Liquidity costs and market impact for derivatives
|
|
|
- Cecily Garrison
- 10 years ago
- Views:
Transcription
1 Liquidity costs and market impact for derivatives F. Abergel, G. Loeper Statistical modeling, financial data analysis and applications, Istituto Veneto di Scienze Lettere ed Arti. Abergel, G. Loeper Statistical modeling, financial data analysis and applications, Istituto Veneto di Scienze Lettere ed Arti Liquidity costs and market impact 1/20
2 Liquidity costs and market impact Liquidity costs and market impact The two main problems that faces the large trader Liquidity costs: the extra price one has to pay, due to the finiteness of available liquidity at the best possible price [4, Cetin, Jarrow, Protter][11, Roch] Market impact: the feedback on the asset dynamics of the large trader s strategy Because of finite liquidity, there always is an instantaneous market impact - the virtual impact in [13, Weber, Rosenow]. As several empirical works show, [3, Almgren et al][13, Weber, Rosenow], a relaxation phenomenon takes place, and the virtual impact becomes permanent. Main objective of this work: a tractable joint modelling of liquidity costs and market impact applied to option pricing and hedging Liquidity costs and market impact 2/20
3 Liquidity costs and market impact Liquidity costs and market impact for derivatives What about derivatives? There is a rather long history of modelling transaction costs, liquidity costs and market impact in the context of derivatives [6, Lamberton, Pham, Schweizer][4, Cetin et al][9, Abergel, Millot] model transaction costs or liquidity costs Early works [5, Frey, Stremme][12, Schonbucher, Wilmott][10, Schweizer, Platen] and more recent ones [7, Liu, Yong][11, Roch] [8, Loeper][2, Almgren, Li] model market impact There is no unified theory for option replication with liquidity costs and market impact The various models that have been proposed often lead to ill-posed pricing and hedging equation Liquidity costs and market impact 3/20
4 Liquidity costs and market impact Liquidity costs and market impact Main modelling assumptions Our goal is to derive a macroscopic model allowing for simplified features of the order book and liquidity supply and demand fine structure Liquidity costs are described by a simple, stationary order book, characterized by its shape around the best price Permanent market impact is measured by a numerical parameter γ as in [13, Weber, Rosenow] γ = 0 means no permanent impact: the price goes back to its original value once the transaction is completed γ = 1 means no relaxation: the price remains at its final value after the transaction is completed Liquidity costs and market impact 4/20
5 Liquidity costs and market impact Main result Using a replication (complete market) or risk-minimization (incomplete market) approach, we derive a pricing and hedging PDE Our main result is Main result The range of parameter for which the pricing equation is well-posed is 2 3 γ 1 A comparison with the literature is interesting [4, Cetin et al][9, Abergel, Millot][11, Roch]: γ = 0 [7, Liu, Yong]: γ = 1 2 [8, Loeper]: γ = 1 Liquidity costs and market impact 5/20
6 Basic modelling assumptions Order book, liquidity costs and impact A deterministic order book profile profile is considered around the price Ŝ t of the asset S at a given time t before the option position is delta-hedged M(x) x µ(u)du represents the number of shares 0 available up to level x We use log prices to define costs and impact, in order to avoid inconsistencies Denote by κ the function M 1. For simplicity κ(ɛ) λɛ the virtual market impact of a transaction of size ɛ is I virtual (ɛ) = Ŝ t (e λɛ 1) the permanent impact is measured by γ R: I permanent (ɛ) = Ŝ t (e γλɛ 1) the cost of the transaction is C(ɛ) = Ŝ t (e λɛ 1) λ Liquidity costs and market impact 6/20
7 Discrete time setting The observed price dynamics Observed price dynamics The dynamics of the observed price is described sequentially First, the price changes under the action of the "market" Ŝ k S k 1 + Ŝ k S k 1 e M k + A k Then, the hedger re-hedges her position and Ŝ k becomes S k = S k 1 e M k + A k e γλ(δ k δ k 1 ) (1) Liquidity costs and market impact 7/20
8 Discrete time setting Cost process Cost process The incremental cost C k of re-hedging at time t k is now studied. A (not necessarily self-financing) strategy consists in buying δ k δ k 1 shares of the asset rebalancing the cash account from β k 1 to β k Introducing the value process one has V k = β k + δ k S k β k + δ k Ŝ k (1 + γκ(δ k δ k 1 )) Incremental cost C k = (V k V k 1 ) δ k 1 (S k S k 1 )+S k ( eλ(δ k δ k 1 ) 1 λe γλ(δ k δ k 1 ) (δ k δ k 1 )). Abergel, G. Loeper Statistical modeling, financial data analysis and applications, Istituto Veneto di Scienze Lettere ed Arti Liquidity costs and market impact 8/20
9 Discrete time setting Optimality conditions Optimality conditions Hedging is implemented via local-risk minimization. There are two (pseudo-)optimality conditions for V k 1 and δ k 1 Optimality in discrete time E( C k F k 1 ) = 0 E(( C k )(S k S k 1 + S k g (δ k δ k 1 )) F k 1 ) = 0 Introducing the supply price process S as in [6, Lamberton et al], [4, Cetin et al] S 0 = S 0, Sk Sk 1 = S k e λγ(δ k δ k 1 ) (γ+(1 γ)e λ(δ k δ k 1 ) ) S k 1 the orthogonality condition can be rewritten as E(( C k )( Sk Sk 1 ) F k 1 ) = 0 Liquidity costs and market impact 9/20
10 Continuous time setting Observed price The observed price in continuous time The continuous-time equivalent of (1) is ds t = S t (dx t + da t + γκ (0)dδ t ) This modelling implies a strategy-dependent volatility of the observed price leading to fully non-linear pricing equation in the markovian setting Modified Volatility Consider a hedging strategy δ which is a function of time and the observed price S at time t: δ t δ(s t, t). Then, the observed price dynamics (2) can be rewritten as (1 γκ δ (0)S t S )ds t = dx t + da t S t Liquidity costs and market impact 10/20
11 Continuous time setting Optimality conditions Cost process and optimality conditions Pseudo-optimal solutions can be characterized Pseudo-optimality in continuous time The cost process of an admissible hedging strategy (δ, V) is given by C t t 0 (dv u δds u S ug (0)d < δ, δ > u ) A strategy is (pseudo-)optimal iff it satisfies the two conditions C is a martingale C is orthogonal to the supply price process S, with d St = ds t + S t (g (0)dδ t g(3) (0)d < δ, δ > t ) Liquidity costs and market impact 11/20
12 The complete market case Pricing and hedging equation In the complete market case, the optimality conditions imply Perfect replication V S = δ and the pricing equation Generalized BS equation V t (1 2γ)κ (0)S 2 V S 2 (1 γκ (0)S 2 V S 2 ) 2 σ2s2 2 2 V S 2 = 0 Liquidity costs and market impact 12/20
13 The complete market case Well posedness of the generalized Black and Scholes equation A sharp result Dependence on the resilience parameter γ The non-linear backward partial differential operator V V t (1 2γ)κ (0)S 2 V S 2 (1 γκ (0)S 2 V S 2 ) 2 σ2s2 2 2 V S 2 = 0 is unconditionally parabolic iff 2 3 γ 1 The requirement is that the function p F(p) = p(1 + (1 2γ)p) (1 γp) 2. (2) be monotonically increasing Liquidity costs and market impact 13/20
14 The complete market case Well-posedness and perfect replication As a consequence of the structure condition on γ, the following theorem holds true [1, Abergel, Loeper] Main result Every european-style contingent claim with payoff Φ satisfying the terminal constraint sup(s 2 Φ S R + S ) < 1 2 γκ (0) (3) can be perfectly replicated via a δ-hedging strategy given by the unique, smooth away from T, solution to the generalized Black-Scholes equation This result can be extended to the multi-asset, complete market case Liquidity costs and market impact 14/20
15 Incomplete markets Stochastic volatility The general theory becomes much more complicated: one has to deal with systems on fully nonlinear, coupled partial differential equations... The "simple" case γ = 1, ρ = 0 can be worked out easily δ = V (4) S and V t σ 2 S 2 + 2(1 κ (0)S( 2 V S 2 )) 2 V S V 2 2 σ 2 Σ2 (5) + 1 κ (0)SΣ 2 2 (1 κ (0)S( 2 V )) ( 2 V σ S )2 + L 1 V = 0 S 2 leading to a positive conclusion Full impact, no correlation The pricing equation (5) is of parabolic type Liquidity costs and market impact 15/20
16 Conclusions and perspectives Conclusions and perspectives A simple model incorporating both liquidity costs and market impact has been presented The well-posedness of the pricing and hedging equation is related to the level of permanent market impact Sharp bounds on the parameter γ are obtained the case γ > 1 leads to arbitrage with round-trip trades the case γ < 2 3 leads to arbitrage for a suitable option portfolio The case of (realistic) payoffs not satisfying the constraint leads to interesting discussions Empirical measurements of γ give values very close to Liquidity costs and market impact 16/20
17 References References I F. Abergel and G. Loeper. Pricing and hedging contingent claims with liquidity costs and market impact. Available at SSRN , R. Almgren and T. M. Li. A fully-dynamic closed-form solution for δ-hedging with market impact R. Almgren, C. Thum, E. Hauptmann, and H. Li. Direct estimation of equity market impact. working paper. Liquidity costs and market impact 17/20
18 References References II U. Cetin, R. Jarrow, and P. Protter. Liquidity risk and arbitrage pricing theory. Finance and Stochastics, 8: , R. Frey and A. Stremme. Market volatility and feedback effects from dynamic hedging. Mathematical Finance, 7(4): , D. Lamberton, H. Pham, and M. Schweizer. Local risk-minimization under transaction costs. Mathematics of Operations Research, 23: , Liquidity costs and market impact 18/20
19 References References III H. Liu and J. M. Yong. Option pricing with an illiquid underlying asset market. Journal of Economic Dynamics and Control, 29: , G. Loeper. Option pricing with market impact and non-linear black and scholes pde s N. Millot and F. Abergel. Non quadratic local risk-minimization for hedging contingent claims in the presence of transaction costs. Available at SSRN , Liquidity costs and market impact 19/20
20 References References IV E. Platen and M. Schweizer. On feedback effects from hedging derivatives. Mathematical Finance, 8(1):67 84, A. Roch. Liquidity risk, volatility and financial bubbles. PhD Thesis. P. J. Schönbucher and P. Wilmott. The feedback effect of hedging in illiquid markets. SIAM J. Appl. Maths, 61(1): , P. Weber and B. Rosenow. Order book approach to price impact. Quantitative Finance, 5(4): , Liquidity costs and market impact 20/20
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013
Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed
An Incomplete Market Approach to Employee Stock Option Valuation
An Incomplete Market Approach to Employee Stock Option Valuation Kamil Kladívko Department of Statistics, University of Economics, Prague Department of Finance, Norwegian School of Economics, Bergen Mihail
Lecture. S t = S t δ[s t ].
Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important
Introduction to Arbitrage-Free Pricing: Fundamental Theorems
Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Pricing of an Exotic Forward Contract
Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,
On the decomposition of risk in life insurance
On the decomposition of risk in life insurance Tom Fischer Heriot-Watt University, Edinburgh April 7, 2005 [email protected] This work was partly sponsored by the German Federal Ministry of Education
SOLVING PARTIAL DIFFERENTIAL EQUATIONS RELATED TO OPTION PRICING WITH NUMERICAL METHOD. KENNEDY HAYFORD, (B.Sc. Mathematics)
SOLVING PARTIAL DIFFERENTIAL EQUATIONS RELATED TO OPTION PRICING WITH NUMERICAL METHOD BY KENNEDY HAYFORD, (B.Sc. Mathematics) A Thesis submitted to the Department of Mathematics, Kwame Nkrumah University
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
Bayesian Adaptive Trading with a Daily Cycle
Bayesian Adaptive Trading with a Daily Cycle Robert Almgren and Julian Lorenz July 28, 26 Abstract Standard models of algorithmic trading neglect the presence of a daily cycle. We construct a model in
Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer
Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
Jung-Soon Hyun and Young-Hee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest
ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
Option Pricing Beyond Black-Scholes Dan O Rourke
Option Pricing Beyond Black-Scholes Dan O Rourke January 2005 1 Black-Scholes Formula (Historical Context) Produced a usable model where all inputs were easily observed Coincided with the introduction
Master of Mathematical Finance: Course Descriptions
Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Kees Oosterlee Numerical analysis group, Delft University of Technology Joint work with Coen Leentvaar, Ariel
How To Price A Call Option
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022
Options pricing in discrete systems
UNIVERZA V LJUBLJANI, FAKULTETA ZA MATEMATIKO IN FIZIKO Options pricing in discrete systems Seminar II Mentor: prof. Dr. Mihael Perman Author: Gorazd Gotovac //2008 Abstract This paper is a basic introduction
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
INTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 4. Convexity and CMS Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York February 20, 2013 2 Interest Rates & FX Models Contents 1 Introduction
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method C.F. Lo Abstract In this paper, based upon the Lie- Trotter operator splitting method proposed by Lo 04, we present a simple closed-form
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)
On Market-Making and Delta-Hedging
On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide
Mathematical Modeling and Methods of Option Pricing
Mathematical Modeling and Methods of Option Pricing This page is intentionally left blank Mathematical Modeling and Methods of Option Pricing Lishang Jiang Tongji University, China Translated by Canguo
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
Lisa Borland. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing
Evnine-Vaughan Associates, Inc. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine
Extending Factor Models of Equity Risk to Credit Risk and Default Correlation. Dan dibartolomeo Northfield Information Services September 2010
Extending Factor Models of Equity Risk to Credit Risk and Default Correlation Dan dibartolomeo Northfield Information Services September 2010 Goals for this Presentation Illustrate how equity factor risk
Essays in Financial Mathematics
Essays in Financial Mathematics Essays in Financial Mathematics Kristoffer Lindensjö Dissertation for the Degree of Doctor of Philosophy, Ph.D. Stockholm School of Economics, 2013. Dissertation title:
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
Simple Arbitrage. Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila. Christian Bender. Saarland University
Simple Arbitrage Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila Saarland University December, 8, 2011 Problem Setting Financial market with two assets (for simplicity) on
Lecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
FINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
Consider a European call option maturing at time T
Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
Black and Scholes - A Review of Option Pricing Model
CAPM Option Pricing Sven Husmann a, Neda Todorova b a Department of Business Administration, European University Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt (Oder, Germany, Email: [email protected],
More on Market-Making and Delta-Hedging
More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of
Fundamentals of Futures and Options (a summary)
Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.
Understanding N(d 1 ) and N(d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1
Understanding N(d 1 ) and N(d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1 Lars Tyge Nielsen INSEAD Boulevard de Constance 77305 Fontainebleau Cedex France E-mail: nielsen@freiba51 October
VALUATION IN DERIVATIVES MARKETS
VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver
Lecture 4: The Black-Scholes model
OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
Simple formulas to option pricing and hedging in the Black Scholes model
Simple formulas to option pricing and hedging in the Black Scholes model Paolo Pianca Department of Applied Mathematics University Ca Foscari of Venice Dorsoduro 385/E, 3013 Venice, Italy [email protected]
Stocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static
American Capped Call Options on Dividend-Paying Assets
American Capped Call Options on Dividend-Paying Assets Mark Broadie Columbia University Jerome Detemple McGill University and CIRANO This article addresses the problem of valuing American call options
The real P&L in Black-Scholes and Dupire Delta hedging
International Journal of Theoretical and Applied Finance c World Scientific Publishing Company The real P&L in Black-Scholes and Dupire Delta hedging MARTIN FORDE University of Bristol, Department of Mathematics,
Lecture 1: Stochastic Volatility and Local Volatility
Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract
Black-Scholes and the Volatility Surface
IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
Option Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Optimal Investment with Derivative Securities
Noname manuscript No. (will be inserted by the editor) Optimal Investment with Derivative Securities Aytaç İlhan 1, Mattias Jonsson 2, Ronnie Sircar 3 1 Mathematical Institute, University of Oxford, Oxford,
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
4: SINGLE-PERIOD MARKET MODELS
4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.
WDS'09 Proceedings of Contributed Papers, Part I, 148 153, 2009. ISBN 978-80-7378-101-9 MATFYZPRESS Volatility Modelling L. Jarešová Charles University, Faculty of Mathematics and Physics, Prague, Czech
Private Equity Fund Valuation and Systematic Risk
An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869 Words: 3441 1 1. Introduction In this paper I present Black, Scholes (1973) and Merton (1973) (BSM) general
Hedge Fund Returns: You Can Make Them Yourself!
Hedge Fund Returns: You Can Make Them Yourself! Harry M. Kat * Helder P. Palaro** This version: June 8, 2005 Please address all correspondence to: Harry M. Kat Professor of Risk Management and Director
Operations Research and Financial Engineering. Courses
Operations Research and Financial Engineering Courses ORF 504/FIN 504 Financial Econometrics Professor Jianqing Fan This course covers econometric and statistical methods as applied to finance. Topics
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007
Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default
FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello
FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY Anna Rita Bacinello Dipartimento di Matematica Applicata alle Scienze Economiche, Statistiche ed Attuariali
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
Valuation of American Options
Valuation of American Options Among the seminal contributions to the mathematics of finance is the paper F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson
