OPTIMAL TIMING OF THE ANNUITY PURCHASES: A

Size: px
Start display at page:

Download "OPTIMAL TIMING OF THE ANNUITY PURCHASES: A"

Transcription

1 OPTIMAL TIMING OF THE ANNUITY PURCHASES: A COMBINED STOCHASTIC CONTROL AND OPTIMAL STOPPING PROBLEM Gabriele Stabile 1 1 Dipartimento di Matematica per le Dec. Econ. Finanz. e Assic., Facoltà di Economia Università degli Studi La Sapienza di Roma gabriele.stabile@uniroma1.it) ABSTRACT: We consider the optimal behaviour of a retired individual, who can invest her wealth in the financial market or, in alternative, can purchase an annuity. The objective is to maximize the expected discounted utility deriving from consumptions during the investment phase and from the annuity payments flow, over the controls which are given by the time of the annuity purchase and by the consumption/portfolio policies. This is a combined stochastic control and optimal stopping problem. Using dynamic programming we give a characterization of the optimal controls for a general form of utility functions and annuity payments. Assuming power utility functions and a particular functional form for the annuity payments, we explicitely exhibit the value function and the optimal controls. For different degrees of relative risk aversion, we determine a threshold such that the individual purchases the annuity when the individual s wealth reachs it. In this case the individual s best strategy is to invest her wealth in the financial market, so to defer the annuitization until the wealth reachs the threshold. KEYWORDS: Annuities, Stochastic control, Optimal stopping, HJB equation. 1 The model This paper examines the issue of how individuals invest their wealth in the retirement age. They can optimally invest their wealth in the financial market, while withdrawing a consumption stream, until they decide to purchase a life annuity that will guarantee a life-long income. The question the paper address is: what is the optimal time to purchase the annuity for risk-averse individuals? This decision has important economic implications because it has a direct effect on how well prepared individuals are to provide consumptions in their old age. Individuals face the risk of having to reduce consumption in later years. Bequest motives will not be considered, so the problem of intergenerational transfers will not be addressed. In order to investigate this question we implement a stochastic life-cycle model seminal papers for the life-cycle models are Modigliani & Brumberg, 1955; Yaari, 1965; see also Ehrlich, 2000; Pressacco, 1984.) There are two sources of uncertainty in the model: the return of the financial market and the individual s lifetime. We analyze our problem on a complete probability space Ω,F,P) with a filtration F t) satisfying the usual condition and carrying a standard one-dimensional F t))- brownian motion Wt). We consider a complete financial market composed by two assets:

2 one riskless bond), the other risky stock). The evolution of this assets is governed respectively by the following equations: dbt) = rbt)dt B0) = B 0 1) dst) = St)µdt + σdwt)) S0) = S 0 2) The individual evaluates her life s expectation calculated from the retirement time) by means of the random variable T. We assume that lt) := P[T > t] = e θt, t > 0 where θ > 0. The annuity payment R is calculated from the insurer via the formula Rt) = R r, t p y,l y xt) ) 3) where R is C 2 R + ), with R 0) = 0 and dr dx > 0. t p y and L y are respectively the conditional probability that an individual aged y survives to age y +t, and the costs charged by the insurer. The fact that the individual and the insurer use different survival probabilities is a conseguence of the mechanism of adverse selection. At the retirement time, the individual is endowed with a certain wealth x > 0 the savings accumulated during the working age). She can imply her wealth for purchase an annuity or, in alternative, she can enter in the financial market deferring the time of the annuitization. When the individual decides to buy the annuity, we assume that she implies all the wealth she has at that time in the annuity purchase. The life annuities we consider provide constant long-life income. Between the retiment time and the time of the annuity purchase, the individual has to plan a consumption rule c ) we suppose that she has no other source of wealth) and a portfolio rule π ). From 1) and 2), the wealth of the individual evolves according to dxt) = xt) [ r + πt)µ r) ] dt + σπt)xt)dwt) ct)dt x0) = x, The individual evaluates the discounted expected utility that derives from consumption during the investments in the financial market or from the annuity payments flow. Let u and p the utility functions used by the individual to assess these two consumption streams. u, p : R + R + are supposed to be strictly increasing, strictly concave, twice continuosly differentiable and satisfying the Inada conditions. We define the expected total utility associated to c,π,τ) as ] [ZT J c,π,τ x) = E x e δt [uct))χ t τ + pr xτ)))χ τ<t ]dt 0 4)

3 ] [Rτ or equivalently J c,π,τ x) = E x 0 e βt uct))dt + e βτ gxτ)) where β = δ + θ, gx) = 1 β prx)). The individual wishes to maximize her expected discounted utility over all triples c,π,τ), and the value function is denoted by vx) = sup J c,π,τ x) x > 0. 5) c,π,τ) 2 A verification theorem and explicit solutions in the case of constant relative risk aversion From a mathematical point of view the problem is formulated as a combined stochastic control and optimal stopping problem cf. Chancelier et al., 2001; Karatzas & Wang, 2000). The Markovian setting allows us to cast the optimization problem as a free boundary problem, based on the associated Hamilton-Jacobi-Bellman HJB) equation of dynamic programming. We prove a verification theorem that provides a sufficient condition to characterize the value function and the optimal control processes, but we are not able to find the explicit solutions. Theorem 1 Let y C 1 R + ) with the second derivative continuous almost everywhere in R +, be a solution of max Lyx),gx) yx) = 0, x R +, 6) where the operator L is defined as [x ) ] 1 Lyx) := sup r + πµ r) c y x) + 2 σ2 π 2 x 2 y x) + uc) βyx), c,π) R + R such that for all x0) = x > 0 and π, the process Zt e βs σπs)xs)y xs))dws), t 0, 0 is a martingale. Then a) yx) vx), x R +. b) Moreover, assume also that y ) is strictly concave and define the set D = x R + : yx) > gx) ; 7) define the policies τ = inf t 0 : x t) D, c t) = I y x t))) ) χ t τ, π t) = µ r σ 2 y x t)) x t)y x t)) χ t τ,

4 where x t) is the solution of 4) with controls c,π ), and I is the inverse of u x). If [ ] lim yx t))χ τ >t = 0, t e βt E then c,π,τ ) is the optimal controls triple and The proof of this theorem is omitted. vx) = yx) x R +. Notice that D, defined in 7), is the so-called continuation set since it is not optimal to stop the diffusion process until xt) exits from D. From 6) we have Lvx) = 0, x D and vx) = gx), x R + \ D Identifying the value function in C 1 R + ) implies the so called smooth fit principle: v x) = g x), x D. 8) We note that, in force of the lower semicontinuity of vx) and the strictly concavity of the obstacle function gx), the continuation region D is an open and connected set in R +. In order to investigate the form of D, we make the following assumption: HARA Hyperbolic Absolut Risk Aversion) utility functions and the function Rx) defined in 3) is linear with respect to the wealth. ux) = x α, px) = x ν α,ν 0,1), Rx) = Fx, F > 0. Define U = x R + : Lgx) > 0. Observe that U D, then it is never optimal to stop the process before it exits from U. [ ] Let M = Fν β β rν γ ν 1 ν, N = νf ν αβ ) α α 1 1 α) and h = MN ) α 1 ν α, where γ := 1 2 µ r σ )2. The degrees of relative risk aversion determine the form of the set U: ν = α = U = R + se N > M, altrimenti U = /0; ν < α = ν α α 1 > 0, U = h,+ ); 9) 2.1 Equal degree of risk aversion α = ν) In this case the individual has the same preferences to assess the consumption streams from the financial market and from the annuity market. From 9) we see that, depending on the values of the quantities M and N, there are two different cases which we study separately.

5 2.1.1 The continuation region coincides with R + the case N > M) From 9) we know that D = R + if N > M. This implies that τ = +, so the diffusion is never arrested and the problem 5) becomes the classical Merton s infinite horizon consumption/investment problem. The value function and the optimal control policies are respectively 1 α ) 1 α vx) = x β rα γ 1 α α α, x 0, and c x) := Cx) = 1 π := µ r 1 α)σ 2 1 α ) β rα γ 1 α α x, x > The continuation region coincides with the empty set the case N M) In this case we have that D = /0 then the optimal stopping time is τ = 0. Thus the individual optimizes her utility function by immediately purchasing the annuity. The parameters of the economy interest rate, subjective discount rate, etc...) are such that the returns from the financial market are not attractive for the individual. 2.2 Higher degree of relative risk aversion in the annuity assesment phase the case α > ν) We have that the continuation region D = ˆx, ) is an open interval unbounded on the right. We solve the control problem 5) by the same method as in Karatzas et al 1986). We guess that the value function 5) is given by yx) se x > ˆx vx) = gx) otherwise, where y ) C 2 D) is a strictly concave function satisfying the smooth fit principle 8). We define the processes τ = inf t 0 : x t) ˆx, ), c t) = Cx t)) ) χ t τ, π t) = µ r c t) 1 α)σ 2 x t)c t) χ t τ, where C ) is a twice continuously differentiable function, increasing and convex respect to the individual s wealth. By applying Theorem 1, we verify that these are respectively the value function and the optimal control processes. Notice that if β r + γ = Pτ < ) = 1, otherwise Pτ < ) 0,1).

6 It is interesting to qualitative describe the individual s optimal behavior. If the initial wealth is greater than ˆx, it is optimal for the individual to invest in the financial market according to the portfolio rule π, and to consume at rate c. If the returns from the financial market are such that the wealth increases, then the rate of consume increases and the individual rebalances her portfolio continuously in favour of the riskless asset. In the limit, when the individual s wealth goes to infinity, the portfolio rule converges to the constant described by Merton, Viceversa, if the retuns from the financial market are such that the wealth decreases, the rate of consume decreases as well, and the individual increases the portfolio s exposure to the risky asset, accepting so doing an increasing financial risk. When the wealth reachs the threshold ˆx, the individual has a low rate of consume but, because of her risk aversion, she does not want to increase the exposure to the risky asset. Then, the phase of investment in the financial market ends, and the individual implies her wealth in the annuity purchase. If the initial wealth is lower that ˆx, the individual immediately buys the annuity. References CHANCELIER, J-P., OKSENDAL, B., & SULEM, A Combined stochastic control and optimal stopping, and application to numerical approximation of combined stochastic and impulse control. Page 26 of: Proceedings of the Steklov Mathematical Institute on Mathematical Finance. EHRLICH, I Uncertain lifetime, life protection, and the value of life saving. Journal of Health Economics., 19, KARATZAS, I, & WANG, H A barrier option of american type. Applied Mathematics & Optimization., 642, KARATZAS, I, LEHOCZKY, J P, SETHI, S P, & SHREVE, S E Explicit solution of a general consumption/investment problem. Mathematics of Operations Research., 11, MERTON, R Optimum consumption and portfolio rules in a continuos-time model. Journal of Economic Theory., 3, MODIGLIANI, F, & BRUMBERG, R Utility analysis and the consumption function: an interpretation of cross-section data. K.K Kurihara ed., Post-Keynesian economics Allen and Unwin, London). PRESSACCO, F A life-cycle model of life insurance purchases. Metroeconomica., 36, YAARI, M E Uncertain lifetime, life insurance and the theory ot the consumer. Review of Economic Studies., 32,

Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes

Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes Min Dai Hong Liu Yifei Zhong This revision: November 28, 2012 Abstract We propose an optimal consumption and

More information

Brownian Motion and Stochastic Flow Systems. J.M Harrison

Brownian Motion and Stochastic Flow Systems. J.M Harrison Brownian Motion and Stochastic Flow Systems 1 J.M Harrison Report written by Siva K. Gorantla I. INTRODUCTION Brownian motion is the seemingly random movement of particles suspended in a fluid or a mathematical

More information

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Abstract: This paper presents a model for an insurance company that controls its risk and dividend

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Portfolio Choice under Probability Distortion

Portfolio Choice under Probability Distortion Portfolio Choice with Life Annuities under Probability Distortion Wenyuan Zheng James G. Bridgeman Department of Mathematics University of Connecticut The 49th Actuarial Research Conference, 2014 Outline

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing. 1 Introduction. Mrinal K. Ghosh Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

More information

OPTIMAL TIMING FOR SHORT COVERING OF AN ILLIQUID SECURITY

OPTIMAL TIMING FOR SHORT COVERING OF AN ILLIQUID SECURITY Journal of the Operations Research Society of Japan Vol. 58, No. 2, April 2015, pp. 165 183 c The Operations Research Society of Japan OPTIMAL TIMING FOR SHORT COVERING OF AN ILLIQUID SECURITY Tsz-Kin

More information

Health Insurance and Retirement Incentives

Health Insurance and Retirement Incentives Health Insurance and Retirement Incentives Daniele Marazzina Joint work with Emilio Barucci and Enrico Biffis Emilio Barucci and Daniele Marazzina Dipartimento di Matematica F. Brioschi Politecnico di

More information

Stock Loans in Incomplete Markets

Stock Loans in Incomplete Markets Applied Mathematical Finance, 2013 Vol. 20, No. 2, 118 136, http://dx.doi.org/10.1080/1350486x.2012.660318 Stock Loans in Incomplete Markets MATHEUS R. GRASSELLI* & CESAR GÓMEZ** *Department of Mathematics

More information

Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes

Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes Optimal Consumption and Investment with Asymmetric Long-term/Short-term Capital Gains Taxes Min Dai Hong Liu Yifei Zhong This revision: April 25, 2013 Abstract We propose an optimal consumption and investment

More information

Long Dated Life Insurance and Pension Contracts

Long Dated Life Insurance and Pension Contracts INSTITUTT FOR FORETAKSØKONOMI DEPARTMENT OF FINANCE AND MANAGEMENT SCIENCE FOR 1 211 ISSN: 15-466 MAY 211 Discussion paper Long Dated Life Insurance and Pension Contracts BY KNUT K. AASE This paper can

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

Black-Scholes Option Pricing Model

Black-Scholes Option Pricing Model Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

A Life Cycle Model with Pension Benefits and Taxes

A Life Cycle Model with Pension Benefits and Taxes A Life Cycle Model with Pension Benefits and Taxes Daniel Moos and Heinz Müller University of St. Gallen First Version: 6th September 2010 This Version: 21th March 2011 Abstract A life cycle model with

More information

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15 Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.

More information

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

More information

Choice under Uncertainty

Choice under Uncertainty Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

More information

Martingale Pricing Applied to Options, Forwards and Futures

Martingale Pricing Applied to Options, Forwards and Futures IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

More information

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti)

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Kjetil Storesletten September 10, 2013 Kjetil Storesletten () Lecture 3 September 10, 2013 1 / 44 Growth

More information

Financial Market Microstructure Theory

Financial Market Microstructure Theory The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the

More information

Optimal Insurance Coverage of a Durable Consumption Good with a Premium Loading in a Continuous Time Economy

Optimal Insurance Coverage of a Durable Consumption Good with a Premium Loading in a Continuous Time Economy Optimal Insurance Coverage of a Durable Consumption Good with a Premium Loading in a Continuous Time Economy Masaaki Kijima 1 Teruyoshi Suzuki 2 1 Tokyo Metropolitan University and Daiwa Securities Group

More information

Optimisation Problems in Non-Life Insurance

Optimisation Problems in Non-Life Insurance Frankfurt, 6. Juli 2007 1 The de Finetti Problem The Optimal Strategy De Finetti s Example 2 Minimal Ruin Probabilities The Hamilton-Jacobi-Bellman Equation Two Examples 3 Optimal Dividends Dividends in

More information

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Optimal order placement in a limit order book Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Outline 1 Background: Algorithm trading in different time scales 2 Some note on optimal execution

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

Annuity Decisions with Systematic Longevity Risk. Ralph Stevens

Annuity Decisions with Systematic Longevity Risk. Ralph Stevens Annuity Decisions with Systematic Longevity Risk Ralph Stevens Netspar, CentER, Tilburg University The Netherlands Annuity Decisions with Systematic Longevity Risk 1 / 34 Contribution Annuity menu Literature

More information

STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1.

STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1. Mathematical Finance, Vol. 17, No. 2 April 2007), 307 317 STOCK LOANS JIANMING XIA Center for Financial Engineering and Risk Management, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

More information

MARGIN CALL STOCK LOANS

MARGIN CALL STOCK LOANS MARGIN CALL STOCK LOANS ERIK EKSTRÖM AND HENRIK WANNTORP Abstract. We study margin call stock loans, i.e. loans in which a stock acts as collateral, and the borrower is obliged to pay back parts of the

More information

A NOTE ON THE EFFECTS OF TAXES AND TRANSACTION COSTS ON OPTIMAL INVESTMENT. October 27, 2005. Abstract

A NOTE ON THE EFFECTS OF TAXES AND TRANSACTION COSTS ON OPTIMAL INVESTMENT. October 27, 2005. Abstract A NOTE ON THE EFFECTS OF TAXES AND TRANSACTION COSTS ON OPTIMAL INVESTMENT Cristin Buescu 1, Abel Cadenillas 2 and Stanley R Pliska 3 October 27, 2005 Abstract We integrate two approaches to portfolio

More information

WACC and a Generalized Tax Code

WACC and a Generalized Tax Code WACC and a Generalized Tax Code Sven Husmann, Lutz Kruschwitz and Andreas Löffler version from 10/06/2001 ISSN 0949 9962 Abstract We extend the WACC approach to a tax system having a firm income tax and

More information

Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 10, September 3, 2014

Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 10, September 3, 2014 Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 1, September 3, 214 Runhuan Feng, University of Illinois at Urbana-Champaign Joint work with Hans W.

More information

Some Research Problems in Uncertainty Theory

Some Research Problems in Uncertainty Theory Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences

More information

Hedging market risk in optimal liquidation

Hedging market risk in optimal liquidation Hedging market risk in optimal liquidation Phillip Monin The Office of Financial Research Washington, DC Conference on Stochastic Asymptotics & Applications, Joint with 6th Western Conference on Mathematical

More information

The Demand for Life Insurance: An Application of the Economics of Uncertainty: A Comment

The Demand for Life Insurance: An Application of the Economics of Uncertainty: A Comment THE JOlJKNAL OF FINANCE VOL. XXXVII, NO 5 UECEMREK 1982 The Demand for Life Insurance: An Application of the Economics of Uncertainty: A Comment NICHOLAS ECONOMIDES* IN HIS THEORETICAL STUDY on the demand

More information

Finance 400 A. Penati - G. Pennacchi. Option Pricing

Finance 400 A. Penati - G. Pennacchi. Option Pricing Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

International Stock Market Integration: A Dynamic General Equilibrium Approach

International Stock Market Integration: A Dynamic General Equilibrium Approach International Stock Market Integration: A Dynamic General Equilibrium Approach Harjoat S. Bhamra London Business School 2003 Outline of talk 1 Introduction......................... 1 2 Economy...........................

More information

Stocks paying discrete dividends: modelling and option pricing

Stocks paying discrete dividends: modelling and option pricing Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

More information

Pricing American Options without Expiry Date

Pricing American Options without Expiry Date Pricing American Options without Expiry Date Carisa K. W. Yu Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Hong Kong E-mail: carisa.yu@polyu.edu.hk Abstract This paper

More information

Dynamic Asset Allocation: a Portfolio Decomposition Formula and Applications

Dynamic Asset Allocation: a Portfolio Decomposition Formula and Applications 1 Dynamic Asset Allocation: a Portfolio Decomposition Formula and Applications Jérôme Detemple Boston University School of Management and CIRANO Marcel Rindisbacher Rotman School of Management, University

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

Perpetual barrier options in jump-diffusion models

Perpetual barrier options in jump-diffusion models Stochastics (2007) 79(1 2) (139 154) Discussion Paper No. 2006-058 of Sonderforschungsbereich 649 Economic Risk (22 pp) Perpetual barrier options in jump-diffusion models Pavel V. Gapeev Abstract We present

More information

Planning And Scheduling Maintenance Resources In A Complex System

Planning And Scheduling Maintenance Resources In A Complex System Planning And Scheduling Maintenance Resources In A Complex System Martin Newby School of Engineering and Mathematical Sciences City University of London London m.j.newbycity.ac.uk Colin Barker QuaRCQ Group

More information

Who Should Sell Stocks?

Who Should Sell Stocks? Who Should Sell Stocks? Ren Liu joint work with Paolo Guasoni and Johannes Muhle-Karbe ETH Zürich Imperial-ETH Workshop on Mathematical Finance 2015 1 / 24 Merton s Problem (1969) Frictionless market consisting

More information

Private Equity Fund Valuation and Systematic Risk

Private Equity Fund Valuation and Systematic Risk An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology

More information

Optimal Consumption with Stochastic Income: Deviations from Certainty Equivalence

Optimal Consumption with Stochastic Income: Deviations from Certainty Equivalence Optimal Consumption with Stochastic Income: Deviations from Certainty Equivalence Zeldes, QJE 1989 Background (Not in Paper) Income Uncertainty dates back to even earlier years, with the seminal work of

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Stochastic Models for Inventory Management at Service Facilities

Stochastic Models for Inventory Management at Service Facilities Stochastic Models for Inventory Management at Service Facilities O. Berman, E. Kim Presented by F. Zoghalchi University of Toronto Rotman School of Management Dec, 2012 Agenda 1 Problem description Deterministic

More information

FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello

FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY Anna Rita Bacinello Dipartimento di Matematica Applicata alle Scienze Economiche, Statistiche ed Attuariali

More information

Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio Management

Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio Management Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio Management Sad Browne * Columbia University Original: February 18, 1996 This Version: July 9, 1996 Abstract We study a

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

Characterizing Option Prices by Linear Programs

Characterizing Option Prices by Linear Programs Contemporary Mathematics Characterizing Option Prices by Linear Programs Richard H. Stockbridge Abstract. The price of various options on a risky asset are characterized via a linear program involving

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3.

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3. On a class of Hill s equations having explicit solutions Michele Bartuccelli 1 Guido Gentile 2 James A. Wright 1 1 Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. 2 Dipartimento

More information

High-frequency trading in a limit order book

High-frequency trading in a limit order book High-frequency trading in a limit order book Marco Avellaneda & Sasha Stoikov October 5, 006 Abstract We study a stock dealer s strategy for submitting bid and ask quotes in a limit order book. The agent

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz

Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

14.451 Lecture Notes 10

14.451 Lecture Notes 10 14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2

More information

1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

More information

Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey

Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey MURAT ÜNGÖR Central Bank of the Republic of Turkey http://www.muratungor.com/ April 2012 We live in the age of

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

LECTURE 10.1 Default risk in Merton s model

LECTURE 10.1 Default risk in Merton s model LECTURE 10.1 Default risk in Merton s model Adriana Breccia March 12, 2012 1 1 MERTON S MODEL 1.1 Introduction Credit risk is the risk of suffering a financial loss due to the decline in the creditworthiness

More information

VALUATION OF STOCK LOANS WITH REGIME SWITCHING

VALUATION OF STOCK LOANS WITH REGIME SWITCHING VALUATION OF STOCK LOANS WITH REGIME SWITCHING QING ZHANG AND XUN YU ZHOU Abstract. This paper is concerned with stock loan valuation in which the underlying stock price is dictated by geometric Brownian

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

More information

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility

More information

DIFFERENTIABILITY OF THE VALUE FUNCTION WITHOUT INTERIORITY ASSUMPTIONS

DIFFERENTIABILITY OF THE VALUE FUNCTION WITHOUT INTERIORITY ASSUMPTIONS Working Paper 07-14 Departamento de Economía Economic Series 05 Universidad Carlos III de Madrid March 2007 Calle Madrid, 126 28903 Getafe (Spain) Fax (34-91) 6249875 DIFFERENTIABILITY OF THE VALUE FUNCTION

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Increases in risk aversion and the distribution of portfolio payoffs

Increases in risk aversion and the distribution of portfolio payoffs Available online at www.sciencedirect.com Journal of Economic Theory 147 (2012) 1222 1246 www.elsevier.com/locate/jet Increases in risk aversion and the distribution of portfolio payoffs Philip H. Dybvig

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

Jung-Soon Hyun and Young-Hee Kim

Jung-Soon Hyun and Young-Hee Kim J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

More information

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 THE QUANTUM BLACK-SCHOLES EQUATION LUIGI ACCARDI AND ANDREAS BOUKAS arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 Abstract. Motivated by the work of Segal and Segal in [16] on the Black-Scholes pricing formula

More information

Fixed and Variable Payout Annuities: How Optimal are Optimal Strategies?

Fixed and Variable Payout Annuities: How Optimal are Optimal Strategies? Fixed and Variable Payout Annuities: How Optimal are Optimal Strategies? Anne MacKay joint work with Phelim Boyle, Mary Hardy and David Saunders 49th Actuarial Research Conference UC Santa Barbara July

More information

How To Find The Price Of An American Style Call Option

How To Find The Price Of An American Style Call Option American Option Pricing with Transaction Costs Valeri. I. Zakamouline Department of Finance and Management Science Norwegian School of Economics and Business Administration Helleveien 30, 5045 Bergen,

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Optimal Investment with Derivative Securities

Optimal Investment with Derivative Securities Noname manuscript No. (will be inserted by the editor) Optimal Investment with Derivative Securities Aytaç İlhan 1, Mattias Jonsson 2, Ronnie Sircar 3 1 Mathematical Institute, University of Oxford, Oxford,

More information

Life Insurance and Pension Contracts I: The Time Additive Life Cycle Model

Life Insurance and Pension Contracts I: The Time Additive Life Cycle Model INSTITUTT FOR FORETAKSØKONOMI DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE FOR 13 214 ISSN: 15-466 March 214 Discussion paper Life Insurance and Pension Contracts I: The Time Additive Life Cycle Model

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role

The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role Massimiliano Politano Department of Mathematics and Statistics University of Naples Federico II Via Cinthia, Monte S.Angelo

More information

Computational Finance Options

Computational Finance Options 1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to

More information

Portfolio Allocation and Asset Demand with Mean-Variance Preferences

Portfolio Allocation and Asset Demand with Mean-Variance Preferences Portfolio Allocation and Asset Demand with Mean-Variance Preferences Thomas Eichner a and Andreas Wagener b a) Department of Economics, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

Portfolio Optimization Part 1 Unconstrained Portfolios

Portfolio Optimization Part 1 Unconstrained Portfolios Portfolio Optimization Part 1 Unconstrained Portfolios John Norstad j-norstad@northwestern.edu http://www.norstad.org September 11, 2002 Updated: November 3, 2011 Abstract We recapitulate the single-period

More information

Stochastic Inventory Control

Stochastic Inventory Control Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the

More information

1 IEOR 4700: Introduction to stochastic integration

1 IEOR 4700: Introduction to stochastic integration Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 Riemann-Stieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

The Black-Scholes Formula

The Black-Scholes Formula FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

More information