New exact solutions for the combined sinh-cosh-gordon equation
|
|
|
- Constance Morton
- 10 years ago
- Views:
Transcription
1 Sociedad Colobiaa de Mateáticas XV Cogreso Nacioal de Mateáticas 2005 Aputes Lecturas Mateáticas Volue Especial (2006), págias New exact solutios for the cobied sih-cosh-gordo equatio César A. Góez S. Uiversidad Nacioal de Colobia, Bogotá Álvaro Salas Uiversidad de Caldas, Maizales Uiversidad Nacioal de Colobia, Maizales Abstract. We preset the geeral projective Riccati equatios ethod to obtai exact solutios for the cobied sih-cosh-gordo equatio. The Pailevé property v = e u will be used to back up the ethod to derive travellig wave solutios of distict physical structures. I additio we showed the behavior of the solutios with the graph of soe of the. The ethod ca also be applied to other oliear partial differetial equatio (NLPDE s) or systes i atheatical physics. Key words ad phrases. Noliear differetial equatio, travellig wave solutio, Matheatica, projective Riccati equatio ethod AMS Matheatics Subject Classificatio. 35C05. Resue. Presetaos el étodo proyectivo de ecuacioes de Riccati geeral, para obteer solucioes exactas para la ecuació sih-cosh- Gordo cobiada. La propiedad de Paivelé v = e u se usará para alcazar el étodo, y derivar solucioes por odas viajeras de distitas estructuras físicas. Adeas ostrareos el coportaieto de las solucioes co el gráfico de alguas de ellas. El étodo puede adeás ser aplicado a otras ecuacioes difereciales parciales o lieales (NLPDEs) o sisteas e física ateatica. 1. Itroductio I the study of oliear wave pheoea, the travellig wave solutios of partial differetial equatio (PDEs) have physical relevace. The kowledge of closed for solutios of oliear PDEs ad ODEs facilitates the testig of uerical solvers, ad aids i the stability aalysis of solutios. It is well-kow
2 88 César A. Góez S. & Álvaro Salas that searchig the exact solutios for oliear partial differetial equatios is the great iportace for ay researches. A variety of powerful ethods such that tah ethod, geeralized tah ethod, geeral projective Riccati equatio ethod, Bäcklud trasforatio, Hirota biliear fors, ad ay other ethods have bee developed i this directio. Practically, there is ot a uified ethod that ca be used to hadle all types of oliear probles. I this paper, we will use the geeral projective Riccati equatio ethod, to costruct exact solutios for the cobied sih-cosh-gordo equatio. 2. The geeral projective Riccati equatios ethod For a give oliear equatio that does ot explicitly ivolve idepedet variables P (u, u x,u t,u xx,u xt,u tt,...)=0, (2.1) whe we look for its travellig wave solutios, the first step is to itroduce the wave trasforatio, which have by defiitio the for u(x, t) =v(ξ), ξ = x + λt, (2.2) where λ is a costat ad chage (1.1) to a ordiary differetial equatio (ODE) for the fuctio v(ξ) P (v, v,v,...)=0. (2.3) The ext crucial step is to itroduce ew variables σ(ξ), τ(ξ) which are solutios of the syste { σ (ξ) =eσ(ξ)τ(ξ) τ (ξ) =eτ 2 (2.4) (ξ) µσ(ξ)+r. It is easy to see that the first itegral of this syste is give by τ 2 = e[r 2µσ(ξ)+ µ2 + ρ σ 2 (ξ)], (2.5) r where ρ = ±1. Fro this itegral we obtai the followig particular solutios: 1. Case I: If r = µ = 0 the τ 1 (ξ) = 1 eξ, σ 1(ξ) = C ξ. (2.6) 2. Case II: If e =1adρ = 1 τ 2 = σ 2 = r ta( rξ) µ sec( rξ)+1 r sec( rξ) µ sec( rξ)+1 (r >0) (r >0). (2.7)
3 New exact solutios for the cobied sih-cosh-gordo equatio Case III: If e = 1 adρ = 1 r tah( rξ) τ 3 = µsech( rξ)+1 σ 3 = rsech( rξ) µsech( rξ)+1 4. Case IV: If e = 1 adρ =1 τ 4 = σ 4 = r coth( rξ) µcsch( rξ)+1 r csch( rξ) µ csch( rξ)+1 5. Case V: If e =1adρ =1 τ 5 = r coth( rξ) µcsch( rξ)+1 σ 5 = r csch( rξ) µ csch( rξ)+1 We seek a solutio of (1.1) i the for u(x, t) =v(ξ) =a 0 + (r >0) (r >0). (r >0) (r >0). (r <0) (r <0). (2.8) (2.9) (2.10) M σ i 1 (ξ)(a i σ(ξ)+b i τ(ξ)), (2.11) i=1 where σ(ξ), τ(ξ) satisfy the syste (2.4). The iteger M ca be deteried by balacig the highest derivative ter with oliear ters i (2.3), before the a i ad b i ca be coputed. Substitutig (2.11), alog with (2.4) ad (2.5) ito (2.3) ad collectig all ters with the sae power i σ i (ξ)τ j (ξ), we get a polyoial i the variables σ(ξ) ad τ(ξ). Equalig the coefficiets of this polyoial to zero, we obtai a syste of algebraic equatios, fro which the costats µ, r, λ, a i,b i (i =1, 2,...,M) are obtaied explicitly. Usig the solutios of the syste (2.14) alog with (2.11), we obtai the explicit solutios for (2.1) i the origial variables. 3. The cobied sih-cosh-gordo equatio This is the equatio u tt ku xx + α sih(u)+β cosh(u) =0, (3.1) where subscripts idicate partial derivatives, u is a real scalar fuctio of the two idepedet variables x ad t, while α ad β are all odel paraeters ad they are arbitrary, ozero costats. This equatio has bee discussed i [8] by ea the variable separated ODE ad the tah ethods. I this paper, we
4 90 César A. Góez S. & Álvaro Salas obtai ew exact solutio for ay values of k, α ad β. First itroduce the trasforatios sih u = V V 1, cosh u = V 1 + V 1, V = e u, (3.2) 2 2 after which we obtai the equatio 2V (V tt kv xx )+2(kVx 2 Vt 2 )+(β + α)v 3 +(β α)v =0. (3.3) The substitutio V = v(ξ) =v(x + λt) i (2.15) gives us the equatio ()v 3 (α β)v +2(λ 2 k)vv 2(λ 2 k)(v ) 2 =0. (3.4) Accordig to the ethod described above, we seek solutios of (2.13) i the for u(x, t) =v(ξ) =a 0 + a 1 σ(ξ)+b 1 τ(ξ), (3.5) where σ(ξ) adτ(ξ) satisfy the syste (1.5). Substitutig (2.17), alog with (1.5) ad (1.6) ito (2.16) ad collectig all ters with the sae power i σ i (ξ)τ j (ξ) we get a polyoial i the variables σ(ξ) adτ(ξ). Equalig the coefficiets of these polyoial to zero ad after siplificatios (usig e = ±1, r 0) we get the followig algebraic syste: 4ea 1 b 1 (k λ 2 )(µ 2 + ρ) =0, 2e(k λ 2 )(µ 2 + ρ)( ra eb 2 1(µ 2 + ρ)) = 0, a 3 0() a 0 (α β +3erb 2 1()) = 0, 2µb 2 1(r(k λ 2 )+3ea 0 ()) + a 1 ( +2era 0 (k λ 2 )+3a 2 0(α + β) 3erb 2 1()) = 0, a 0 (6erµa 1 (k λ 2 ) 3ra 2 1()+3eb 2 1()(µ 2 + ρ)) + 2r( b 2 1(k λ 2 )(3µ 2 +2ρ)+3eµa 1 b 2 1()) = 0, 4ea 0 a 1 (k λ 2 )(µ 2 +ρ) 2erµa 2 1(k λ 2 )+ra 3 1(α+β)+6µb 2 1(k λ 2 )(µ 2 + ρ) 3ea 1 b 2 1()(µ 2 + ρ) =0, b 1 (α β 3a 2 0()+erb 2 1()) = 0, 2b 1 (a 0 ( eµ(k λ 2 )+3a 1 ()) + e(ra 1 (k λ 2 )+µb 2 1())) = 0, b 1 ( 4ea 0 (k λ 2 )(µ 2 + ρ) +4erµa 1 (k λ 2 ) 3ra 2 1() +eb 2 1(α + β)(µ 2 + ρ)) = 0. Solvig the previous syste respect to the ukow variables r, a 0,a 1,b 1 we obtai the solutios b 1 =0,a 0 = ± α β α2 β,a 2 1 = 2µe(k λ2 ),r= where µ 2 + ρ =0,ρ = ±1, e = ±1. α2 β 2 e(k λ 2 ), Therefore, accordig (2.17) ad usig (1.6) to (1.10), ad after siplificatios we obtai the followig classificatio of soe exact solutios for the equatio (2.13): (i all cases u(x, t) =v(ξ) =a 0 +a 1 σ(ξ), b 1 =0, = α 2 β 2 0, =(λ 2 k) 0adξ = x + λt): For e =1adρ =1:
