CHANNEL FLOW roceegs o the 4 th Iteratoal oerece o Evrometal cece a Techology hoes, Greece, 3-5 eptemer 05 THE EFFET OF HE FTO ON THE EGE BED HE TE IN OEN HNNEL FLOW HDDIN N. Departmet o vl Egeerg, The Uversty o Jora,

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

FINANCIAL MATHEMATICS 12 MARCH 2014

FINANCIAL MATHEMATICS 12 MARCH 2014 FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications Automated Agmet ad Extracto of gua Otoogy for Cross-Laguage Doma-Specfc Appcatos Ju-Feg Yeh, Chug-Hse Wu, Mg-Ju Che ad Lag-Chh Yu Departmet of Computer Scece ad Iformato Egeerg Natoa Cheg Kug Uversty,

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

Decision Science Letters

Decision Science Letters Decso Scece Letters 1 (2012) 11 22 Cotets sts avaabe at GrowgScece Decso Scece Letters hoepage: www.growgscece.co/ds A Fuzzy-MOORA approach for ERP syste seecto Prasad Karade a ad Shakar Chakraborty b*

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

Automated Event Registration System in Corporation

Automated Event Registration System in Corporation teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa

More information

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo. ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

Finite Difference Method

Finite Difference Method Fte Dfferece Method MEL 87 Computatoa Heat rasfer --4) Dr. Praba audar Assstat Professor Departmet of Mechaca Egeerg II Deh Dscretzato Methods Requred to covert the geera trasport equato to set of agebrac

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines (ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

ERP System Flexibility Measurement Based on Fuzzy Analytic Network Process

ERP System Flexibility Measurement Based on Fuzzy Analytic Network Process JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 20 4 ERP System Flexblty Measuremet Based o Fuzzy Aalytc Netork Process Xaoguag Zhou ad Bo Lv Doglg School of Ecoomcs ad Maagemet, Uversty of Scece ad Techology

More information

The paper presents Constant Rebalanced Portfolio first introduced by Thomas

The paper presents Constant Rebalanced Portfolio first introduced by Thomas Itroducto The paper presets Costat Rebalaced Portfolo frst troduced by Thomas Cover. There are several weakesses of ths approach. Oe s that t s extremely hard to fd the optmal weghts ad the secod weakess

More information

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad

More information

m Future of learning Zehn J a hr e N et A c a d ei n E r f o l g s p r o g r a m Cisco E x p o 2 0 0 7 2 6. J u n i 2 0 0 7, M e sse W ie n C. D or n in g e r, b m u k k 1/ 12 P r e n t t z d e r p u t

More information

Study on Trust Evolution and Simulation Oriented to Cloud Services

Study on Trust Evolution and Simulation Oriented to Cloud Services Joral of Advaced Maagemet Scece Vol., No., Je 014 Stdy o Trst Evolto ad Smlato Oreted to Clod Servces Zho Ye School of Maagemet ad Egeerg, Nag Uversty, Nag, Cha [email protected] I ths paper, trst stdy s focsed

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao

More information

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece

More information

DISPLAYING NASDAQ LEVEL II DATA

DISPLAYING NASDAQ LEVEL II DATA 14 NASDAQ LEVEL II windows et you view Leve II data for NAS- DAQ stocks. Figure 14-1 is an exampe of a NASDAQ Leve II window. Figure 14-1. NASDAQ Leve II Window Exampe Information in Leve II windows is

More information

Automated Alignment and Extraction of Bilingual Domain Ontology for Medical Domain Web Search

Automated Alignment and Extraction of Bilingual Domain Ontology for Medical Domain Web Search Automated Agmet ad Extracto of Bgua Doma Otoogy for Medca Doma Web Search Ju-Feg Yeh *+, Chug-Hse Wu *, Mg-Ju Che * ad Lag-Chh Yu * * Departmet of Computer Scece ad Iformato Egeerg Natoa Cheg Kug Uversty,

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

Pay-on-delivery investing

Pay-on-delivery investing Pay-on-deivery investing EVOLVE INVESTment range 1 EVOLVE INVESTMENT RANGE EVOLVE INVESTMENT RANGE 2 Picture a word where you ony pay a company once they have deivered Imagine striking oi first, before

More information

Performance Attribution. Methodology Overview

Performance Attribution. Methodology Overview erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace

More information

AP Statistics 2006 Free-Response Questions Form B

AP Statistics 2006 Free-Response Questions Form B AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad

More information

On Application-level Load Balancing in FastReplica

On Application-level Load Balancing in FastReplica O Appcato-eve Load Baacg FastRepca Jagwo Lee, Gustavo de Vecaa Abstract I the paper, we cosder the probem o dstrbutg arge-sze cotet to a xed set o odes. I cotrast wth the most exstg ed-system soutos to

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU requirements for renewal. It describes: Number of required for renewal Who approves continuing education Required courses for renewal Which jurisdictions require active practice

More information

SN74LS74AMEL. Dual D Type Positive Edge Triggered Flip Flop LOW POWER SCHOTTKY

SN74LS74AMEL. Dual D Type Positive Edge Triggered Flip Flop LOW POWER SCHOTTKY SN74S74A ual Type Positive Edge Triggered Flip Flop The SN74S74A dual edge-triggered flip-flop utilizes Schottky TT circuitry to produce high speed -type flip-flops. Each flip-flop has individual clear

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

A 360 Degree Feedback Model for Performance Appraisal Based on Fuzzy AHP and TOPSIS

A 360 Degree Feedback Model for Performance Appraisal Based on Fuzzy AHP and TOPSIS Iteratoal Joural of Ecooy, aaeet ad Socal Sceces, () Noveber 03, Paes: 969-976 TI Jourals Iteratoal Joural of Ecooy, aaeet ad Socal Sceces www.tourals.co ISSN 306-776 A 360 Deree Feedback odel for Perforace

More information

Overview of Spellings on www.spellzoo.co.uk

Overview of Spellings on www.spellzoo.co.uk Overview of Spellings on www.spellzoo.co.uk Year 1 Set 1: CVC words Set 2: CVC and CCVC words Set 3: CVC, CCVC and CCVCC words Set 4: Words containing 'ch', 'sh', 'th' and 'wh' Set 5: Words ending in 'll',

More information

The Application of Intuitionistic Fuzzy Set TOPSIS Method in Employee Performance Appraisal

The Application of Intuitionistic Fuzzy Set TOPSIS Method in Employee Performance Appraisal Vol.8, No.3 (05), pp.39-344 http://dx.do.org/0.457/uesst.05.8.3.3 The pplcato of Itutostc Fuzzy Set TOPSIS Method Employee Performace pprasal Wag Yghu ad L Welu * School of Ecoomcs ad Maagemet, Shazhuag

More information

Mathematics of Finance

Mathematics of Finance CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of

More information