5 New exact solutios for the cobied sih-cosh-gordo equatio 91 N r µ a 0 a 1 u 1 2 ı ı α β α β 2ı 2 ( ) (α β) csc( ξ)+1 ( ) )(<0adα>β) csc( ξ) 1 ( ) (β α) csc( ξ)+1 ( ) )(>0adα<β) csc( ξ) 1 For e = 1 adρ =1: N r µ a 0 a 1 u 3 4 ı ı α β α β 2ı 2ı ( ) (α β) csc( ξ) 1 ( ) )(<0adα>β) csc( ξ)+1 ( ) (β α) csc( ξ) 1 ( ) )(>0adα<β) csc( ξ)+1 For e =1adρ = 1: N r µ a 0 a 1 u 5 1 α β 2 (α β) cot 2 ( 1 2 ξ) )(<0adα>β) α β 2 (β α) cot 2 ( 1 2 ξ) 6 1 )(>0adα<β) 7 1 α β 2 (β α) coth 2 ( 1 2 ξ) )(>0adα<β) 8 α β 2 (β α) ta 2 ( 1 2 ξ) 1 )(>0adα<β) 9 α β 2 (α β) tah 2 ( 1 2 ξ) 1 )(<0adα>β) 10 1 α β 2 (β α) tah 2 ( 1 2 ξ) )(>0adα<β) (α β) coth 2 ( 1 2 ξ) )(<0adα>β) 12 1 α β 2 (α β) ta 2 ( 1 2 ξ) )(<0adα>β)
6 92 César A. Góez S. & Álvaro Salas The surface i Figure 1 correspods to solutio (1) with ξ = x + λt, k =2, λ =1,α =2adβ =1,forx = 14 to x =14adt = 1 tot =1. The surface i Figure 2 correspods to solutio (8) with ξ = x + λt, k =1, λ =2,α = 192 ad β =1,forx = 115 to x = 115 ad t = 1 tot =1. The surface i Figure 3 correspods to solutio (7) with ξ = x + λt, k =1, λ =2,α = 192 ad β =1,forx = 0,5 tox =0,5 adt = 1 tot =1. Figure 1 Figure 2 Figure 3 4. Coclusios The projective Riccati equatio ethod is a powerful ethod to search exact solutios for NLPDE s. The projective ethod is ore coplicated tha other ethods, i the sese that deads ore coputer resources sice the algebraic syste ay require a lot of tie to be solved. I soe cases, this syste is so coplicated that o coputer algorith ay solve it, specially if the value of M is greater tha four. I this paper, this ethod has bee applied to the cobied sih-cosh-gordo equatio with M = 1. Ackowledgets: The authors wat to express their gratitude to professor A. Siitsy for his helpful suggestios ad recoedatios about this paper. Refereces [1] R. Cote & M. Musette, Lik betwe solitary waves ad projective Riccati equatios,j. Phys. A Math. 25 (1992), [2] E. Ic & M. Ergüt, New Exact Tavellig Wave Solutios for Copoud KdV-Burgers Equatio i Matheatical Physics, Applied Matheatics E-Notes 2 (2002),
7 New exact solutios for the cobied sih-cosh-gordo equatio 93 [3] J. Mei, H. Zhag & D. Jiag, New exact solutios for a Reactio-Diffusio equatio ad a Quasi-Caassa-Hol Equatio, Applies Matheatics E-Notes, 4 (2004), [4] Z. Ya, The Riccati equatio with variable coefficiets expasio algorith to fid ore exact solutios of oliear differetial equatio, MMRC, AMSS, Acadeia Siica (Beijig) 22 (2003), [5] Z. Ya, A iproved algebra ethod ad its applicatios i oliear wave equatios, MMRC, AMSS, Acadeia Siica (Beijig) 22 (2003), [6] D. Baldwi, U. Goktas, W. Herea, L. Hog, R. S. Martio & J. C.Miller, Sybolic coputatio of exact solutios expressible i hyperbolic ad elliptic fuctios for oliear PDFs, J. Sybolic Copt 37 (6) (2004), Preprit versio: li.si/ (arxiv.org) [7] A. Salas & C. Goez, El software Matheatica e la búsqueda de solucioes exactas de ecuacioes difereciales o lieales e derivadas parciales ediate la ecuació de Riccati.EMeorias Prier Seiario Iteracioal de Tecologías e Educació Mateática. 1. Uiversidad Pedagógica Nacioal (2005), [8] A. M. Wazwaz, The tah ethod: exact solutios of the Sie-Gordo ad the Sih- Gordo equatios, Applied Matheatics ad Coputatio 49 (2005), (Recibido e Marzo de Aceptado para publicació agosto de 2006) Departeto de Mateáticas Uiversidad Nacioal de Colobia Bogotá, Colobia e-ail:[email protected] Departeto de Mateáticas Uiversidad de Caldas Maizales, Colobia e-ail:[email protected]
Numerical Analysis for Characterization of a Salty Water Meter
Nuerical Aalysis for Characterizatio of a Salty Water Meter José Erique Salias Carrillo Departaeto de Ciecias Básicas Istituto Tecológico de Tehuacá Bolio Arago Perdoo Departaeto de Mecatróica Istituto
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
The Binomial Multi- Section Transformer
4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω
CHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
CHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
A Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423-432 HIKARI Ltd, www.m-hikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t
Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:
Quantum bouncer with dissipation
ENSEÑANZA REVISTA MEXICANA DE FÍSICA E5 ) 16 131 DICIEMBRE 006 Quatu boucer with dissipatio G. López G. Gozález Departaeto de Física de la Uiversidad de Guadalajara, Apartado Postal 4-137, 44410 Guadalajara,
Class Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
Problem Solving with Mathematical Software Packages 1
C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
2-3 The Remainder and Factor Theorems
- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory
Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
Solving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
Theorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius
Ant Colony Algorithm Based Scheduling for Handling Software Project Delay
At Coloy Algorith Based Schedulig for Hadlig Software Project Delay Wei Zhag 1,2, Yu Yag 3, Juchao Xiao 4, Xiao Liu 5, Muhaad Ali Babar 6 1 School of Coputer Sciece ad Techology, Ahui Uiversity, Hefei,
Partial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
Supply Chain Network Design with Preferential Tariff under Economic Partnership Agreement
roceedigs of the 2014 Iteratioal oferece o Idustrial Egieerig ad Oeratios Maageet Bali, Idoesia, Jauary 7 9, 2014 Suly hai Network Desig with referetial ariff uder Ecooic artershi greeet eichi Fuaki Yokohaa
http://www.webassign.net/v4cgijeff.downs@wnc/control.pl
Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial
GSR: A Global Stripe-based Redistribution Approach to Accelerate RAID-5 Scaling
: A Global -based Redistributio Approach to Accelerate RAID-5 Scalig Chetao Wu ad Xubi He Departet of Electrical & Coputer Egieerig Virgiia Coowealth Uiversity {wuc4,xhe2}@vcu.edu Abstract Uder the severe
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM) SYSTEM
INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM SYSTEM Audrius ILGEVICIUS Maschiefabrik Reihause GbH, [email protected] Alexei BABIZKI Maschiefabrik Reihause GbH [email protected] ABSTRACT The
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
INFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
Overview on S-Box Design Principles
Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea
Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis
Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.
A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:
A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio
A zero one programming model for RNA structures with arc length 4
Iraia Joural of Matheatical Cheistry, Vol. 3, No.2, Septeber 22, pp. 85 93 IJMC A zero oe prograig odel for RNA structures with arc legth 4 G. H. SHIRDEL AND N. KAHKESHANI Departet of Matheatics, Faculty
Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
Chapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )
Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called
SOLAR POWER PROFILE PREDICTION FOR LOW EARTH ORBIT SATELLITES
Jural Mekaikal Jue 2009, No. 28, 1-15 SOLAR POWER PROFILE PREDICTION FOR LOW EARTH ORBIT SATELLITES Chow Ki Paw, Reugath Varatharajoo* Departet of Aerospace Egieerig Uiversiti Putra Malaysia 43400 Serdag,
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
Convexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
AP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
Case Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
Research Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
Lesson 15 ANOVA (analysis of variance)
Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi
THE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:
CS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least
A sharp Trudinger-Moser type inequality for unbounded domains in R n
A sharp Trudiger-Moser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The Trudiger-Moser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
Lecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular
THE HEIGHT OF q-binary SEARCH TREES
THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
Investigation of Atwood s machines as Series and Parallel networks
Ivestiatio of Atwood s achies as Series ad Parallel etworks Jafari Matehkolaee, Mehdi; Bavad, Air Ahad Islaic Azad uiversity of Shahrood, Shahid Beheshti hih school i Sari, Mazadara, Ira [email protected]
Incremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
How To Solve The Phemean Problem Of Polar And Polar Coordiates
ISSN 1 746-733, Eglad, UK World Joural of Modellig ad Simulatio Vol. 8 (1) No. 3, pp. 163-171 Alterate treatmets of jacobia sigularities i polar coordiates withi fiite-differece schemes Alexys Bruo-Alfoso
Lesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig
Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
the product of the hook-lengths is over all boxes of the diagram. We denote by d (n) the number of semi-standard tableaux:
O Represetatio Theory i Coputer Visio Probles Ao Shashua School of Coputer Sciece ad Egieerig Hebrew Uiversity of Jerusale Jerusale 91904, Israel eail: [email protected] Roy Meshula Departet of Matheatics
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
Factors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
GOAL PROGRAMMING BASED MASTER PLAN FOR CYCLICAL NURSE SCHEDULING
Joural of Theoretical ad Applied Iforatio Techology 5 th Deceber 202. Vol. 46 No. 2005-202 JATIT & LLS. All rights reserved. ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 GOAL PROGRAMMING BASED MASTER PLAN
MARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
Ekkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/
SEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
Time Value of Money, NPV and IRR equation solving with the TI-86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
How To Solve The Homewor Problem Beautifully
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
Baan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
LECTURE 13: Cross-validation
LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M
Chapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
Notes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the
Chapter 10 Computer Design Basics
Logic ad Computer Desig Fudametals Chapter 10 Computer Desig Basics Part 1 Datapaths Charles Kime & Thomas Kamiski 2004 Pearso Educatio, Ic. Terms of Use (Hyperliks are active i View Show mode) Overview
ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
Study on the application of the software phase-locked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.31-35 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phase-locked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
ODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
INVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
ON THE DENSE TRAJECTORY OF LASOTA EQUATION
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory
